А. А. КУЗНЕЦОВ С. М. Кагерманов Е. Н. Судаков

РАСЧЕТЫ ПРОЦЕССОВ И АППАРАТОВ НЕФТЕПЕРЕРАБАТЫ ВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

Изд. 2-е, переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов нефтяных специальностей вузов

издательство «химия» Ленинградское отделение 1974

6П7.43 УДК 665.63 /.67-9.001.2 К89

Кузнецов А. А., Кагерманов С. М., Судаков Е. Н.

K89

Расчеты процессов и аппаратов нефтеперерабатывающей промышленности. Изд. 2-е, пер. и доп. Л., «Химия», 1974.

Стр. 344, рис. 73, табл. 139, список литературы 149 ссылок.

В книге приведены примеры технологических расчетов основных процессов и аппаратов нефтеперерабатывающей промышленности. Рассмотрены массообменные (диффузионные), тепловые и химические (реакционные) процессы и применяемая в них аппаратура (ректификационные колонны, экстракторы, абсорберы и десорберы: теплообменные аппараты — конденсаторы-холодильники, кипятильники, печи, реакторы и регенераторы). Книга снабжена приложениями, в которых приведены необходимые для расчетов справочные данные.

торы). Книга снаожена приложениями, в которых приведены необходимые для расчетов справочные данные. Книга является вторым, переработанным и дополненным издавием учебного пособия для студентов вузов по курсам «Химическая технология переработки нефти и газа» и «Машины и аппараты химических производств» (первое издание выпущено в 1966 г.). Она может быть полезна также инженерио-техническим работникам химической, нефтеперерабатывающей и нефтехимической промышленности.

 $K = \frac{31402 - 096}{050(01) - 74} 96 - 74$

 $6\Pi 7.43 + 6\Pi 7.1$

Рецензент

Доцент кафедры нефтезаводских и химических аппаратов и оборудования Азербайджанского института нефти и химии Р. Т. Эмирджанов

🕑 Издательство «Химия», 1974

Курс «Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности» является профилирующим в учебных планах специальностей «Химическая технология переработки нефти и газа», «Технология органического и нефтехимического синтеза» и «Машины и аппараты нефтеперерабатывающих и нефтехимических заводов» нефтяных вузов и факультетов. Одна из главных задач этого курса заключается в изучении методов расчета процессов и аппаратов, составляющих основу проектирования новых и совершенствования действующих технологических установок и комплексов нефтеперерабатывающих и нефтехимических предприятий.

Настоящая книга представляет собой учебное пособие по технологическому расчету основных нефтезаводских процессов и аппаратов для студентов дневного, вечернего и заочного обучения указанных выше специальностей. Она может быть также полезна инженерно-техническим работникам нефтезаводов и проектных организаций.

Авторы не стремились дать расчеты всех многочисленных процессов и аппаратов, используемых в нефтепереработке. Подобный подход не позволил бы достаточно полно и ясно изложить наиболее важные элементы расчетов, что очень существенно при организации самостоятельной работы студентов над курсовыми и дипломными проектами. Второе издание дополнено расчетами экстракционной колонны и реактора платформинга. Авторы сочли нужным сделать это в связи с пожеланиями читателей и учетом собственного опыта. Кроме указанного дополнения настоящее издание отличается от первого тем, что многие расчеты переработаны с учетом новых теоретических данных. Увеличена производительность некоторых аппаратов.

Каждая из трех глав книги имеет небольшие введения, в которых приводятся краткие сведения о сущности технологических расчетов процессов и аппаратов данной группы и тех закономерностях, которые лежат в их основе. Во введениях к расчетам отдельных аппаратов дается последовательность расчета с перечислением основных исходных данных и формулировкой задачи расчета.

Все расчеты в книге выполнены в международной системе единиц физических величин (СИ), в соответствии с проектом ГОСТа, подготовленным Госстандартом СССР (редакция 1970 и 1972 гг.). Многие формулы пересчитаны авторами в новую систему единиц, при этом степень их точности сохранена прежней. Для удобства читателей в некоторых таблицах применены двойные колонки, а в некоторых графиках — двойные шкалы, отвечающие старым и новым единицам измерения. Как правило, все физические величины, взятые из справочников в старой системе единиц, используются авторами в новой системе без особой оговорки о сделанном пересчете.

Расчеты для определения теплофизических и других величин выполнены различными методами, с тем чтобы включить в поле зрения студентов большее количество специальной литературы. В ссылках на литературу кроме номера источника указывается страница, чтобы при прослеживании хода расчета студент не затрачивал много времени на поиск необходимого теоретического и справочного материала. При этом авторы совершенно уверены в том, что преподаватели, руководящие самостоятельной работой студентов, будут рекомендовать им дополнительную, более новую литературу.

В связи с указанными дополнениями и изменениями, внесенными во второе издание, значительно расширился список использованной литературы, однако при работе с книгой он должен постоянно увеличиваться, обогащая каждый расчет студента новыми материалами, а часто и новыми идеями.

Глава 1 написана А. А. Кузнецовым и Е. Н. Судаковым, глава 2—С. М. Кагермановым и А. А. Кузнецовым, глава 3— Е. Н. Судаковым и А. А. Кузнецовым.

Авторы считают своим долгом выразить глубокую благодарность рецензенту книги доценту Азербайджанского института нефти и химии Р. Т. Эмирджанову за ценные указания и советы, учтенные при окончательном редактировании второго издания пособия.

Авторы будут весьма признательны всем читателям за отзывы и критические замечания о книге.

МАССООБМЕННЫЕ П Р О Ц Е С С Ы

В главе приводятся технологические расчеты четырех аппаратов: ректификационной колонны для разделения многокомпонентной смеси, отгонной колонны для выделения растворителя из практически нелетучего жидкого остатка, фракционирующего абсорбера и экстракционной колонны для извлечения ароматических углеводородов. Ввиду недостаточного количества теоретических и экспериментальных данных по кинетике процессов разделения многокомпонентных систем приведенные ниже расчеты массообменных аппаратов ведутся на основе термодинамической теории разделения, которая исходит из понятия идеальной ступени контакта (теоретическая тарелка).

Термодинамический расчет процессов массообмена (ректификации, абсорбции, десорбции и др.) основан на применении уравнений материального и теплового балансов и равновесия пар — жидкость или жидкость — жидкость.

Материальный баланс может быть составлен для всего объема аппарата и для любой его части как по общему количеству потоков, так и по каждому компоненту. Поэтому число независимых уравнений материального баланса равно числу компонентов разделяемой смеси.

Тепловой баланс может быть составлен как для всего объема аппарата, так и для любой его части по общему количеству потоков, поэтому уравнение теплового баланса может быть только одно.

Конечной целью расчета любого масообменного аппарата является определение количеств и составов проходящих через него материальных потоков, затрат тепла, а также основных размеров аппарата (диаметра и высоты) и размеров внутренних устройств (тарелок, колпачков и других элементов).

В качестве основных исходных данных проектировщик должен иметь: производительность аппарата по исходному сырью, состав сырья и требования к качеству продуктов его разделения. Для многих расчетов необходимо располагать данными, характеризующими равновесное состояние системы, при определенных температурах и давлениях.

РЕКТИФИКАЦИОННАЯ КОЛОННА Для разделения многокомпонентной смеси

Рассчитать пропановую колонну газофракционирующей установки при следующих исходных данных: состав сырья (мол.%) СН₄ — 0,35, С₂H₆ — 0,73, С₃H₈ — 37,51, *н*-С₄H₁₀ — 42,69, *н*-С₅H₁₂ — 18,72; содержание *н*-С₄H₁₀ в дистилляте должно быть не более 1,3 мол.%, содержание С₃H₈ в остатке — не более 4 мол.%; сырье подается в колонну при температуре $T_f = 353$ К; производительность колонны по сырью $G_{\rm час} = 20\,000$ кг/ч; начальная температура воды, подаваемой в конденсатор-холодильник колонны, 296 К.

Из всех известных методов расчета ректификации многокомпонентных смесей выбран метод «от тарелки к тарелке» как наиболее точный и надежный, хотя и более трудоемкий, если вычисления ведутся без использования ЭВМ. В расчете делаются общеизвестные допущения, не приводящие к существенному нарушению точности. Расчет ведется методом постепенного приближения [1, с. 305—308].

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА КОЛОННЫ

1. По заданным производительности колонны и составу сырья определяют массовые и мольные количества всех его компонентов.

2. Из уравнений материальных балансов всего объема колонны, записанных по общему количеству потоков и по каждому компоненту, определяют количества и составы дистиллята и остатка.

3. По известным составам дистиллята и остатка и начальной температуре охлаждающей воды определяют давление в колонне и температуру ее верха и низа. Находят коэффициенты относительной летучести.

4. По заданному составу сырья, его температуре и давлению в питательной секции определяют мольную долю отгона и составы жидкой и паровой фаз сырья при подаче его в колонну.

5. Проводится расчет режима полного орошения, которым подтверждается правильность сделанных в п. 2 допущений о том, что метан и этан будут иметь пулевые концентрации в остатке, а *н*-пентан — в дистилляте.

6. Определяют минимальные флегмовое и паровое числа соответственно для укрепляющей и отгонной частей колонны.

7. Проводится расчет элементов ректификации укрепляющей части колонны при рабочем флегмовом числе.

8. Проводится расчет элементов ректификации отгонной части колонны при рабочем паровом числе.

9. Рассчитывают питательную секцию колонны и окончательно устанавливают число теоретических тарелок в укрепляющей и отгонной частях колонны.

10. Определяют количество холодного орошения, подаваемого на верх колонны.

11. Определяют тепловую нагрузку кипятильника колонны и количество парового орошения в низу отгонной части.

12. Определяют основные размеры колонны — диаметр и вы-

РАСЧЕТ

1. Состав сырья

Средняя молекулярная масса сырья (из табл. 1.1):

$$M_{\rm cp} = \sum_{1}^{5} M_i c'_i = 55,018 \approx 55$$

Таблица 1.1

Но-		Моле- куляр-	Состав сырья		Состав сырья в массовых	Коли в с	чество ырье
мера компо- нентов	Қомлоненты сырья	ная масса М _і	в мольных долях с _і	M _i c'i	$c_i = \frac{M_i c'_i}{\sum M_i c'_i}$	кг/ч	кмоль/ч
1 2 3 4 5	$\begin{array}{c} CH_4 \ \cdot \ $	16 30 44 58 72	0,0035 0,0073 0,3751 0,4269 0,1872	0,0560 0,2190 16,5044 24,7602 13,4784	0,0010 0,0040 0,3000 0,4500 0,2450	20,0 80,0 6000,0 9000,0 4900,0	1,250 2,666 136,364 155,172 68,056
Сумма	• • • • • • • •	-	1,0000	$M_{\rm cp} \approx 55$	1,0000	20000,0	363,508

2. Количество и состав дистиллята и остатка

В дальнейшем для удобства расчет проводится на 100 кмоль сырья. Составы выражены в мольных долях. Ввиду незначительного допускаемого содержания бутана в дистилляте (1,3 моль.%) и пропана в остатке (мол. 4%) можно без заметного ущерба для точности расчета пренебречь содержанием CH_4 и C_2H_6 в остатке и содержанием $h-C_5H_{12}$ в дистилляте. Позднее возможность такого допущения будет подтверждена расчетом.

Итак, принимаем, что $x'_{R1} = 0$, $x'_{R2} = 0$, $y'_{D5} = 0$ (здесь и дальше x' и y' — мольные доли компонентов соответственно в жидкости и парах, индекс R относится к остатку, индекс D — к дистилляту, индекс 1, 2, ..., 5 — соответственно к метану, этану, ..., пентану, индекс G — к сырью).

Запишем уравнения материального баланса для всей колонны по общему количеству молей потоков и по каждому компоненту:

$$G = D + R \tag{1}$$

$$Gc_1' = Dy_{D1}' + Rx_{R1}'$$
(2)

$$Gc_2' = Dy_{D2}' + Rx_{R2}' \tag{3}$$

$$Gc_3' = Dy_{D3}' + Rx_{R3}' \tag{4}$$

$$Gc'_{4} = Dy'_{D4} + Rx'_{R4} \tag{5}$$

$$Gc_5' = Dy_{D5}' + Rx_{R5}' \tag{6}$$

Подставляя в эти уравнения известные нам величины и исключая R из (2)—(6) с помощью (1), получим:

$$100 \cdot 0,0035 = Dy'_{D1} + (100 - D) \cdot 0 \tag{2'}$$

$$100 \cdot 0,0073 = Dy'_{D2} + (100 - D) \cdot 0 \tag{3'}$$

$$100 \cdot 0,3751 = Dy'_{D3} + (100 - D) \cdot 0,04 \tag{4'}$$

$$100 \cdot 0,4269 = D \cdot 0,013 + (100 - D) x'_{R4} \tag{5'}$$

$$100 \cdot 0,1872 = D \cdot 0 + (100 - D) x'_{R5} \tag{6'}$$

Суммируя (5') и (6'), получаем:

$$51,41 = D \cdot 0,013 + (100 - D) (x'_{R4} + x'_{R5})$$

Однако по условию разделения известно, что

$$x'_{R3} + x'_{R4} + x'_{R5} = 1$$

где x_{R3} = 0,04. Поэтому

$$x'_{R4} + x'_{R5} = 1 - 0,04 = 0,96$$

Следовательно

$$61,41 = 0,013D + 96 - 0,96D$$

откуда

$$D = \frac{34,59}{0.947} = 36,6$$
 кмоль на 100 кмоль сырья
 $R = 100 - 36,6 = 63,4$ кмоль на 100 кмоль сырья

H₃ (2'): • $y'_{D1} = \frac{0.35}{36.6} = 0,0096$ H₃ (3'): $y'_{D2} = \frac{0.73}{36.6} = 0,0200$ H₃ (4'): $y'_{D3} = \frac{37.51 - 63.4 \cdot 0.04}{36.6} = 0,9560$ H₃ (5'):

$$x'_{R4} = \frac{42.69 - 36.6 \cdot 0.013}{63.4} = 0,6650$$

Из (6'):

$$x_{R5}' = \frac{18.72}{63.4} = 0,2950$$

Данные о составах и количествах дистиллята и остатка сведены в табл. 1.2.

Таблица 1.2

		Дист	иллят D	Остат	ок <i>R</i>
Қомпоненты	Сырье, кмоль	<i>Dx<mark>/</mark>Di</i> , кмоль	$y'_{Di} = x'_{Di}$	<i>Rх[']Ri</i> , кмоль	x' _{Ri}
$\begin{array}{c} CH_4 & \cdot & \cdot & \cdot & \cdot \\ C_2H_6 & \cdot & \cdot & \cdot \\ C_3H_8 & \cdot & \cdot & \cdot \\ \mu \cdot C_1H_{10} & \cdot & \cdot & \cdot \\ \mu \cdot C_5H_{12} & \cdot & \cdot & \cdot \\ C_{YMMa} & \cdot & \cdot & \cdot \end{array}$	0,35 0,73 37,51 42,69 18,72 100,00	0,35 0,73 35,00 0,48 36,6	0,0096 0,0200 0,9560 0,0130 0,9986≈1,0	$ \begin{array}{c}\\ 2.51\\ 42,21\\ 18,72\\ \approx 63.4 \end{array} $	 0,0400 0,6650 0,2950 1,0000
Примечани	e: $\frac{D}{G} = 0.366.$				

3. Давление * в колонне и температуры ее верха и низа

Чтобы обеспечить достаточно эффектный теплообмен в конденсаторе-холодильнике, принимаем температуру T_0 полной конденсации паров дистиллята на 12 К выше начальной температуры воды, подаваемой в конденсатор-холодильник колонны, т. е.

 $T_0 = 296 + 12 = 308K$

Давление п₀ в емкости для орошения колонны определяем методом постепенного приближения по уравнению равновесия фаз:

$$\sum_{1}^{4} k_i x'_{Di} = 1$$

При этом подбираем такое значение давления, при котором константы фазового равновесия k_i для температуры 308 К после подстановки их в это уравнение превращают его в тождество.

^{*} В книге всюду, за исключением особо оговоренных случаев, имеется в виду абсолютное давление. Так как диаграммы и графики, с помощью которых определяются давления насыщенных паров и константы фазового равновесия, содержат давление, выраженное в старых единицах (ат или мм рт. ст.), то вотдельных расчетах после новых единиц будут указаны старые единицы в скобках.

Таким давлением будет $\pi_0 = 1,41 \cdot 10^6$ Па (14,4 ат). Константы фазового равновесия здесь и дальше определяются по номограмме [2, с. 159]*.

Расчет сведен в табл. 1.3.

Таблица 1.3

Компонењты дистиллята	k_{I} при $T_{0} = 308$ К и $\pi_{0} = 1,41 \cdot 106$ Па (14,4 ат)	x _{Di} =y _{Di} (из табл. 1.2)	^k i ^x Di
С H_4	11,60	0,0096	0,110
C_2H_6	2,60	0,0200	0,050
C_3H_8	0,87	0,9560	0,840
μ - C_4H_{10}	0,28	0,0130	0,004
Сумма		0,9986≈1,0	1,004≈1,0

С учетом гидравлических потерь в трубопроводе от колонны до емкости орошения давление на верху колонны принимаем на $0,02\cdot 10^6$ Па больше давления $\pi_0,$ т. е.

 $\pi_D = \pi_0 + 0.02 \cdot 10^6 = 1.41 \cdot 10^6 + 0.02 \cdot 10^6 = 1.43 \cdot 10^6 \Pi a (14.6 \text{ at})$

Температуру *T_D* верха колонны определяем методом постепенного приближения по уравнению равновесия фаз:

$$\sum_{1}^{4} \frac{y'_{Di}}{k_i} = 1$$

путем подбора такого ее значения, при котором константы фазового равновесия k_i для давления $\pi_D \approx 1,43 \cdot 10^6$ Па, будучи подставлены в это уравнение, превращают его в тождество. Такая температура равна $T_D = 314$ К.

Расчет сведен в табл. 1.4.

Таблица 1.4

Компоненты дистиллята	k_i при $T_D = 314$ К и $\pi_D = 1.43 \cdot 10^6$ Па (14.6 ат)	$x'_{Di} = y'_{Dl}$ (табл. 1.2)	$\frac{y'_{Di}}{k_i}$
СН ₄	12,5 2,9 1,01 0,34	0,0096 0,0200 0,9560 0,0130 0,9986≈1,0	0,00077 0,00690 0,95500 0,03830 1,001≈1,0

^{*} Для углеводородов с молекулярной массой M > 100 при определении констант фазового равновесия можно использовать данные: Winn F. W., Petroleum Refiner, v. 33, № 6, 1954, p. 131—135; Hadden S. T., Grayson H. G., Hydrocarbon Processing and Petroleum Refiner, v. 40, № 9, 1961, p. 207—218.

Учитывая гидравлическое сопротивление тарелок, принимаем давление в низу колонны на 0,04 · 10⁶ Па больше давления п_D, т. е.

 $\pi_R = \pi_D + 0.04 \cdot 10^6 = 1.43 \cdot 10^6 + 0.04 \cdot 10^6 = 1.47 \cdot 10^6 \text{ Ha} (15 \text{ at})$

Температуру *T_R* низа колонны определяем методом постепенного приближения по уравнению равновесия фаз

$$\sum_{3}^{5} k_i x'_{Ri} = 1$$

путем подбора такого ее значения, при котором константы фазового равновесия k_i для давления $\pi_R = 1,47 \cdot 10^6$ Па (15 ат), будучи подставлены в это уравнение, превращают его в тождество. Такая температура равна $T_R = 383$ К.

Расчет сведен в табл. 1.5.

Таблица 1.5

Компоненты остатка	при $T_R = 383$ К и $\pi_R = 1.47 \cdot 10^6$ Па (15 ат)	['] (табл. 1.2)	k i ^x R i
С ₃ H ₈	2,62	0,0400	1,1048
	1,12	0,6650	0,7448
	0,50	0,2950	0,1475
	—	1,0000	0,9971≈1,0

При известных для разных уровней колонны давлениях и температурах рассчитаем коэффициенты относительной летучести компонентов, значения которых используются во всех дальнейших расчетах.

За эталонный компонент, т. е. компонент с относительной летучестью, равной единице, примем бутан (четвертый компонент исходной системы).

Давление в питательной секции колонны примем равным среднеарифметическому между п_D и п_R:

$$\pi_f = \frac{\pi_D + \pi_R}{2} = \frac{1.43 \cdot 10^6 + 1.47 \cdot 10^6}{2} = 1.45 \cdot 10^6 \,\,\Pi a \,\,(14.8 \,\,\mathrm{at})$$

Коэффициент относительной летучести для любого компонента вычисляем по формуле:

$$\alpha_i = \frac{k_i}{k_4}$$

Для укрепляющей части колонны находим среднее значение коэффициента относительной летучести по формуле:

$$a_{i \text{ cp}} = 0,5 \left(a_{iD} + a_{if}\right)$$

где α_{iD} — коэффициент относительной летучести данного компонента при температуре $T_D = 314$ К и давлении $\pi_D = 1,43 \cdot 10^6$ Па; α_{if} — то же при температуре ввода сырья в колонну $T_f = 353$ К и давлении $\pi_f = 1,45 \cdot 10^6$ Па.

Для отгонной части колонны среднее значение коэффициента относительной летучести вычисляем по формуле:

$$\alpha_{i \text{ cp}} = 0,5 \left(\alpha_{if} + \alpha_{iR} \right)$$

где α_{iR} — коэффициент относительной летучести данного компонента при гемпературе $T_R = 383$ К и давлении $\pi_R = 1,47 \cdot 10^6$ Па.

Полученные расчетом значения коэффициентов относительной летучести для всех компонентов исходной системы сведены в табл. 1.6.

Таблица 1.6

		Укрепл	яющая час	ть		Отго	энная часть	
Компо- нен гы	k_i upu T_f =353 K, π_f =1,45,10 ⁶ Па (14,8 ar)	$a_i f$ $\mu \mu T_f = 353 \text{ K},$ $\pi_f = 1.45, 10^6 \Pi a$ (14.8 ar)	k_I $\pi_D = 1.43 \cdot 10^6$ Π_a (14.6 ar)	$α_t D$ πρμ $T_D=314$ K, $π_D=1,43\cdot10^6$ Πa (14,6 ar)	^a į cp	k_l при $T_R = 383 K$, $\pi_R = 1.47 \cdot 10^6 \Pi a$ (15 ar)	<i>аіR</i> при <i>T</i> _{<i>R</i>} =383 <i>K</i> , <i>π</i> _{<i>R</i>} =1,47·10 ⁶ Па (15 ат)	α _i cp
$\begin{array}{c} CH_4 \ . \ . \ . \\ C_2H_6 \ . \ . \\ C_3H_8 \ . \ . \\ \varkappa - C_4H_{13} \ . \\ \varkappa - C_5H_{12} \ . \end{array}$	14,6 4,3 1,75 0,74 0,28	20 5,82 2,37 1,00 0,379	12,50 2,90 1,01 0,34 0,13	37 8,5 3,0 1,0 0,385	28,5 7,2 2,7 1,0 0,38	16 5,4 2,62 1,12 0,50	14,2 4,8 2,32 1,00 0,445	17,1 5,3 2,3 1,0 0,41

4. Доля отгона и составы жидкой и паровой фаз сырья при подаче его в колонну

Мольную долю отгона e' исходного сырья и составы фаз при температуре $T_f = 353$ К и давлении $\pi_f = 1,45 \cdot 10^6$ Па рассчитываем аналитическим методом Трегубова по формулам:

$$\sum_{1}^{5} x_{i}' = \sum_{1}^{5} \frac{c_{i}'}{1 + e'(k_{i} - 1)} = 1$$

И

$$\sum_{1}^{5} y'_{i} = \sum_{1}^{5} k_{i} x'_{i} = 1$$

путем подбора такого значения e', при котором удовлетворяются эти равенства. Таким значением мольной доли отгона будет e' = 0,17. Результаты расчетов сведены в табл. 1.7.

Таблица 1.7

Қомпоненты сырья	Состав сырья с	при $T_{f}^{k_{i}}$ = 353 K, π_{f} = 1,45 · 10 ⁶ Па (14,8 ат) (табл. 1.6)	$1 + e' (k_i - 1)$ (e' = 0, 17)	$x'_i = \frac{c'_i}{1 + e'(k_i - 1)}$	$y'_i = k_i x'_i$
СН4	0,0035	14,6	3,3200	0,0011	0,0160
С2Н6	0,0073	4,3	1,5610	0,0047	0,0201
С3Н8	0,3751	1,75	1,1275	0,3327	0,5822
н-С4Н10	0,4269	0,74	0,9558	0,4466	0,3305
н-С5Н12	0,1872	0,28	0,8776	0,2133	0,0597
Сумма	1,0000	—	—	0,9984≈1	1,0085≈1

5. Расчет режима полного орошения

Известно, что одним из предельных, теоретически возможных, случаев работы колонны является режим полного (бесконечно большого) орошения колонны, при котором последняя будет иметь минимальное число теоретических тарелок.

Как показывают расчеты, для разделения исходной системы на продукты примерно одного и того же состава в условиях оптимального режима рабочего орошения требуется приблизительно вдвое больше теоретических тарелок, чем гри полном орошении [1, с. 317].

Расчет режима полного орошения состоит в определении количества и составов верхнего и нижнего продуктов колонны на основе заданных условий разделения.

В нашем случае условия разделения заданы содержанием μ -C₄H₁₀ в дистилляте ($y'_{D4} \leq 0,013$) и содержанием C₃H₈ в остатке ($x'_{R3} = 0,04$). Число степеней проектирования f режима полного орошения [1, с. 317] находится по формуле:

f = Z + 2

где Z — число нулевых концентраций компонентов в продуктах разделения.

В данном случае Z = 0 (нулевых концентраций не задано), поэтому f = 2. Это означает, что для расчета режима полного орошения должны быть заданы какие-либо две концентрации. Таковыми являются $y'_{D4} = 0,013$ и $x'_{R3} = 0,04$. Следовательно, задача полностью определена, и, используя расчетные соотношения, данные Багатуровым [1, с. 319—321], можно найти составы верхнего и нижнего продуктов колонны по всем компонентам исходной системы. В приводимых ниже расчетах коэффициенты относительной летучести компонентов берутся при $T_f = 353$ К и $\pi_f = 1,45 \cdot 10^6$ Па как средние для всей колонны. По составу сырья (табл. 1.1) и условиям его разделения нетрудно установить, что в дистилляте колонны основным по содержанию компонентом будет C_3H_8 . Так как мольная доля пропана в дистилляте $y'_{D3} = 0,9560$, то из уравнения материального баланса всей колонны по пропану будем иметь:

$$\frac{D}{G} = \frac{c'_3 - x'_{R3}}{y'_{D3} - x'_{R3}} = \frac{0.3751 - 0.040}{0.9560 - 0.040} = 0,366$$
$$\frac{R}{G} = 1 - \frac{D}{G} = 1 - 0,366 = 0,634$$
$$\frac{G}{R} = \frac{1}{0.634} = 1,5773$$

Из уравнения материального баланса всей колонны по бутану

$$\frac{G}{R} = \frac{y'_{D4} - c'_4}{y'_{D4} - x'_{R4}}$$

найдем:

$$x'_{R4} = y'_{D4} - \frac{G}{R} \left(y'_{D4} - c'_{4} \right) = 0,0130 - 1,5773 \left(0,0130 - 0,4269 \right) = 0,6658$$

По мольным долям C₃H₈ и *н*-C₄H₁₀ в дистилляте и остатке, с помощью уравнения Фенске — Андервуда [1, с. 316] определяем минимальное число теоретических тарелок в колонне:

$$N = \frac{\lg \frac{y_{D3}x_{R4}'}{x_{R3}'y_{D4}'}}{\lg \frac{\alpha_3}{\alpha_4}} = \frac{\lg \frac{0.9560 \cdot 0.6658}{0.040 \cdot 0.013}}{\lg \frac{2.37}{1}} = 8,3$$
 тарелки

Состав x_{R5} определится по уравнению (VII-33) Багатурова [1, с. 320], которое для нашего случая запишется так:

$$\frac{c_3'}{x_{R3}'}(\alpha_5^N - \alpha_4^N) + \frac{c_4^1}{x_{R4}'}(\alpha_3^N - \alpha_5^N) + \frac{c_5'}{x_{R5}'}(\alpha_4^N - \alpha_3^N) = 0$$

или

$$\frac{0.3751}{0.040} (0,379^{8,3} - 1^{8,3}) + \frac{0.4269}{0.6658} (2,37^{8,3} - 0,379^{8,3}) + \frac{0.1872}{x'_{R5}} (1^{8,3} - 2,37^{8,3}) = 0$$

откуда $x'_{R5} = 0,2950.$

Состав x'_{R2} определится из того же уравнения, записанного по компонентам C_2H_6 , $h-C_4H_{10}$ и $h-C_5H_{12}$:

$$\frac{c_2'}{x_{R2}'}(\alpha_5^N - \alpha_4^N) + \frac{c_4'}{x_{R4}'}(\alpha_2^N - \alpha_5^N) + \frac{c_5'}{x_{R5}'}(\alpha_4^N - \alpha_2^N) = 0$$

или

$$\frac{0.073}{x'_{R2}} (0,379^{8.3} - 1^{8.3}) + \frac{0.4269}{0.6658} (5,82^{8.3} - 0,379^{8.3}) + \frac{0.1872}{0.2950} (1^{8.3} - 5,82^{8.3}) = 0$$

откуда $x'_{R2} = 365 \cdot 10^{-9}$.

Получилась настолько малая величина, что без всякого ущерба для точности расчета можно принять $x'_{P2} = 0$.

Состав x'_{R1} определится из того же уравнения, записанного по компонентам CH₄, *н*-C₄H₁₀ и *н*-C₅H₁₂ (может быть и другое сочетание компонентов, например: CH₄, C₃H₈ и *н*-C₄H₁₀ или CH₄, C₃H₈ и *н*-C₅H₁₂):

$$\frac{c_1'}{x_{R1}'}(\alpha_5^N - \alpha_4^N) + \frac{c_4'}{x_{R4}'}(\alpha_1^N - \alpha_5^N) + \frac{c_5'}{x_{R5}'}(\alpha_4^N - \alpha_1^N) = 0$$

или

$$\frac{0.0035}{x'_{R1}}(0,379^{8,3}-1^{8,3}) + \frac{0.4269}{0.6658}(20^{8,3}-0,379^{8,3}) + \frac{0.1872}{0.2950}(1^{8,3}-20^{8,3}) = 0$$

откуда $x'_{Rl} \approx 0.35 \cdot 20^{-8.3}$. Очевидно можно принять, что $x'_{Rl} = 0$. Проверка:

 $\sum_{i=1}^{5} x'_{Ri} = 0 + 0 + 0,040 + 0,6658 + 0,2950 = 1,001 \approx 1$

Содержание y'_{Dl} каждого из компонентов исходной системы в дистилляте определяем по уравнению (VII-31) Багатурова [1, с. 319], которое записывается по любым трем компонентам исходной системы.

Для определения y'_{D2} запишем это уравнение по C_2H_6 , C_3H_8 и $h-C_4H_{10}$:

$$\frac{c_2'}{y_{D2}'}(\alpha_4^{-N} - \alpha_3^{-N}) + \frac{c_3'}{y_{D3}'}(\alpha_2^{-N} - \alpha_4^{-N}) + \frac{c_4'}{y_{D4}'}(\alpha_3^{-N} - \alpha_2^{-N}) = 0$$

или

$$\frac{0.0073}{y'_{D2}} \left(1^{-8,3} - 2,37^{-8,3}\right) + \frac{0.3751}{0,9560} \left(5,82^{-8,3} - 1^{-8,3}\right) + \frac{0.4269}{0,0130} \left(2,37^{-8,3} - 5,82^{-8,3}\right) = 0$$

откуда $y'_{D2} = 0,0200.$

Значение y'_{D1} найдем из того же уравнения, записав его по CH₁, C₃H₈ и μ -C₄H₁₀:

$$\frac{c_1'}{y_{D1}'}(\alpha_4^{-N}-\alpha_3^{-N})+\frac{c_3'}{y_{D3}'}(\alpha_1^{-N}-\alpha_4^{-N})+\frac{c_4'}{y_{D4}'}(\alpha_3^{-N}-\alpha_1^{-N})=0$$

или

$$\frac{0.0035}{y'_{D1}} (1^{-8.3} - 2.37^{-8.3}) + \frac{0.3751}{0.9560} (20^{-8.3} - 1^{-8.3}) + \frac{0.4269}{0.0130} (2.37^{-8.3} - 20^{-8.3}) = 0$$

откуда $y'_{D1} = 0,0096.$

Значение y'_{D5} найдем из того же уравнения, записав его по CH₄, C₃H₈ и μ -C₅H₁₂ (или иному их сочетанию, включающему μ -C₅H₁₂):

$$\frac{c_1'}{y_{D1}'}(\alpha_5^{-N} - \alpha_3^{-N}) + \frac{c_3'}{y_{D3}'}(\alpha_1^{-N} - \alpha_5^{-N}) + \frac{c_5'}{y_{D5}'}(\alpha_3^{-N} - \alpha_1^{-N}) = 0$$

или

$$\frac{0.0035}{0.0096} (0,379^{-8.3} - 2,37^{-8.3}) + \frac{0.3751}{0.9560} (20^{-8.3} - 0,379^{-8.3}) + \frac{0.1872}{y'_{D5}} (2,37^{-8.3} - 20^{-8.3}) = 0$$

откуда $y'_{D5} = 19 \cdot 10^{-7}$.

Здесь также без всякого ущерба для точности расчета можно принять $y'_{D5} = 0$.

Проверка:

$$\sum_{1}^{5} y'_{Dl} = 0,0096 + 0,0200 + 0,9560 + 0,0130 + 0 = 0,9986 \approx 1$$

Итак, проверка по составам остатка и дистиллята выдерживается с достаточной точностью. Следовательно, составом $y'_{D3} = 0,9560$ мы задались правильно и верно определили минимальное число теоретических тарелок при режиме полного орошения колонны.

Как видно, выход дистиллята и остатка, а также их составы оказались тождественными тем (см. табл. 1.2), которые были рассчитаны по уравнениям материального баланса при допущении, что $x'_{R1} = x'_{R2} = y'_{D5} = 0$. При режиме полного орошения последние три концентрации были рассчитаны и тоже оказались практически равными нулю. Такое совпадение не случайно, а теоретически вполне обосновано. Дело в том, что если число нулевых концентраций продуктов равно числу компонентов исходной системы без двух, то количества и составы продуктов колонны будут одинаковы как при рабочем, так и при полном орошении [1, с. 386].

Заметим, что результаты расчета режима полного орошения колонны остались бы прежними и в том случае, когда в условиях разделения были бы сразу заданы не только $y'_{D4} = 0,0130$ и $x'_{R3} = 0,040$, но и $x'_{R1} = x'_{R2} = y'_{D5} = 0$. Объясняется это тем, что в данном случае число степеней проектирования f = Z + 2 = 3 + 2 = 5

(где Z — число нулевых продуктовых концентраций, равное 3) и в условиях разделения задано пять концентраций (из них три нулевых). Поэтому задача оказывается полностью определенной. Однако такой подход следует считать менее строгим, так как лучше доказать, что $x'_{R1} = x'_{R2} = y'_{D5} = 0$, чем принимать эти значения в начале расчета.

6. Минимальное орошение

Режим минимального орошения является вторым из предельных, теоретических возможных, при котором число теоретических тарелок в колонне равно бесконечности.

Так же, как и при расчете колонны для разделения бинарной смеси, в случае многокомпонентной системы необходимо определить минимальное флегмовое число или минимальное паровое число.

Определение минимального флегмового числа $r_{\rm мин}$ для укрепляющей части колонны будем вести по уравнениям Андервуда [1, с. 378 или 3, с. 76] методом постепенного приближения, зная состав исходного сырья (табл. 1.1), мольную долю отгона (табл. 1.7) и составы верхнего и нижнего продуктов колонны (табл. 1.2).

По уравнению Андервуда

$$\sum_{1}^{5} \frac{\alpha_i c'_i}{\alpha_i - \varphi} = e'$$

методом подбора находим параметр φ , беря значения α_i для компонентов системы при средней температуре в колонне $T_f = 353$ К (табл. 1.6) и значения c'_i из табл. 1.1.

Зададимся значением $\varphi = 1,52$, лежащим между величинами относительных летучестей $\alpha_3 = 2,37$ и $\alpha_4 = 1$ пропана и бутана, которые распределены между верхним и нижним продуктами колонны, и проведем расчет по написанному выше уравнению.

Результаты расчета сведем в табл. 1.8.

Компоненты сырья	c'1	a _i	a <i>ic</i> i	α _i -Φ	$\frac{a_i c_i'}{a_i - \varphi}$
$\begin{array}{c} CH_4 \ \cdot \ $	0,0035 0,0073 0,3751 0,4269 0,1872 1,000	20 5,82 2,37 1,00 0,379	0,0700 0,0425 0,8890 0,4269 0,0710 —	18,48 4,30 0,85 0,52 1,141 	0,0038 0,0098 1,0420 0,820 0,062 0,1736≈0,17

Таблица 1.8

Как видно из табл. 1.8, при $\varphi = 1,52$ уравнение Андервуда с достаточной точностью удовлетворяется, поэтому найденный параметр φ ниже используем для определения $r_{\text{мин}}$.

Минимальное флегмовое число для укрепляющей части колонны рассчитываем по следующему уравнению Андервуда:

$$r_{\rm MHH} = \sum_{1}^{4} \frac{\varphi y'_{Di}}{\alpha_i - \varphi}$$

Получим:

$$r_{\text{MHH}} = \frac{\varphi y'_{D1}}{\alpha_1 - \varphi} + \frac{\varphi y'_{D2}}{\alpha_2 - \varphi} + \frac{\varphi y'_{D3}}{\alpha_3 - \varphi} + \frac{\varphi y'_{D4}}{\alpha_4 - \varphi} =$$

= 1,52 $\left(\frac{0.0096}{20 - 1.52} + \frac{0.02}{5.82 - 1.52} + \frac{0.9560}{2.37 - 1.52} + \frac{0.013}{1 - 1.52}\right) = 1,7$

Расчет r_{мин} по зонам инвариантных составов [1, с. 355] дает результат, мало отличающийся от полученного, и здесь не приводится.

Минимальное паровое число *s*_{мин} для отгонной части колонны может быть рассчитано аналогично по следующему уравнению Андервуда:

$$\sum_{3}^{5} \frac{\alpha_i x'_{Ri}}{\alpha_i - \varphi} = -s_{\text{мин}}$$

Получим:

$$-s_{\text{MHH}} = \frac{\alpha_3 x'_{R3}}{\alpha_3 - \varphi} + \frac{\alpha_4 x'_{R4}}{\alpha_4 - \varphi} + \frac{\alpha_5 x'_{R5}}{\alpha_5 - \varphi} =$$
$$= \frac{2.37 \cdot 0.04}{2.37 - 1.52} + \frac{1 \cdot 0.6658}{1 - 1.52} + \frac{0.379 \cdot 0.2950}{0.379 - 1.52} = -1,27$$

откуда $s_{\text{мин}} = 1,27.$

Такой же результат может быть получен из уравнения материального баланса питательной секции колошны [1, с. 367]:

$$s_{\text{MHH}} = \frac{\frac{D}{G} r_{\text{MHH}} + (1 - e') - \frac{R}{G}}{\frac{R}{G}} = \frac{0.366 \cdot 1.7 + (1 - 0.17) - 0.634}{0.634} = 1,27$$

Расчет $s_{\text{мин}}$ по зонам инвариантных составов [1, с. 342] дает результат, мало отличающийся от полученного, и здесь не приводится.

7. Элементы ректификации укрепляющей части колонны при рабочем флегмовом числе

Исходные данные и предпосылки расчета. 1) Расчет элементов ректификации ведется аналитическим методом «от тарелки к тарелке» в направлении сверху вниз, так как известен состав паров дистиллята, уходящих с верхней тарелки (табл. 1.2). 2) Рабочее флегмовое число r = 2 по всей высоте укрепляющей части колонны принимается постоянным.

3) С целью некоторого упрощения вычислительных операций при определении составов равновесных фаз принимаются средние для всей укрепляющей части значения коэффициентов относительной летучести (табл. 1.6).

4) Колонна работает с полным конденсатором, т. е. состав орошения, подаваемого на верх ее, одинаков с составом дистиллята.

5) Состав паров (по каждому компоненту), покидающих любую тарелку, рассчитывается по уравнению концентраций:

$$y'_{n} = mx'_{n-1} + (1-m)y'_{D}$$

где нижний индекс *n* означает номер тарелки (верхняя тарелка считается первой), а

$$m = \frac{r}{r+1} + \frac{2}{2+1} = 0,67$$

Поэтому в нашем случае уравнение концентраций примет вид:

$$y'_n = 0.67x'_{n-1} + 0.33y'_D$$

6) Состав флегмы (по каждому компоненту), равновесный парам, рассчитывается по уравнению [1, с. 310]:

$$x_i' = \frac{y_i'/\alpha_i}{\sum \frac{y_i'}{\alpha_i}}$$

где y'_i — мольная доля данного компонента в парах, покидающих ту же, что и флегма, тарелку.

7) Температура на любой теоретической тарелке определяется по константе фазового равновесия эталонного компонента — нормального бутана. Эта константа рассчитывается по уравнению [1, с. 310]:

$$k_4 = \sum \frac{y_i'}{\alpha_i}$$

Зная k4 и определив среднее давление в укрепляющей части

$$\pi_{\rm cp} = \frac{\pi_D + \pi_f}{2} = \frac{1.43 \cdot 10^6 + 1.45 \cdot 10^6}{2} = 1.44 \cdot 10^6 \,\,\text{IIa} \,\,(14.7 \,\,\text{at})$$

по номограмме [2, с. 159] находим температуру.

Ниже приводится подробный расчет для первой и второй (считая сверху) тарелок.

Первая тарелка. Состав пара с первой тарелки известен, так как он одинаков с составом дистиллята колонны, поэтому по

уравнению [1, с. 310] рассчитываем состав равновесной с этим паром флегмы, стекающей с первой тарелки:

$$x_{11}' = \frac{y_{D1}' \alpha_1}{\frac{y_{D1}'}{\alpha_1} + \frac{y_{D2}'}{\alpha_2} + \frac{y_{D3}'}{\alpha_3} + \frac{y_{D4}'}{\alpha_4}} = \frac{0,0096/28,5}{\frac{0,0096}{28,5} + \frac{0,0202}{7,2} + \frac{0,9560}{2,7} + \frac{0,0130}{1}} = 0,00091$$
$$x_{12}' = \frac{y_{D2}' \alpha_2}{\frac{y_{D1}'}{\alpha_1} + \frac{y_{D2}'}{\alpha_2} + \frac{y_{D3}'}{\alpha_3} + \frac{y_{D4}'}{\alpha_4}} = \frac{0,00281}{0,370} = 0,00760$$

Аналогично находим:

$$\begin{aligned} x'_{13} &= \frac{0.3540}{0.370} = 0,9560\\ x'_{14} &= \frac{0.0130}{0.370} = 0,0351 \end{aligned}$$

Проверка:

$$\sum_{1}^{4} x_{1l}' = 0,00091 + 0,0076 + 0,9560 + 0,0351 = 0,9996 \approx 1$$

Здесь и дальше в обозначении концентрации первый нижний индекс — номер тарелки, второй — номер компонента.

Вторая тарелка. Состав пара со второй тарелки рассчитываем по уравнению концентраций, зная состав встречной флегмы с первой тарелки:

$$y'_{21} = 0,67x'_{11} + 0,33y'_{D1} = 0,67 \cdot 0,00091 + 0,33 \cdot 0,0096 = 0,0038$$

$$y'_{22} = 0,67 \cdot 0,0076 + 0,33 \cdot 0,0202 = 0,0118$$

$$y'_{23} = 0,67 \cdot 0,9560 + 0,33 \cdot 0,9560 = 0,9560$$

$$y'_{24} = 0,67 \cdot 0,0351 + 0,33 \cdot 0,0130 = 0,0277$$

Проверка:

$$\sum_{1}^{4} y'_{2i} = 0,0038 + 0,0118 + 0,9560 + 0,0277 = 0,9993 \approx 1,0$$

Состав флегмы со второй тарелки находим по уравнению [1, с. 310]:

$$x_{21}' = \frac{0.0038/28.5}{\frac{0.0038}{28.5} + \frac{0.0118}{7.2} + \frac{0.9560}{2.7} + \frac{0.0277}{1}}{\frac{0.0277}{1}} = \frac{0.000133}{0.384} = 0,000346$$
$$x_{22}' = \frac{0.00164}{0.384} = 0,00427$$
$$x_{23}' = \frac{0.3540}{0.384} = 0,9220$$
$$x_{24}' = \frac{0.0278}{0.384} = 0,0723$$

Проверка:

$$\sum_{i=1}^{4} x'_{2i} = 0,000346 + 0,00427 + 0,9220 + 0,0723 = 0,9989 \approx 1,0$$

Константа фазового равновесия эталонного компонента нормального бутана [1, с. 310] равна:

$$k_4 = \sum_{i=1}^{4} \frac{y_i'}{a_i} = \frac{0,0038}{28,5} + \frac{0,0118}{7,2} + \frac{0,9560}{2,7} + \frac{0,0277}{1} = 0,384$$

По номограмме [2, с. 159] находим температуру на второй тарелке: $T_2 = 321$ K.

Все расчеты для первой и второй тарелок, а также аналогичные расчеты для других тарелок укрепляющей части сведены в табл. 1.9.

Расчет элементов ректификации в укрепляющей части следует прекратить на той очередной тарелке (в нашем случае — девятой), которую покидают равновесные жидкая и паровая фазы, по составу практически одинаковые с равновесными жидкой и паровой фазами, полученными для очередной тарелки (в нашем случае восьмой (см. табл. 1.10) отгонной части при расчете в ней элементов ректификации *.

8. Элементы ректификации отгонной части колонны при рабочем паровом числе

Исходные данные и предпосылки расчета. 1) Элементы ректификации рассчитываем методом «от тарелки к тарелке», начиная с нижней тарелки, с помощью средних для всей отгонной части колонны коэффициентов относительной летучести (табл. 1.6).

2) Рабочее паровое число определяем по формуле [1, с. 367]:

$$s = \frac{r\frac{D}{G} + (1 - e') - \frac{R}{G}}{\frac{R}{G}} = \frac{2 \cdot 0,366 + (1 - 0,17) - 0,634}{0,634} = 1,464$$

 Состав флегмы по каждому компоненту находим по уравнению концентраций:

$$x'_{n+1} = \frac{y'_n}{m'} + \frac{m'-1}{m'} x'_R$$

где нижний индекс *n* означает номер тарелки (нижняя тарелка считается первой), а

$$m' = \frac{s+1}{s} = \frac{1,464+1}{1,464} = 1,69$$

^{*} В случае питания колонны жидким или парожидким сырьем при определении числа теоретических тарелок может быть использован метод Тилле — Гедеса (см. Рейхсфельд В. О., Еркова Л. Н., Оборудование основного органического синтеза и синтетических каучуков, М. — Л., «Химия», 1965, 624 с.).

1.9
ğ
3
2
Z

22

		Первая	тарелка сверху, <i>T</i> ₁	1=314 K			Вторая	тарелка сверху,	$T_2 = 321 \text{ K}$	
Компоненты сырья	a_i	y'D t	$\frac{y'_{Di}}{a_i}$	$x'_{1i} = \frac{y'_{Di}/a_i}{\sum \frac{y'_{Di}}{a_i}}$	αţ	0,67 <i>x</i> ¹ <i>i</i>	0,334/DI	$y_{2i}^{2i} = 0.67x_{1i}^{i} + + 0.33y_{Di}^{i}$	$\frac{y'_{2i}}{a_i}$	$x'_{2i} = \frac{y'_{2i}/\alpha_i}{\sum \frac{y'_{2i}}{\alpha_i}}$
CH_4 C_2H_6 C_3H_8 C_3H_8 n - C_4H_{10} n - C_5H_{12}	$^{28.5}_{7,2}$ $^{7,2}_{2,7}$ $^{1,0}_{0,38}$	0,0096 0,0200 0,0130 0,0130	0,000336 0,00281 0,3540 0,0130 0	0,000 0,00760 0,0356 0,0351 0,0351	28.5 7,2 1,0 0,38	0,0006 0,0051 0,6374 0,0234 0	0.0032 0,0067 0,3186 0,0043 0,0043	0,0038 0,0118 0,9560 0,0277 0	0,000133 0,00164 0,3540 0,0277 0,0277	0,000346 0,00427 0,9220 0,0723 0
Сумма	I	0,9986≈1	$\sum \frac{y_{Dl}}{\alpha_l} = 0.370$	0,9996≈1		I	1	0,9993≈1	$k_4 = -0.384$	$0,9989 \approx 1$
Продолжен	AUB Mal	бл. 1.9								

			ретья тар	елка сверху	$T_3 = 323 \text{ K}$			Іетверта	я тарелка св	epxy, <i>T</i> 4=0	25 K
Компоненты сырья	a_{i}	0,67 <i>x</i> ² <i>i</i>	0,33 <i>y</i> /D1	$y_{3i} = y_{3i} = 0.67x_{2i} + 0.33y_{Di}$	$\frac{y'_{3l}}{a_i}$	$x'_{3i} = \frac{y'_{3i}/a_i}{\sum \frac{y'_{3i}}{a_i}}$	0,67 x31	0,33y_Dt	$y_{4i} = 0.67x_{3i}' + 0.33y_{Di}'$	$\frac{y'_{4l}}{a_i}$	$x'_{4i} = \frac{y'_{4i}/a_i}{\sum \frac{y'_{4i}}{\alpha_i}}$
СН4	28,5 7,2 1,0 0,38	0,000231 0,00285 0,6150 0,0482 0,0482 0	0,0032 0,0067 0,3186 0,0043	$\begin{array}{c} 0,00343\\ 0,00965\\ 0,93360\\ 0.5250\\ 0\\ 0\\ 0\\ 0\\ 0,9991\approx 1 \end{array}$	$\begin{array}{c} 0,00012\\ 0,00133\\ 0,3450\\ 0,0525\\ 0\\ 0\\ k_4\approx 0,399 \end{array}$	$\begin{array}{c} 0.000302\\ 0.003340\\ 0.866000\\ 0,131000\\ 0\\ 0\\ 1.000642 \approx 1 \end{array}$	0,000202 0,00223 0,5773 0,0874 0,0874	0,0032 0,0067 0,3186 0,0043	0,0034 0,0089 0,0089 0,8959 0,0917 0,001 * 0,0001 * 0,0001 * 0,0091 = 1	$\begin{array}{c} 0,00012\\ 0,00124\\ 0,33100\\ 0,09170\\ 0,00026\\ k_4\approx 0,425 \end{array}$	$\begin{array}{c} 0,000283\\ 0,002900\\ 0,776000\\ 0,000620\\ 0,000620\\ 0,000620\\ 0,000620\\ 0,0996\approx 1\end{array}$

* Ввиду того что в дистилляте отсутствует пятый компонент (пентан). при аналитическом расчете сверху вниз «от тарелки» необходимо на какой-то тарелке (в нашем случае — четвертой) подпразлять состав паров вводом незначительного количества пентана. Подробнее см. [1. с. 307]. нее см. [1. с. 307].

Продолжение табл. 1.9

			Пятая тарс	елка сверху.	$T_5 = 329 \text{ K}$			lllecras	тарелка св	epxy, $T_6=3$	34 K
Компоненты сырья	a_i	0,67 <i>x</i> 4 <i>i</i>	0.33 <i>y</i> /Di	$y_{5i} = 0.67x_{4i}' + 0.33y_{Di}'$	$\frac{v'_{5l}}{a_l}$	$x'_{5i} = \frac{y'_{5i}/a_i}{\sum \frac{y'_{5i}}{a_i}}$	0.67 <i>x</i> 5 <i>i</i>	0,33 <i>4</i> /1	$y'_{6i} = 0.67x'_{5i} + 0.33y'_{Di}$	<i>y</i> 6 <i>i</i> <i>ai</i>	$x'_{6i} = \frac{y'_{6i}/\alpha_i}{\sum \frac{y'_{6i}}{\alpha_i}}$
CH4	28.5	0,000189	0,0032	0,00339	0,000119	0,000258	0,000171	0,0033	0,00337	0,000118	0,000234
c_2H_6	7,2	0,001930	0,0067	0,00863	0,00120	0,002600	0,001730	0,0067	0,00843	0,001170	0,002330
c_{3H_8}	2,7	0.517300	0,3186	0,83590	0,3100	0,670500	0,447000	0,3186	0,76560	0,283000	0,558000
и-С ₄ Н ₁₀	1.0	0,144000	0,0043	0,14830	0,1483	0,322000	0,214000	0,0043	0,21830	0,218300	0,430000
и-С ₅ Н ₁₂	0,38	0,000410	0	0,00041	0,00108	0,002330	0,001560	0	0,00156	0,004100	0,008000
Сумма	1		1	0,99663≈1	$k_{i} = 0.461$	0,997688≈1	1	I	0,99726≈1	$k_4 = 0.507$	$0,998564 \approx 1$
		-	-		-	-				_	

Продолжение табл. 1.9

1 10	A CPC:	$x'_{8i} = \frac{y'_{8i}/a_i}{\sum \frac{y'_{8i}}{a_i}}$	0,000188 0,001800 0,370000 0,560000 0,071000 0,071000										
F	epxy, 18=	$\frac{y'_{8l}}{a_l}$	$\begin{array}{c} 0,000117\\ 0,00112\\ 0,2310\\ 0,3503\\ 0,0444\\ k_{4}=0,627\end{array}$										
	ч тарелка св	$ \frac{y_{8i}}{=0.67x_{7i}^{2} + 0.33y_{Di}^{\prime}} $	0,00334 0,00334 0,00806 0,62260 0,35030 0,01680 1,0011 ≈ 1,0										
d	DOCDMAN	0,33y'_Di	0,0032 0,0067 0,3186 0,00430										
		$0.67 x'_{7i}$	0.00014 0.00136 0.30400 0.34600 0.01680										
		$x'_{7i} = \frac{y'_{7i}/a_i}{\sum \frac{y'_{7i}}{a_i}}$	0,00021 0,00204 0,51900 0,51900 0,02510 1,0023≈1										
T 340 V	Седьмая тарелка сверху, $T_7=340~{ m K}$	$\frac{y'_{1i}}{a_i}$	$\begin{array}{c} 0,000118\\ 0,0001140\\ 0,257000\\ 0,257000\\ 0,291300\\ 0,014100\\ k_{4}\approx 0,564 \end{array}$										
		Седьмая тарелка сверху	$y_7 i = 0.67 x_{6i}^{\prime} + 0.33 y_D^{\prime} i$	0,00336 0,00824 0,69260 0,29130 0,00540 1,0008≈1									
0.0 10 1 1 0 U			Седьмая та	Седьмая тар	Седьмая та	Седьмая та	Седьмая та	Седьмая та	Седьмая тар	Седьмая тар	Седьмая таре	0,33y'Di	0,0032 0,0067 0,3186 0,0043 0
				0,67 <i>x</i> ⁶ <i>i</i>	0,000156 0,00154 0,3740 0,2870 0,2870 0,0054								
		a_{i}	28,5 7,2 1,0 0,38										
		Компоненты сырья	$\begin{array}{c} {\rm CH}_{1}, \ldots \\ {\rm C}_{2}{\rm H}_{6} \\ {\rm C}_{3}{\rm H}_{8} \\ {\rm H}_{2}{\rm C}_{3}{\rm H}_{8} \\ {\rm H}_{2}{\rm C}_{4}{\rm H}_{10} \\ {\rm H}_{2}{\rm C}_{5}{\rm H}_{12} \\ {\rm Cymma} \end{array}$										

Продолже	ние табл. 1.9					
			Девятая тарелка	сверху, Т ₉ =354 К		
Компоненты сырья	σ	0,67× ⁸ 1	0,33 <i>4/</i> D1	+ 1,2,1,2,0,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	16'π 1 ⁰ π	$y_{9i} = \frac{y_{9i}/a_{1}}{\sum \frac{y_{9i}}{a_{i}}}$
СН4	28,5 7,2 2,7 1,0 0,38 -	0,000126 0,001200 0,246600 0,373200 0,047400 -	0,0032 0,0067 0,3186 0,0043 -	0,00333 0,00790 0,56520 0,37750 0,047400 1,001 ≈ 1,0	$\begin{array}{c} 0,000116\\ 0,001100\\ 0,210000\\ 0,377500\\ 0,125000\\ k_{4}\approx 0,714 \end{array}$	$\begin{array}{c} 0,000162\\ 0,001540\\ 0,294000\\ 0,530000\\ 0,175000\\ 0,175000\\ 1,0008\approx 1,0\\ \end{array}$
	Кипяти	$_{I, I, I$		Первая т	арелка снизу, T ₁ =37	8 K

			(ипятильник, T ₍	$_{0}=T_{R}=383 \text{ K}$				Первая та	релка снизу,	r ₁ =378 K	
Компоненты сырья	a_i	x'Ri	$\alpha_i x'_{Ri}$	$y'_{0i} = \frac{\alpha_i x'_{Ri}}{\sum \alpha_i x'_{Ri}}$	$=\frac{k_4=}{\sum \alpha_i x'_R i}$	0.59 y_01	0,41 <i>x[']Ri</i>	$= 0.59y_{0i}' + 0.41x_{Ri}'$	a <i>ix</i> 1 <i>i</i>	$y'_{1i} = \frac{\alpha_i x'_{1i}}{\sum \alpha_i x'_{1i}}$	$=\frac{k_4}{\sum \alpha_i x'_{1i}}$
Н4. 246. 348. - С4Н10. - С6Н12.	17,1 5,3 2,3 0,41 0,41	0,040 0,040 0,665 0,295 1,0	$\sum_{=0,878}^{-} a_{i} x_{ki}^{\prime} =$			0,0618 0,0470 0,0810	0,0164 0,2720 0,1210	$\begin{array}{c} - \\ 0.0782 \\ 0.7190 \\ 0.2020 \\ 0.9992 \\ \approx 1 \end{array}$	$\sum_{\substack{0,180\\0,719\\0,019\\0,082}}^{-1}$	0,1830 0,7320 0,0845 0,9995≈1	<u>,</u>

		$\frac{k_4}{1}$	1 886			$\frac{k_4}{1}$ $\sum \alpha_i x'_{5i}$	062'0
367 K		$\frac{y'_{3i}}{a_i x'_{3i}} = \frac{u_i x'_{3i}}{\sum a_i x'_{3i}} = \frac{1}{\sum}$	0,35700,58700,0584		=360 K	$\frac{y'_{Ri} =}{\sum \frac{\alpha_i x'_{5i}}{\sum \alpha_i x'_{5i}}} = \cdot$	0,0012 * (принято) 0,4960 0,4540 0,0490 1,0002≈1
T	лка снизу, 13	a _i x3i =	$\sum_{i=1,1,3,4}^{-1} \frac{0,404}{0,066}$		елка снизу, Т5	aix¦i	$\sum_{\substack{0,628\\0.575\\0.062}}^{-}$
	ретья таре	$x'_{3i} = 0.59y'_{2i} + 0.41x'_{Ri}$	$\begin{array}{c} - \\ 0,1754 \\ 0,6640 \\ 0.1599 \\ 0.9993 \approx 1 \end{array}$		Пятая таре	$ \begin{array}{c} x'_{5i} = \\ = 0.59y'_{4i} + \\ + 0.41x'_{Ri} \end{array} $	
ľ		1,41 <i>x[']_{Ri}</i>				$0,41x'_{Ri}$	
	-	0,594 ² i	0,1590			0,5944i	0,2560 0,0313 0,0313
		$k_4 = \frac{1}{\sum \alpha_i x'_{2i}}$	0,943			$=\frac{k_4=}{\sum \alpha_i x'_{4i}}$	0,833
	K	$\frac{y'_{2i}}{\alpha_{i}x'_{2i}} = \frac{\alpha_{i}x'_{2i}}{\sum \alpha_{i}x'_{2i}} =$			- 363 K	$\frac{y'_{4i}}{\alpha_i x'_{4i}} = \frac{\alpha_i x'_{4i}}{\sum \alpha_i x'_{4i}}$	0,434 0,513 0,053 1,0
ая тарелка снизу, <i>T</i> 2=37	снизу, T ₂ =373	$\alpha_i x'_{2i}$	$\sum_{\substack{0,286\\0,704\\0,070}}^{-}$		1Ka снизу, T4 ==	$a_i x'_{4i}$	$\sum_{\substack{0,5210\\0,6170\\0,0636\\=1,202}$
	ая тарелка	$ \begin{array}{c} x'_{2i} = \\ = 0,59y'_{1i} + \\ + 0,41x'_{Ri} \end{array} $	0,1244 0,7040 0,1709 0,9993≈1		ертая тарел	$x_{4i} = x_{4i} = = 0.59y'_{3i} + 0.41x'_{Ri}$	
1.10	Втор	0,41 <i>x^r_{Ri}</i>	0,0164 0,1210	0,1210 0,1210 - (1.10		$0,41x_{Ri}$	0,0164 0,2720 0,1210
табл,		0,59y'ii	0,1080 0,1080 0,0499	maбл.		0,59431	0,3110 0,3450 0,0344
өлмөжи		a;	17,1 5,3 2,3 2,3 1,0 0,41	опножи		a;	$ \begin{array}{c} 17,1\\ 5,3\\ 1,0\\ 0,41\\ - \end{array} $
Продол		Компо- ненты сырья	СН ₄ С2Н ₆ С3Н ₆ С3Н ₈ <i>н</i> -С4H ₁₀ <i>н</i> -С5H ₁₂ Сумма	Προθο		Компо- ненты сырья	СН ₄ С ₂ Н ₆ С ₃ Н ₈ <i>н</i> -С ₄ Н ₁₀ <i>н</i> -С ₅ Н ₁₂ Сумма

Ввиду того что в остатке отсутствуют C₂H₆ и CH4, при аналитическом расчете снизу вверх «от тарелки к тарелке» необходимо, начиная с какой-то тарелки отгонной части, подправлять составы паров и флегмы последовательным вводом незначительных количеств C₂H₆
 С H4. Подробнее см. [1, с. 307].

	-356 K	$= \frac{k_4}{\sum \alpha_i x_{7i}}$	1 -	0,742
	низу, $T_7 =$	$\frac{y'_{7i}=}{\alpha_i x'_{7i}}$	0,0013	0,0065 0,5680 0,3780 0,0448 0,0448
	мая тарелка с	a i x7 i	0,00154	$\sum_{i=1,36}^{0,00890} \sum_{i=1,36}^{0,00890} \sum_{i=1,36}^{0,000100} \sum_{i=1,36}^{0,000100000000000000000000000000000000$
	Седь	$x_{7i} = x_{7i} = 0.59y_{6i} + 0.41x_{6i}$	0,0000	0,00169 0,33640 0,51400 0,14860 0,14860 1,14860 1,14860 1,14860
		0,41 <i>x^ki</i>	1	0,0164 0,2720 0,1210
		0,5946i	60000'0	0,00169 0,32000 0,24200 0,02760
		$\frac{k_4}{\sum \alpha_i x'_{6i}}$	I	0,768
1.10 .	358 K	$\frac{y'_{6i}}{\alpha_i x'_{6i}}$	0,00015 *	$\begin{array}{c} (1000000000000000000000000000000000000$
	ка снизу, T ₆ =	$a_i x'_{6i}$	I	$\sum_{i=1,312}^{0,00376} \sum_{i=1,312}^{0,00376} \sum_{i=1,312}^{0,00376} \sum_{i=1,312}^{0,0013} \sum_{i$
	стая тарел	$x'_{6i} = -0.59y'_{5i} + -0.41x'_{Ri}$	l	$\begin{array}{c} 0,00071\\ 0,30840\\ 0,53800\\ 0,14990\\ 0,14990\\ 0,9970\approx 1\end{array}$
	IIIe	0,41 <i>x^ki</i>	I	0,0164 0,2720 0,1210
я табл.		0.59y'6i	1	0,00071 0,29200 0,2890 0,02890
лнөнпс		a_i	17,1	5,3 1,0 0,41
Προθο		Компо- ненты сырья	ЭН, ∶.	

~
~
•
-
-
•
-
<u></u>
-
ς,
~
u
÷
P
_
-
œ۰.
~
-
-
-
÷.
.
S-
-
-
-
2
c
0
× .
u
~

a 3,3 1,0 1,0 1,0	0,59 <i>y'71</i> 0,00077 0,33500 0,22400	0,0164	$x_{6i} = 0,59y_{7i} + 0,41x_{Ri}$ $x_{6i} = 0,59y_{7i} + 0,41x_{Ri}$ 0,00077 0,00384 0,00384 0,00007	$T_8 = 354 \text{ K}$ $\alpha_1 x_{8l}$ 0,0132 0,0204 0,0204 0,0000	$y_{kl} = \frac{\alpha_{l} x_{kl}^{k}}{\sum \alpha_{l} x_{kl}^{k}}$ 0,0094 0,0145 0,5770 0,5770	$k_4 = \frac{1}{\sum \alpha_i x_{8i}}$
41	0,02650	0,1210	0,14750 $0,9995 \approx 1$	$\sum_{0,0603}^{0,4900} \alpha_i x'_{8i} = 1,4$	0,0430 0,09999 ≈ 1	61/10

В нашем случае уравнение концентраций примет вид:

$$x'_{n+1} = 0.59y'_n + 0.41x'_R$$

4) Состав равновесных флегме паров по каждому компоненту рассчитывается по уравнению [1, с. 310]:

$$y_i' = \frac{\alpha_i x_i'}{\sum \alpha_i x_i'}$$

где *i* — номер компонента; x'_i — мольная доля компонента во флегме, покидающей ту же тарелку, что и пары.

5) Температура на любой теоретической тарелке определяется по константе фазового равновесия бутана, которая рассчитывается по уравнению [1, с. 310]:

$$k_4 = \frac{1}{\sum \alpha_i x'_i}$$

Зная k4 и определив среднее давление в отгонной части

$$\pi_{\rm cp} = \frac{\pi_f + \pi_R}{2} = \frac{1.45 \cdot 10^6 + 1.47 \cdot 10^6}{2} = 1.46 \cdot 10^6 \,\, \Pi a \,\, (14.9 \,\, {\rm at})$$

по номограмме [2, с. 159] находим температуру.

Ниже приводится подробный расчет для кипятильника и первой тарелки (считая снизу), а результаты расчета для всех тарелок даются в табл. 1.10.

Кипятильник («нулевая» отгонная тарелка). Состав остатка колонны известен, поэтому рассчитываем состав паров, равновесных с остатком, поступающих из кипятильника на первую отгонную тарелку, по уравнению [1, с. 310]:

$$y'_{03} = \frac{\alpha_3 x'_{R3}}{\alpha_3 x'_{R3} + \alpha_4 x'_{R4} + \alpha_5 x'_{R5}} = \frac{2,3 \cdot 0,04}{2,3 \cdot 0,04 + 1 \cdot 0,665 + 0,41 \cdot 0,295} =$$
$$= \frac{0,092}{0,878} = 0,1045$$
$$y'_{04} = \frac{0.665}{0.878} = 0,7580$$
$$y'_{05} = \frac{0,121}{0,878} = 0,1375$$

Проверка:

$$\sum_{3}^{9} y_{0i}' = 0,1045 + 0,7580 + 0,1375 = 1,0$$

Константа фазового равновесия эталонного компонента — нормального бутана [1, с. 310] равна:

$$k_4 = \frac{1}{\sum \alpha_i x'_{Ri}} = \frac{1}{0.878} = 1,14$$

Как указано выше, по номограмме [2, с. 159] находим температуру в низу колонны (в кипятильнике):

$$T_0 = T_R = 383 \text{ K}$$

Эта температура была найдена и раньше (см. стр. 11 и табл. 1.5).

Первая тарелка. Состав флегмы с первой тарелки рассчитываем по уравнению концентраций, зная состав паров из кипятильника:

$$\begin{aligned} x_{13}' &= 0,59y_{03}' + 0,41x_{R3}' = 0,59 \cdot 0,1045 + 0,41 \cdot 0,04 = 0,0782\\ x_{14}' &= 0,59 \cdot 0,758 + 0,41 \cdot 0,665 = 0,719\\ x_{15}' &= 0,59 \cdot 0,1375 + 0,41 \cdot 0,295 = 0,202 \end{aligned}$$

Проверка:

$$\sum_{3}^{5} x'_{1i} = 0,0782 + 0,719 + 0,202 = 0,9992 \approx 1$$

Состав паров с первой тарелки:

$$y'_{13} = \frac{2,3 \cdot 0,0782}{2,3 \cdot 0,0782 + 1 \cdot 0,719 + 0,41 \cdot 0.202} = \frac{0,180}{0,982} = 0,1830$$
$$y'_{14} = \frac{0,718}{0,982} = 0,7320$$
$$y'_{15} = \frac{0,083}{0,982} = 0,0845$$

Проверка:

$$\sum_{3}^{5} y_{1i}' = 0,1830 + 0,7320 + 0,0845 = 0,9995 \approx 1$$

Константа фазового равновесия бутана

$$k_4 = \frac{1}{\sum_{3}^{5} \alpha_l x_{1l}'} = \frac{1}{0,982} = 1,02$$

по номограмме [2, с. 159] $T_1 = 378$ К.

Расчет элементов ректификации в отгонной части следует прекратить на той очередной тарелке (в нашем случае — восьмой), которую покидают равновесные жидкая и паровая фазы, по составу практически одинаковые с равновесными жидкой и паровой фазами, полученными для очередной тарелки (в нашем случае — девятой, см. табл. 1.9) укрепляющей части при расчете в ней элементов ректификации.

9. Питательная секция колонны

Сравнивая составы паровых и жидких потоков, покидающих соответственно девятую тарелку, считая с верха колонны, и восьмую тарелку, считая с низа колонны, убеждаемся, что они приблизительно одинаковы и близки к составам паровой и жидкой фаз сырья (табл. 1.7, 1.9 и 1.10). Это означает, что за нижнюю укрепляющую тарелку должна быть принята восьмая тарелка, считая с верху, а за верхнюю отгонную — седьмая тарелка, считая с низу колонны. К такому же результату приводит расчет питательной секции (здесь он не дается), если его сделать по методике, изложенной Багатуровым [1, с. 410—413].

Таким образом, питательная секция колонны будет расположена между восьмой укрепляющей и седьмой отгонной тарелками.

При расчете питательной секции необходимо показать, что количества и составы проходящих ее потоков удовлетворяют основным уравнениям материального баланса для верхнего и нижнего уровней (сечений) этой секции.

Схема питательной секции и все обозначения паровых и жидких потоков приведены на рис. 1.1.

Количества потоков. Имея ввиду, что рабочее флегмовое число в укрепляющей части r = 2, а рабочее паровое число в отгонной части s == 1,464, получим (в киломолях на 100 кмоль сырья): количество флегмы, стекающей с восьмой укрепляющей тарелки

$$g_{\rm r} = rD = 2 \cdot 36, 6 = 73, 2$$

количество пара, поступающего из питательной секции на эту тарелку

$$V_m = g_{\kappa} + D = 73,2 + 36,6 = 109,8$$

количество пара, уходящего с седьмой отгонной тарелки

 $V_{n} = sR = 1,464 \cdot 63,4 = 92,8$

$$g_m = V_n + R = 92,8 + 63,4 = 156,2$$
$$V_m = V_n + V_c = 92,8 + 17 = 109,8$$
$$\sigma_m = \sigma_n + \sigma_2 = 73,2 + 83 = 156,2$$

где количество паровой фазы сырья

$$V_{\rm c} = e'G = 0,17 \cdot 100 = 17$$

и количество жидкой фазы сырья

Проверка:

$$g_{\rm c} = (1 - e')G = (1 - 0, 17) \cdot 100 = 83$$

Составы потоков. Зная состав флегмы g_{κ} , стекающей с восьмой укрепляющей тарелки (табл. 1.9), состав пара V_{π} , уходящего с седьмой отгонной тарелки (табл. 1.10) и состав паровой

8

- D, Y'n,

Рис. 1.1. Схема питающей секции колонны.

фазы сырья V_c (табл. 1.7), можно рассчитать состав пара V_m , поступающего из питательной секции на восьмую укрепляющую тарелку, по известным уравнениям:

$$V_m y'_{mi} = g_{\kappa} x'_{\kappa i} + D y'_{Di}$$

$$V_m y'_{mi} = V_{\Lambda} y'_{\Lambda i} + V_c y'_{ci}$$

После подстановки в них значений величин, получим:

$$y'_{mi} = 0.67x'_{\kappa i} + 0.33y'_{Di}$$

$$y'_{mi} = 0.845y'_{\pi i} + 0.155y'_{ci}$$

Расчеты составов y'_{mi} по этим уравнениям для каждого компонента сведены в табл. 1.11.

Из табл. 1.11 видно, что составы пара y'_{mi} , рассчитанные по обоим уравнениям, отличаются незначительно и, без заметной погрешности, могут считаться одинаковыми. Следовательно, количества и составы потоков, проходящих питательную секцию, удовлетворяют основным уравнениям материального баланса для верхнего уровня этой секции.

Зная состав пара V_{π} (табл. 1.10), уходящего с седьмой отгонной тарелки, состав флегмы g_{κ} (табл. 1.9), стекающей с восьмой укрепляющей тарелки, и состав жидкой фазы сырья g_c (табл. 1.7), можно рассчитать состав флегмы g_m , поступающей из питательной секции на седьмую отгонную тарелку, по уравнениям:

$$g_m x'_{mi} = V_n y'_{ni} + R x'_{Ri}$$
$$g_m x'_{mi} = g_\kappa x'_{\kappa i} + g_c x'_{ci}$$

После подстановки в них значений величин, получим:

$$\begin{aligned} x'_{mi} &= 0,59y'_{ni} + 0,41x'_{Ri} \\ x'_{mi} &= 0,468x'_{\kappa i} + 0,532x'_{cl} \end{aligned}$$

Расчеты величин x'_{mi} по этим уравнениям для каждого компонента сведены в табл. 1.12.

Как видно из табл. 1.12, составы x'_{ml} флегмы, рассчитанные по обоим уравнениям, отличаются незначительно и, без заметной погрешности, могут считаться одинаковыми. Следовательно, количество и составы потоков, проходящих питательную секцию, удовлетворяют основным уравнениям материального балапса для нижнего уровня этой секции. Если эти уравнения удовлетворяться не будут, необходимо повторить аналитический расчет «от тарелки к тарелке», имея в виду примечания, сделанные к табл. 1.9 и 1.10.

Таблица 1.11

		y'mi	$=0.67x'_{\rm Kl} + 0.33_{\rm l}$	y'Di			$y'_{mi} =$	0,845y'ni + 0,155 ₈	'ct	
Компоненты сырья	$x'_{Kl} = x'_{8l}$ (Ta6л. 1.9)	<i>у́Di</i> (табл. 1.9)	$0,67x'_{ki} = 0,67x'_{8i}$	$0,33 x'_{Di} = 0,33 y'_{Di}$	y'nt	$y'_{ni} = y'_{7i}$ (Ta6.1-1.10)	у'сі (табл. 1.7)	$0,845y'_{,1} = 0.845y'_{,1} = 0.845y'_{,1}$	0,155 <i>y</i> ′c <i>i</i>	y'ni
СН4	$\begin{array}{c} 0,000188\\ 0,001800\\ 0,370000\\ 0,370000\\ 0,560000\\ 0,071000\\ 0,071000\\ 1,002988\approx 1\end{array}$	$\begin{array}{c} 0,0096\\ 0,0200\\ 0,9560\\ 0,0130\\ 0,0130\\ 0,9986\approx 1\\ 0,9986\approx 1\end{array}$	0,000126 0,001200 0,246600 0,373200 0,373200 0,047400	0,0032 0,0067 0,3186 0,0043 	0,0033 0,0079 0,5652 0,3775 0,0474 1,0013≈1	$\begin{array}{c} 0.0013\\ 0.0065\\ 0.5680\\ 0.3780\\ 0.0448\\ 0.0986\approx 1 \end{array}$	$\begin{array}{c} 0,0160\\ 0,0201\\ 0,5822\\ 0,5822\\ 0,3305\\ 0,03305\\ 0,03597\\ 1,0085\approx 1\end{array}$	0,0011 0,0055 0,4770 0,3180 0,0504	0,0025 0,0031 0,0311 0,0311 0,0311	$\begin{array}{c} 0,0036\\ 0,0036\\ 0,0086\\ 0,5672\\ 0,3691\\ 0,0595\\ 1,008\approx 1\end{array}$

Таблица 1.12

		- <i>x</i> , <i>mi</i>	$0.59 y'_{\pi i} + 0.41 x'_{h}$	51			x'mi	$=0,468y'_{\rm Kl}+0,53$	32x'ci	
Компоненты сырья	y' _{ni} =y' ₁ (ταδ. 1.10)	x'Ri (raбл. 1.10)	0,594/ ₁ n = 1 _n /20,0=	0,41x' _R i	x'mi	x _{ki} =x _{ki} (табл. 1.9)	x'ci (табл. 1.7)	$\begin{array}{c} 0,468x'_{ki} = \\ = 0,468x'_{8i} \end{array}$	0,532x'ci	x'mi
СН4	0,0013	1	0,00077	1	0,00077	0,000188	0,0011	0,000088	0,000586	0,00067
C_2H_6	0,0065	1	0,00384	1	0,00384	0,001800	0,0047	0,000840	0,002510	0,00340
c_{3H_8}	0,5680	0,040	0,33500	0,0164	0,35140	0,370000	0,3327	0,173500	0,175000	0,33850
4-C4H10	0,3780	0,665	0,22400	0,2720	0,49600	0,560000	0,4466	0,262200	0,238000	0.50020
и -С ₅ Н ₁₂	0,0448	0,295	0,02650	0,1210	0,14750	0,071000	0,2133	0,033200	0,113700	0,14690
Cymma	0,9986≈1	1,000	I	I	$0,99851 \approx 1$	$1,002988 \approx 1$	0,9984≈1	1	1	0,99967 ≈ I
	_	_								

٠.

10. Количество холодного орошения

Количество g_0 (в киломолях на 100 кмоль сырья) холодного орошения, подаваемого на верх колонны, определяется из уравнения теплового баланса ее укрепляющей части. Согласно схеме (рис. 1.2), это уравнение запишется так:

откуда

$$V_m Q_m + g_0 q_0 = g_{\kappa} q_{\kappa} + (D + g_0) Q_D$$

$$g_0 = \frac{V_m Q_m - g_\kappa q_\kappa - DQ_D}{Q_D - q_0}$$

где V_m , g_{κ} и D — количества потоков, известные из предыдущих расчетов; Q_m , q_{κ} , Q_D , q_0 — энтальпии соответствующих потоков

Рис. 1.2. Схема укрепляющей части колонны.

(рис. 1.2), кДж/кмоль.

Показанные на рис. 1.2 температуры потоков определены в предыдущих расчетах (табл. 1.9).

Для определения энтальпий потоков рассчитаем их средние молекулярные массы:

$$M_{V_m} = \sum_{1}^{5} M_i y'_{mi} \quad (поток \ V_m)$$
$$M_{g_R} = \sum_{1}^{5} M_i x'_{\kappa i} \quad (поток \ g_{\kappa})$$
$$M_D = \sum_{1}^{4} M_i y'_{Di} \quad (потоки \ D \ и \ g_0)$$

Значения y'_{mi} , $x'_{\kappa i}$ и y'_{Di} берем из табл. 1.11. Все необходимые вычисления сводим в табл. 1.13.

Пользуясь графиком энтальпий смесей легких углеводородов

по температурам, давлениям (для паров) и молекулярным массам потоков [4, с. 10], находим энтальпии последних (в ккал/кг) и пересчитываем их в кДж/кмоль.

Получим:

$$Q_D = 542 \cdot 43,5 = 23615$$
кДж/кмоль
 $q_{\kappa} = 318 \cdot 53,9 = 17146$ кДж/кмоль
 $Q_m = 622 \cdot 50,1 = 31235$ кДж/кмоль
 $q_0 = 213 \cdot 43,5 = 9295$ кДж/кмоль

Подставляя значения количеств потоков и их энтальпий в уравнение теплового баланса, будем иметь:

$$g_0 = \frac{109,8 \cdot 31235 - 73,2 \cdot 17146 - 36,6 \cdot 23615}{23\,615 - 9\,295} = 91$$
кмоль на 100 кмоль сырья

Таблица 1.13

		Потоки	Dig ₀	Пото	кg _к	ΙΊοτα	ok V _m
Компоненты сырья	M _i	y' _{Di}	M _i y' _{Di}	x' _{Ki}	$M_i x'_{\kappa i}$	y' _{mi}	M _i y _{mi}
СН4 С ₂ H ₆ С ₃ H ₈ н-С ₄ H ₁₀ н-С ₅ H ₁₂ Сумма	16 30 44 58 72	0,0096 0,0202 0,9560 0,0130 − 0,9986 ≈ 1	$0,1535 0,6060 42,0000 0,7530 M_D = 43,5$	0,000188 0,00180 0,3700 0,5600 0,0710 1,002988≈ ≈ 1	$\begin{array}{c} 0,0030\\ 0,0540\\ 16,280\\ 32,500\\ 5,100\\ M_{g_{K}}=\\ =53,9 \end{array}$	0,0033 0,0079 0,5652 0,3775 0,0474 1,0013 ≈ 1	$\begin{array}{c} 0,0529\\ 0,2370\\ 24,500\\ 21,900\\ 3,410\\ M_{V_{m}}\approx\\ \approx 50,1 \end{array}$

Известно, что при работе колонны с полным конденсатором-холодильником, флегма g_1 (рис. 1.2), стекающая с верхней тарелки, служит горячим орошением на верху колонны, так как температура флегмы $T_1 = T_D$. В случае работы колонны с парциальным конденсатором флегма g_1 образуется в последнем. Количество горячего орошения на верху колонны определяется по формуле [5, с. 146]:

$$g_1 = g_0 \frac{Q_D - q_0}{Q_2 - q_D}$$

где Q_2 — энтальпия паров со второй тарелки; q_D — энтальпия флегмы g_{\perp} при $T_1 = T_D$.

Как показывают расчеты, Q_2 мало отличается от Q_D , поэтому можно принять, что $Q_2 \approx Q_D$; также, ввиду близости составов дистиллята и флегмы g_1 (табл. 1.9), будем считать, что q_D есть энтальпия жидкого дистиллята при $T_D = 314$ К.

Тогда

$$g_1 = g_0 \frac{Q_D - q_0}{Q_D - q_D}$$

По тому же графику энтальпий [4, с. 10] найдем:

$$q_D = 226 \cdot 43,5 = 9840 \text{ кДж/кмоль}$$

Получим:

$$g_1 = 91 \frac{23615 - 9295}{23615 - 9840} = 95$$
 кмоль на 100 кмоль сырья

Флегмовое число на верху колонны будет равно;

$$r_1 = \frac{g_1}{D} = \frac{95}{36,6} = 2,6$$

Следовательно, флегмовое число возрастает от r = 2 в низу укрепляющей части до $r_1 = 2,6$ на верху колонны. Так как число теорегических тарелок рассчитывалось при постоянном значении r = 2, то оно получилось с некоторым превышением, обеспечивающим известный резерв разделительной способности колонны.

2 Зак. 100

Тепловая нагрузка кипятильника колонны и количество парового орошения в низу ее отгонной части

Тепловая нагрузка Q_p кипятильника колонны определяется из уравнения теплового баланса ее отгонной части. Согласно схеме (рис. 1.3), это уравнение запишется так:

$$g_m q_m + Q_p = V_n Q_n + R q_R$$
$$Q_p = V_n Q_n + R q_R - g_m q_m$$

откуда

где g_m , V_{π} , R — количества потоков, известные из предыдущих расчетов (см. п. 9); q_m , Q_{π} , q_R — энтальпии соответствующих потоков (рис. 1.3), кДж/кмоль.

Рис. 1.3. Схема отгонной части колонны.

Приведенные на рис. 1.3 температуры потоков были найдены в предыдущих расчетах (табл. 1.9).

Для определения энтальпий q_m , Q_n и q_R потоков рассчитываем их средние молекулярные массы:

$$M_{g_m} = \sum_{1}^{5} M_i x'_{mi} \quad (поток \ g_m)$$
$$M_{V_n} = \sum_{1}^{5} M_i y'_{ni} \quad (поток \ V_n)$$
$$M_R = \sum_{1}^{5} M_i x'_{Ri} \quad (поток \ R)$$

Значения x'_{mi} , $y'_{\pi i}$ и x'_{Ri} берем из табл. 1.14.

Таблица 1.14

		Пот	гок V _л	По	гок g _m	П	оток R
Компоненты сырья	м _i	у' _{лі}	$M_i y'_{\pi i}$	x' _{mi}	M _i x _{mi}	x' _{Ri}	M _i x' _{Ri}
$\begin{array}{ccccc} CH_4 & . & . & . \\ C_2H_6 & . & . \\ C_3H_8 & . & . \\ \mu-C_4H_{10} \\ \mu-C_5H_{12} & . \\ Cymma & . \\ \end{array}$	16 30 44 58 72	$\begin{array}{c} 0,0013\\ 0,0065\\ 0,5680\\ 0.3780\\ 0.0448\\ 0,9996\approx 1 \end{array}$	0,02 0,19 24,90 21,80 3,23 $M_{V_{J}} \approx 50.3$	$\begin{array}{c} 0,00077\\ 0,00384\\ 0,35140\\ 0,49600\\ 0,14750\\ 0,9995 \approx 1 \end{array}$	$\begin{array}{c} 0,0123\\ 0,1152\\ 15,4620\\ 28,7700\\ 10,6200\\ M_{g_m}\approx 50 \end{array}$	 0,040 0,665 0,295 1,0	$\frac{-}{1,76} \\ 38,57 \\ 21,24 \\ M_R \approx 61,6$

С помощью графика энтальпий смесей легких углеводородов [4, с. 10] находим:

$$Q_{\pi} = 618 \cdot 50,3 = 31\ 109\ \kappaДж/кмоль$$

 $q_m = 377 \cdot 55 = 18\ 632\ \kappaДж/кмоль$
 $q_p = 423 \cdot 61,6 = 26\ 052\ \kappaДж/кмоль$

Подставляя значения величин, входящих в уравнение теплового баланса, будем иметь:

Для определения количества V_R парового орошения, идущего из кипятильника под нижнюю (первую) отгонную тарелку, необходимо написать уравнение теплового баланса кипятильника. Это легко сделать, пользуясь схемой (рис. 1.3):

$$(R+V_R)q_1 + Q_p = Rq_R + V_R Q_R$$

откуда

$$V_{R} = \frac{Q_{p} - R (q_{R} - q_{1})}{Q_{R} - q_{1}}$$

где q_1 и Q_R — энтальпии соответственно флегмы, стекающей с нижней отгонной тарелки в кипятильник, и пара, поступающего из кипятильника на эту тарелку.

Температуры потоков флегмы и паров найдены раньше (см. табл. 1.10 и рис. 1.3).

Находим средние молекулярные массы этих двух потоков:

$$M_{R+V_R} = \sum_{3}^{5} M_i x'_{1i}$$
$$M_{V_R} = \sum_{3}^{5} M_i y'_{Ri}$$

Значения x'_{1i} и y'_{Ri} берем из табл. 1.10. Все вычисления сводим в табл. 1.15.

Таблица 1.15

		Пото	$(R + V_R)$	По	ток V _R
Компоненты сырья	M _i	x' _{1i}	M _i x' _{1i}	y' _{Ri}	M _i y' _{Ri}
С ₃ H ₈ <i>н</i> -С ₄ H ₁₀ <i>н</i> -С ₅ H ₁₂ Сумма	44 58 72 —	$\begin{array}{c c} 0.0782 \\ 0.7190 \\ 0.2020 \\ 0.9992 \approx 1 \end{array}$	$\begin{array}{c} 3,44 \\ 41,50 \\ 14,50 \\ M_{R+V_R} \approx 59.4 \end{array}$	0,1045 0,7580 0,1375 1,0	$\begin{array}{c} 4,60 \\ 43,80 \\ 9,90 \\ M_{V_R} = 58,3 \end{array}$

Пользуясь графиком энтальпий [4, с. 10], находим:

 $q_1 = 41 \cdot 59, 4 = 24327$ кДж/кмоль $Q_R = 690 \cdot 58, 3 = 40279$ кДж/кмоль

Тогда, по уравнению, написанному выше:

 $V_R = \frac{1629 \cdot 10^3 - 63.4 (26052 - 24327)}{40279 - 24327} = 95$ кмоль на 100 кмоль сырья

Раньше было найдено количество парового орошения на верху отгонной части $V_{\pi} = 92,8$ кмоль на 100 кмоль сырья. Как видно, количество паров к низу отгонной части возрастает незначительно. Тем не менее, рассчитывая выше число теоретических тарелок в отгонной части при постоянном паровом числе s = 1,464, мы получили его с небольшим запасом, который обеспечивает некоторый резерв разделительной способности колонны.

12. Основные размеры колонны

Диаметр колонны. Внутренний диаметр колонны определяется по формуле:

$$D_{\rm B} = \sqrt{\frac{4V_{\rm cek}}{\pi w}}$$

где $V_{\text{сек}}$ — наибольший секундный объем паров, проходящих через сечение колонны; ω — допускаемая скорость паров в полном (свободном) сечении колонны.

Определим V_{сек}. Из предыдущих расчетов известны количества паров в следующих сечениях колонны:

на верху (под верхней укрепляющей тарелкой)

 $V_2 = g_1 + D = 95 + 36,6 = 131,6$ кмоль на 100 кмоль сырья

под нижней укрепляющей тарелкой

 $V_m = 109,8$ кмоль на 100 кмоль сырья

над верхней отгонной тарелкой

V_л = 92,8 кмоль на 100 кмоль сырья
в низу колонны (под нижней отгонной тарелкой)

 $V_R = 95$ кмоль на 100 кмоль сырья

Как видно из этих данных, наиболее нагруженным по парам, является верхнее сечение колонны. Найдем объем паров на верху колонны (под первой тарелкой) по формуле:

$$V_{\rm cek} = \frac{22, 4G_{\rm B}T_2 \cdot 0, 1 \cdot 10^6 Z}{3600 \cdot 273\pi_p}$$

Здесь G_в — часовое количество паров на верху колонны, равное:

 $\frac{V_2 G_{\text{час}}}{100 M_{\text{ср}}} = \frac{131.6 \cdot 20\ 000}{100 \cdot 55} = 476\ \text{кмоль/ч}$

где $G_{\rm час}$ — производительность колонны по сырью, кг/ч; $M_{\rm cp}$ — средняя молекулярная масса сырья (табл. 1.1).

При определении объема паров ввиду повышенного давления ($\pi_D =$ = 1,43 · 10⁶ Па) введен коэффициент сжимаемости Z.

Методы расчета Z подробно изложены в литературе [1, с. 14].

Рис. 1.4. Схема работы колпачковой тарелки: 1-жидкая фаза; 2-поток паров.

Согласно табл. 1.9, пары на верху колонны практически полностью состоят из пропана. Поэтому коэффициент сжимаемости для них можно найти как для паров чистого пропана. Критическая температура пропана $T_{\rm Kp} = 369.8$ К, критическое давление пропана $P_{\rm Kp} = 4.21 \cdot 10^6$ Па, температура паров (табл. 1.9) $T_2 = 321$ К.

Приведенная температура пропана:

$$T_{\rm np} = \frac{T_2}{T_{\rm Kp}} = \frac{321}{369.8} = 0.87$$

Приведенное давление:

$$\pi_{\rm np} = \frac{\pi_D}{P_{\rm KD}} = \frac{1,43 \cdot 10^6}{4,21 \cdot 10^6} = 0,34$$

По графику [1, с. 9] находим: Z = 0,77. Тогда

$$V_{\rm cek} = \frac{476 \cdot 22, 4 \cdot 321 \cdot 0.1 \cdot 10^6 \cdot 0.77}{3600 \cdot 273 \cdot 1.43 \cdot 10^6} = 0,184 \text{ m}^3/c$$

Если таким же способом рассчитать объемы паров для трех других нижележащих сечений колонны, то они окажутся меньшими, чем 0,184 м³/с. Поэтому диаметр колонны будет определяться по верхнему сечению (под первой тарелкой). Принимая для проектируемой колонны тарелки с круглыми колпачками (рис. 1.4), определим допустимую скорость паров в полном (свободном) сечении колонны по формуле:

$$u = 0,305c \ \sqrt{\rho_{\rm m} \left(\rho_{\rm w} - \rho_{\rm m}\right)}$$

где u — массовая скорость паров, кг/(м²·ч); ρ_{π} и ρ_{π} — плотности паров и жидкости на верху колонн (в расчетном сечении), кг/м³; c — коэффициент, зависящий от расстояния между тарелками и определяемый по графику [6, с. 638].

Имея в виду, что дистиллят колонны практически полностью состоит из пропана, по табл. [7, с. 175] найдем плотности его в

жидком и парообразном состоянии при температуре и давлении на верху колонны:

$$ρ_{\pi} = 0,0339 \text{ г/см}^3 = 34 \text{ кг/м}^3$$

 $ρ_{\pi} = 0,460 \text{ г/см}^3 = 460 \text{ кг/м}^3$

Принимая расстояние между тарелками колонны $h_{\rm T} = 400$ мм, по графику [6, с. 638] найдем значение коэффициента c = 540.

Подставляя найденные величины в формулу, получим:

$$u = 0,305c \sqrt{34(460-34)} = 197 \cdot 10^2 \text{ kr/(m}^2 \cdot \text{y})$$

Линейная скорость паров определяется так:

$$w = \frac{u}{\rho_{\pi} \cdot 3600} = \frac{197 \cdot 10^2}{34 \cdot 3600} = 0,161 \text{ M/c}$$

Тогда внутренний диаметр колонны будет равен:

$$D_{\rm b} = \sqrt{\frac{4 \cdot 0,184}{3,14 \cdot 0,161}} = 1,2 \,{\rm m}$$

Рис. 1.5. Схема для расчета рабочей высоты колонны. Принимаем полученный расчетом диаметр $D_{\rm B} = 1200$ мм.

Высота колонны. Основываясь на литературных данных [3, с. 630—633], выбираем средний к. п. д. колпачковой тарелки $\eta = 0.5$.

Выше расчетом от «тарелки к тарелке» было найдено число теоретических тарелок в укрепляющей части $N_{\tau}^{y} = 8$. Следовательно, число практических тарелок в этой части тарелок будет:

$$N_{\rm p}^{\rm y} = \frac{N_{\rm \tau}^{\rm y}}{\eta} = \frac{8}{0.5} = 16$$

Для отгонной части число теоретических тарелок было определено равным $N_{\tau}^{\circ} = 7$. Следовательно, число практических тарелок в этой части колонны будет равно:

$$N_{\rm p}^{\rm o} = \frac{N_{\rm r}^{\rm o}}{\eta} = \frac{7}{0.5} = 14$$

Всего практических тарелок в колонне:

$$N_{\rm p} = N_{\rm p}^{\rm y} + N_{\rm p}^{\rm o} = 16 + 14 = 30$$

Холодное (острое) орошение подается на первую (верхнюю) укрепляющую тарелку. Паровое орошение из кипятильника (испарителя) колонны подается под ее нижнюю отгонную тарелку. Поэтому на основании практических данных примем расстояние между верхним днищем колонны и ее верхней укрепляющей тарелкой $h_D = 1,0$ м (рис. 1.5), высоту питательной секции (расстояние между нижней укрепляющей и верхней отгонной тарелками) $h_G = 1,2$ м и расстояние между нижним днищем и нижней отгонной тарелкой $h_R = 1,5$ м.

Тогда рабочая высота колонны:

$$H_{p} = h_{D} + (N_{p}^{v} - 1)h_{r} + h_{G} + (N_{p}^{o} - 1)h_{r} + h_{R} =$$

= 1,0 + (16 - 1) \cdot 0,40 + 1,2 + (14 - 1) \cdot 0,40 + 1,5 = 14,9 m

Диаметры основных штуцеров колонны рассчитываются по обычным формулам гидравлики с последующим принятием их согласно существующим нормалям.

Гидравлический расчет тарелки здесь не дается ввиду того, что он подробно рассматривается в ряде литературных источников [8, с. 321; 9, с. 223; 10, с. 169].

ОТГОННАЯ РЕКТИФИКАЦИОННАЯ КОЛОННА

Рассчитать отпарную рафинатную колонну установки очистки масел парными растворителями при следующих исходных данных: производительность колонны по сырью (смесь рафината и растворителя) $G = 50\,000$ кг/ч; содержание растворителя в сырье $c_1 = 2$ масс.%; состав растворителя — 50 масс.% фенола и 50 масс.% крезола; плотность рафината при температуре 293 К равна $\rho_{293} = 880$ кг/м³; молекулярные массы — рафината $M_2 = 620$, растворителя $M_1 = 100$; давление в колонне $\pi = 101,3\cdot10^3$ Па; содержание растворителя в нижнем продукте (остатке) колонны $x_R = 0,005$ масс.%; расход перегретого водяного пара Z = 2 масс.% на сырье.

Заданная для расчета отгонная ректификационная колонна предназначена для выделения растворителя из практически нелетучего остатка, в основном состоящего из масла (рафината). В технологии нефти такие колонны называются отпарными.

Процесс ректификации в колонне протекает в присутствии перегретого водяного пара. Ввиду того что исходное сырье (растворитель + масло) представляет собой бинарную систему, состоящую из летучего растворителя (низкокипящий компонент) и практически нелетучего масла (высококипящий компонент), можно считать, что по всей высоте колонны паровой поток будет состоять только из паров растворителя и водяного пара. При расчете колонны необходимо определить для всех ее межтарелочных отделений элементы ректификации — составы, количества, температуры и энтальпии паровых и жидких потоков, чтобы установить, какое число тарелок необходимо при заданных условиях разделения. Определение элементов ректификации в отгонной колонне проводим аналитическим методом «от тарелки к тарелке» путем использования уравнений материального и теплового балансов, уравнения изотермы жидкой фазы бинарного раствора и уравнения Авогадро — Дальтона.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА КОЛОННЫ

1. По заданным производительности, составам сырья и нижнего продукта колонны определяют количества дистиллята и остатка, имея в виду, что дистиллят будет представлять собой чистый растворитель.

2. Определяют элементы ректификации во всех межтарелочных отделениях колонны. Расчеты ведутся для каждого межтарелочного отделения по следующей схеме:

а) из уравнения Авогадро — Дальтона находят количество паров растворителя, предварительно определив их парциальное давление и парциальное давление водяного пара;

б) из уравнения материального баланса объема колонны, заключенного между низом ее и рассматриваемым межтарелочным уровнем, находят количество и состав флегмы;

в) из уравнения теплового баланса того же объема колонны определяют энтальпию флегмы, а по энтальпии — ее температуру;

г) определение элементов ректификации прекращается на межтарелочном отделении, в котором количество паров растворителя окажется больше количества дистиллята. Последнее означает, что тарелка, которую покидает это количество паров является нереальной (лишней) и верхней тарелкой колонны должна считаться предыдущая.

3. По уравнению материального баланса однократного испарения, зная содержание растворителя в сырье и флегме, стекающей на верхнюю тарелку колонны, находят массовую долю отгона сырья в питательной секции (эвапорационном пространстве).

4. Из уравнения теплового баланса всего объема колонны определяют энтальпию подаваемого в нее сырья и по энтальпии — его температуру.

5. Определяют диаметр и высоту колонны. Для этого предварительно задаются конструкцией (типом) тарелки и расстоянием между тарелками, а затем рассчитывают допустимую скорость паров в наиболее нагруженном ими верхнем сечении колонны. Диаметр колонны, найденный по паровой нагрузке, должен быть проверен по жидкостной нагрузке, так как количество остатка колонны велико по сравнению с количеством дистиллята и водяного пара.

PACHET

1. Количество верхнего и нижнего продуктов колонны

Из уравнения материального баланса колонны находим количество *D* верхнего продукта, который представляет собой чистый

растворитель, так как рафинат практически нелетуч:

$$D = \frac{c_1 - x_R}{y_D - x_R} G = \frac{0.02 - 0.00005}{1 - 0.00005} \cdot 50\ 000 = 1000\ \text{kr/y}$$

где $c_1 = 0.02$ — концентрация растворителя в сырье в массовых долях; $x_R = 0.00005$ — то же в остатке; $y_D \approx 1$ — то же в дистилляте.

Количество нижнего продукта колонны (рафината):

$$R = G - D = 50\,000 - 1000 = 49\,000$$
 кг/ч

2. Определение элементов ректификации

Первое межтарелочное отделение (рис. 1.6). Количество паров растворителя V_R , отгоняющихся из флегмы стекающей в низ колонны, находим из уравне-

ния Авогадро — Дальтона:

откуда

$$\frac{Z}{V_R} = \frac{p_z \cdot 18}{p_{12}M_1}$$

$$V_R = \frac{Z p_{12} M_1}{p_2 \cdot 18}$$

где p_{12} — парциальное давление паров остатка, состоящего из весьма малого количества растворителя (первый, низкокипящий компонент) и рафината (второй, высококипящий компонент); p_Z парциальное давление водяного пара в низу колонны.

Расход водяного пара на отгонку растворителя:

 $Z = 0.02G = 0.02 \cdot 50\,000 = 1000 \text{ kr/y}$

На основе промышленных данных принимаем температуру в низу колонны $T_R = 548$ К и находим парциальное да-

вление паров остатка в низу колонны по уравнению изотермы жидкой фазы:

$$p_{12} = P_1 x'_R + P_2 (1 - x'_R)$$

где P_1 , P_2 — давления насыщенных паров соответственно растворителя и рафината при $T_R = 548$ К; x'_R — мольная доля растворителя в остатке.

Так как рафинат практически нелетуч, то $P_2 \approx 0$, и следовательно:

$$p_{12} = P_1 x'_k$$

Рис. 1.6. Расчетная схема отгопной колонны.

Чтобы создать некоторый запас разделительной способности колонны, примем давление насыщенного пара растворителя равным давлению насыщенного пара наиболее тяжелого компонента — крезола. По таблице [11, с. 121] давление насыщенного пара крезола при 548 К составляет $P_1 = 5,2.98,1 = 510,1$ к $H/m^2 = 510,1.10^3$ IIa.

Пересчитаем состав остатка из массовых долей в мольные:

 $x_R' = \frac{x_R M_R}{M_1}$

где $M_1 = 100$ — молекулярная масса растворителя; M_R — молекулярная масса остатка, равная

$$M_{R} = \frac{1}{\frac{x_{R}}{M_{1}} + \frac{1 - x_{R}}{M_{2}}}$$

Ввиду того что x_R — величина очень малая, $M_R \approx M_2$, следовательно

$$x'_{R} = \frac{x_{R}M_{2}}{M_{1}} = \frac{0,00005 \cdot 620}{100} = 0,00031$$

Тогда

$$p_{12} = P_1 x'_R = 510, 1 \cdot 10^3 \cdot 0,00031 = 0,16 \cdot 10^3 \,\, \text{Ta}$$

Парциальное давление водяного пара:

 $p_Z = \pi - p_{12} = 101, 3 \cdot 10^3 - 0, 16 \cdot 10^3 = 101, 14 \cdot 10^3$ ГІа

Подставив числовые значения в уравнение Авогадро — Дальтона, получим:

$$V_R = \frac{1000 \cdot 0.16 \cdot 10^3 \cdot 100}{101,14 \cdot 10^3 \cdot 18} = 8,67 \text{ kr/y}$$

Количество g_1 флегмы, стекающей с нижней тарелки (см. puc. 1.6), найдем из уравнения материального баланса объема колонны, заключенного между ее низом и первым межтарелочным отделением (под первой тарелкой):

$$g_1 = V_R + R = 8,67 + 49\,000 = 49008,67$$
 Kr/4

Состав x₁ этой флегмы определим из уравнения концентраций для того же сечения колонны:

$$g_1 x_1 = V_R y_R + R x_R$$

откуда

$$x_1 = \frac{V_R y_R + R x_R}{g_1} = \frac{8,67 \cdot 1 + 49\,000 \cdot 0,00005}{49008,67} = 0,00023$$

Здесь $y_R \approx 1$, так как в любом сечении колонны пары состоят только из растворителя, а рафинат практически нелетуч.

Мольный состав флегмы:

$$x_1' = \frac{1}{1 + \frac{M_1}{M_R} \left(\frac{1}{x_1} - 1\right)} = \frac{1}{1 + \frac{100}{620} \left(\frac{1}{0,00023} - 1\right)} = 0,00145$$

Теперь определим энтальпию и температуру флегмы.

Энтальпию флегмы найдем из уравнения теплового баланса объема колонны, заключенного между ее низом и первым межтарелочным отделением (см. рис. 1.6):

$$g_1q_1 + Zi_0 = V_RQ_R + Zi_R + Rq_R$$

откуда

$$q_1 = \frac{V_R Q_R + Z (i_R - i_0) + R q_R}{g_1}$$

где Q_R — энтальпия паров растворителя при $T_R = 548$ К, кДж/кг; q_R — энтальпия остатка при $T_R = 548$ К, кДж/кг; i_R — энтальпия водяного пара при $T_R = 548$ К, кДж/кг; i_0 — энтальпия водяного пара при его подаче в колонну (принята равной i_R).

Энтальпию Q_R паров растворителя определим как величину, среднюю между энтальпиями паров фенола и крезола, пользуясь таблицами [11, с. 94—124]. Энтальпию q_R остатка находим по таблицам (Приложение 2), считая его за чистый рафинат. Энтальпию перегретого водяного пара находим по таблицам [12] или другому источнику.

Получим:

$$Q_R = 990$$
 кДж/кг; $q_R = 628$ кДж/кг; $i_0 = i_R = 3030$ кДж/кг

После подстановки в уравнение числовых значений величин найдем:

Ввиду малого содержания во флегме g_1 растворителя ($x_1 = 0,00023$) можно без заметной погрешности считать ее чистым рафинатом. Энтальпии флегмы $q_1 = 628 \text{ кДж/кг}$ соответствует температура $T_1 = T_R = 548 \text{ K}$. Такое совпадение температур объясняется только тем, что в низу колонны из 49008,67 кг флегмы испаряется всего 8,67 кг растворителя, что практически не влияет на температуры потоков g_1 и R.

Таким образом, для первого межтарелочного отделения определены все элементы ректификации и можно перейти ко второму межтарелочному отделению.

В торое межтарелочное отделение (между первой и второй тарелками — рис. 1.6). Для всех последующих отделений расчет проводим по той же схеме, как и для первого межтарелочного отделения.

Парциальное давление паров растворителя, покидающих первую (нижнюю) тарелку:

$$p_{12} = P_1 x'_1 = 510, 1 \cdot 10^3 \cdot 0,00145 = 0,74 \cdot 10^3 \ \Pi a$$

где $P_1 = 510, 1 \cdot 10^3$ Па — давление насыщенного пара крезола при температуре на первой тарелке $T_1 = 548$ К.

Парциальное давление водяного пара:

 $p_z = \pi - p_{12} = 101, 3 \cdot 10^3 - 0.74 \cdot 10^3 = 100, 56 \cdot 10^3 \Pi a$

Количество парового потока — паров растворителя, поднимающихся с первой тарелки, по уравнению Авогадро — Дальтона:

$$V_1 = \frac{Zp_{12}M_1}{p_z \cdot 18} = \frac{1000 \cdot 0.74 \cdot 10^3 \cdot 100}{100.56 \cdot 10^3 \cdot 18} = 41,1 \text{ kr/y}$$

Количество флегмы, стекающей со второй тарелки на первую:

$$g_2 = V_1 + R = 41, 1 + 49000 = 49041, 1 \text{ kr/y}$$

Состав этой флегмы в массовых долях:

$$x_2 = \frac{V_1 y_1 + R x_R}{g_2} = \frac{41, 1 \cdot 1 + 49\,000 \cdot 0,00005}{49041,4} = 0,00089$$

где $y_1 \approx 1$, так как пары состоят практически только из растворителя.

Состав флегмы в мольных долях:

$$x_2' = \frac{1}{1 + \frac{M_1}{M_2} \left(\frac{1}{x_2} - 1\right)} = \frac{1}{1 + \frac{100}{620} \left(\frac{1}{0,00089} - 1\right)} = 0,0053$$

Энтальпия флегмы:

$$q_{2} = \frac{V_{1}Q_{1} - Z(i_{2} - i_{0}) + Rq_{0}}{g_{2}} = \frac{41.1 \cdot 990 + 1000(3030 - 3030) + 4900 \cdot 628}{49041.1} = 628 \text{ kJm/kr}$$

Энтальпии отдельных потоков остались теми же, что и в первом межтарелочном отделении потому, что $T_1 = T_R = 548$ К. Ввиду малого содержания во флегме g_2 растворителя ($x_2 = 0,00089$), можно без заметной погрешности считать ее чистым рафинатом. Поэтому, ее энтальпии $q_2 = 628$ кДж/кг будет попрежнему отвечать температура $T_2 = T_1 = T_R = 548$ К. Как видно, и на второй тарелке температура осталась прежней. Объяснение этому было дано выше.

Третье межтарелочное отделение (между второй и третьей тарелками — рис. 1.6)

$$\begin{split} p_{12} &= P_1 x_2' = 510, 1 \cdot 10^3 \cdot 0,0053 = 2,7 \cdot 10^3 \text{ IIa} \\ p_Z &= \pi - p_{12} = 101, 3 \cdot 10^3 - 2,7 \cdot 10^3 = 98, 6 \cdot 10^3 \text{ IIa} \\ V_2 &= \frac{Z p_{12} M_1}{p_Z \cdot 18} = \frac{1000 \cdot 2.7 \cdot 10^3 \cdot 100}{98, 6 \cdot 10^3 \cdot 18} = 152 \text{ Kr/4} \\ g_3 &= V_2 + R = 152 + 49\,000 = 49\,152 \text{ Kr/4} \\ x_3 &= \frac{V_2 y_2 + R x_R}{g_3} = \frac{152 \cdot 1 + 49\,000 \cdot 0,00005}{49\,152} = 0,00315 \\ x_3' &= \frac{1}{1 + \frac{M_1}{M_2} \left(\frac{1}{x_3} - 1\right)} = \frac{1}{1 + \frac{100}{620} \left(\frac{1}{0,00315} - 1\right)} = 0,0192 \\ q_3 &= \frac{V_2 Q_2 + Z\left(i_2 - i_0\right) + R q_R}{g_3} = \\ &= \frac{152 \cdot 990 + 1000\,(3033 - 3030) + 49\,000 \cdot 628}{49\,152} = 628 \text{ K} \text{ J} \text{ K/Kr} \end{split}$$

44

По причине, изложенной выше, температура флегмы g₃ остается неизменной:

$$T_3 = T_2 = T_1 = T_R = 548 \text{ K}$$

Четвертое межтарелочное отделение (между третьей и четвертой тарелками). На рис. 1.6 четвертая тарелка не показана по причине, которая объясняется ниже. Имеем:

$$\begin{split} p_{12} &= P_1 x_3' = 510, 1 \cdot 10^3 \cdot 0, 0192 = 9, 8 \cdot 10^3 \text{ Ta} \\ p_Z &= \pi - p_{12} = 101.3 \cdot 10^3 - 9, 8 \cdot 10^3 = 91, 5 \cdot 10^3 \text{ Ta} \\ V_3 &= \frac{Z p_{12} M_1}{p_Z \cdot 18} = \frac{1000 \cdot 9.8 \cdot 10^3 \cdot 100}{91, 5 \cdot 10^3 \cdot 18} = 600 \text{ kr/y} \\ g_4 &= V_3 + R = 600 + 49\,000 = 49\,600 \text{ kr/y} \\ x_4 &= \frac{V_3 y_3 + R x_R}{g_4} = \frac{600 \cdot 1 + 49\,000 \cdot 0.00005}{49\,600} = 0,0122 \text{ for } \\ x_4' &= \frac{1}{1 + \frac{M_1}{M_2} \left(\frac{1}{x_4} - 1\right)} = \frac{1}{1 + \frac{100}{620} \left(\frac{1}{0,0122} - 1\right)} = 0,071 \\ q_4 &= \frac{V_3 Q_3 + Z \left(i_3 - i_0\right) + R q_R}{g_4} = \\ &= \frac{600 \cdot 990 + 1000 \left(3030 - 3030\right) + 4900 \cdot 628}{49\,600} = 633 \text{ k/J} \text{ k/k/k} \end{split}$$

Ввиду незначительного содержания растворителя во флегме $(x_4 = 0,0122)$, последнюю по-прежнему можно считать чистым рафинатом. Этой энтальпии $q_4 = 633$ кДж/кг соответствует температура $T_4 = 550,5$ К, которая определяется по таблице (Приложение 2).

Пятое межтарелочное отделение (между четвертой и пятой тарелками, не показанными на рис. 1.6). Давление насыщенных паров растворителя при $T_4 = 550,5$ К составляет $P_1 = 534,6 \cdot 10^3$ Па. Кроме того

$$p_{12} = P_1 x'_4 = 534, 6 \cdot 10^3 \cdot 0,071 = 38 \cdot 10^3 \Pi a$$

$$p_Z = \pi - p_{12} = 101, 3 \cdot 10^3 - 38 \cdot 10^3 = 63, 3 \cdot 10^3 \Pi a$$

$$V_4 = \frac{Z p_{12} M_1}{p_Z \cdot 18} = \frac{1000 \cdot 38 \cdot 10^3 \cdot 100}{63, 3 \cdot 10^3 \cdot 18} = 3330 \text{ kg/m}$$

$$g_5 = V_4 + R = 3330 + 49\,000 = 52\,330 \text{ kg/m}$$

Проанализируем полученные данные.

Количество паров растворителя $V_4 = 3330$ кг/ч значительно превосходит его количество, содержащееся в сырье (1000 кг/ч), подаваемом в колонну. Этого быть не может, так как ни в какие другие точки колонны растворитель извне не подается.

Количество флегмы $g_5 = 52\,330$ кг/ч, стекающей на четвертую тарелку, превосходит количество сырья $G = 50\,000$ кг/ч, подаваемого в колонну. Этого также быть не может, так как на верх колонны никакого орошения не подается.

Поэтому при выбранном расходе водяного пара, принятой температуре низа колонны и заданном содержании растворителя в остатке для отгонки растворителя необходимы три теоретические тарелки.

Тогда с верхней (третьей) тарелки в питательную секцию колонны будет поступать $V_3 = 600$ кг/ч паров растворителя, а на эту тарелку из питательной секции будут поступать $g_4 = 49\,600$ кг/ч флегмы с содержанием растворителя $x_4 = 0,0122$. При этом температура в питательной секции, а следовательно, и на верху колонны будет равна $T_R = T_4 = 550,5$ К, как это определено в расчете четвертого межтарелочного отделения.

3. Доля отгона сырья в питательной секции колонны

Зная составы сырья и его равновесных паровой и жидкой фаз при $T_D = T_4 = 550,5$ К, находим массовую долю отгона по уравнению:

$$e = \frac{c_1 - x_G}{y_G - x_G}$$

где $c_1 = 0,02$ — массовая доля растворителя в сырье; $x_G = x_4 = 0,0122$ — массовая доля растворителя в жидкой фазе сырья; $y_G = 1$ — массовая доля растворителя в паровой фазе сырья (отгоне).

Подставив числовые значения получим:

$$e = \frac{0,02 - 0.0122}{1 - 0.0122} = 0,0079$$

Количество растворителя, отгоняющегося от сырья в питательной секции:

 $V_{\rm c} = eG = 0,0079 \cdot 50\,000 = 395 \, {\rm kg/m}$

Тогда количество жидкой фазы сырья, поступающей из питательной секции на верхнюю (третью) тарелку:

$$g_{c} = G - V_{c} = 50\,000 - 395 = 49\,605$$
 кг/ч

Оно почти равно количеству флегмы g_4 . Незначительная разница между g_c и g_4 объясняется тем, что с самого начала расчета мы пренебрегли очень малым содержанием растворителя в остатке.

4. Энтальпия и температура сырья на входе в колонну

Энтальпия подаваемого в колонну сырья определяется из уравнения теплового баланса всей колонны:

$$Gq_G + Zi_0 = DQ_D + Rq_R + Zi_D$$

где q_G — искомая энтальпия сырья, кДж/кг; Q_D — энтальпия пара верхнего продукта колонны — растворителя при $T_D = 550,5$ K,

кДж/кг, i_D — энтальпия перегретого водяного пара при $T_D = 550,5$ K.

Ввиду очень малой разницы между i_D и i_0 , будем считать $i_D \approx i_0$. Тогда

 $q_{g} = \frac{DQ_{D} + Rq_{R}}{G} = \frac{1000 \cdot 991 + 49\ 000 \cdot 628}{50\ 000} = 633$ кДж/кг

По энтальпии сырья определим его температуру, считая сырье, ввиду незначительного содержания в нем растворителя, чистым рафинатом. Найдем, что температура сырья на входе в колонну должна быть равна $T_c = T_D = 550,5$ К. Это объясняется тем, что в питательной секции от сырья отгоняется незначительная доля (e = 0.0079).

5. Диаметр колонны

Для расчета диаметра колонны воспользуемся формулой:

$$D_{\rm B} = \sqrt{\frac{4(D+Z)}{\pi u}}$$

где $D_{\rm B}$ — внутренний диаметр колонны, м; D — количество верхнего продукта, кг/ч; Z — количество водяного пара, кг/ч; u — допустимая скорость паров в полном (свободном) сечении колонны, кг/($M^2 \cdot q$).

В связи с тем что жидкостная нагрузка оказывает относительно меньшее влияние на работу колонны, чем паровая, допустимую скорость паров определим по формуле Саудерса и Брауна. Устанавливаем тарелки с круглыми колпачками. Расстояние между тарелками $h_{\rm T} = 400$ мм.

Найдем допустимую скорость паров:

$$u = 0,305c \sqrt{\rho_{\pi}(\rho_{\pi}-\rho_{\pi})}$$

где c = 450 — коэффициент, определяемый по графику [6, с. 639]; $\rho_{\rm II}$ и $\rho_{\rm IK}$ — плотность соответственно паров и жидкости для расчетного сечения колонны, кг/м³.

Расчетным сечением в колопне будет ее верхнее сечение, так как через него проходит в единицу времени наибольший объем паров. Температура в этом сечении $T_D = 550,5$ К. Определим предварительно среднюю молекулярную массу паров на верху колонны, зная, что в течение 1 ч через это сечение проходит 1000 кг растворителя, содержащего 50 масс. % фенола и 50 масс. % крезола, и 1000 кг водяного пара.

Получим:

$$M = \frac{D+Z}{\frac{0.5D}{M_{\Phi}} + \frac{0.5D}{M_{\kappa}} + \frac{Z}{18}} = \frac{1000 + 1000}{\frac{500}{94} + \frac{500}{108} + \frac{1000}{18}} = 30,5$$

где $M_{\phi} = 94$ — молекулярная масса фенола; $M_{\kappa} = 108$ — молекулярная масса крезола

Плотность паров при давлении в колонне $\pi = 101, 3 \cdot 10^3$ Па и температуре $T_D = 550, 5$ К определится по формуле:

$$\rho_{\pi} = \frac{M \cdot 273}{22.4T_D} = \frac{30.5 \cdot 273}{22.4 \cdot 550.5} = 0,665 \text{ Kr/m}^3$$

Плотность рафината при 550,5 К равна $\rho_{\rm H} = 720 \ {\rm kr/M^3}$. Тогда $u = 0,305 \cdot 450 \ \sqrt{0,665} \ (720 - 0,665) = 3000 \ {\rm kr/(M^2 \cdot q)}$

Диаметр колонны:

$$D_{\rm B} = \sqrt{\frac{4(1000 + 1000)}{3,14 \cdot 3000}} = 0,93 \,\,{\rm M}$$

Выбираем в соответствии с существующими нормалями $D_{B} = 1$ м = 1000 мм. Проверим полученный диаметр колонны по жидкостной нагрузке. Примем для тарелки сегментную сливную перегородку. Определим величину подпора слива $h_{c,r}$ (рис. 1.4)

над сливной перегородкой по формуле [5, с. 209].

$$h_{\rm c,r} = 0,00284k_1 \left(\frac{V}{L_{\rm c,r}}\right)^{2/3}$$

где k_1 — безразмерный коэффициент, учитывающий изменение скорости и сужение потока жидкости в результате сжатия его стенками при подходе к сливной перегородке, — определяется из рис. 79 [5, с. 210]; V — объем жидкости, перетекающей с тарелки на тарелку, $M^{3/4}$. $L_{c\pi}$ — длина сливной перегородки, равная (0,75 + 0,8) $D_{\rm B}$.

В нашем случае:

$$V = \frac{g_{\rm c}}{\rho_{\rm w}} = \frac{49\,605}{720} = 68,9 \,\,{\rm m}^3/{\rm m}^3$$

Примем:

$$L_{cn} = 0.8D_{B} = 0.8 \cdot 1 = 0.8$$
 M.

Величина $k_1 = 1,17$ при $\frac{L_{c.1}}{D_B} = 0,8.$

Подставляя числовые значения в формулу, найдем:

$$h_{\rm c.r} = 0,00284 \cdot 1,17 \left(\frac{68,9}{0.8}\right)^{2/2} = 0,064 \text{ M}$$

Высота сливной перегородки $l_{c\pi}$ для колонн, подобных рассчитываемой, может колебаться в пределах 50—75 мм. Примем $l_{c\pi} = 75$ мм.

Тогда

Рис. 1.7. Схема для расчета ра-

бочей высоты колонны.

$$l_{c\pi} + h_{c\pi} = 75 + 64 = 139$$
 мм

Высоту верхней камеры колонны примем равной $h_D = 1,5$ м (рис. 1.7). Величина ($l_{c,n} + h_{c,n}$) меньше h_D и h_{T} (рис. 1.7) соответственно в 10,8 и 2,9 раза, что лежит в допустимых пределах.

Следовательно, принятые диаметр колонны и конструкция сливного устройства тарелки обеспечивает нормальную работу отпарной колонны.

6. Высота колонны

Для обеспечения некоторого запаса разделительной способности колонны принимаем к.п.д. тарелки $\eta_{\rm T} = 0.4$ [3, с. 630—633]. Тогла число практических тарелок в колонне булет:

$$N_{\rm p} = \frac{N_{\rm T}}{\eta_{\rm r}} = \frac{3}{0.4} \approx 8$$

где N_т = 3 — число теоретических тарелок.

Высота, занятая тарелками (рис. 1.7):

$$h_{\rm o} = (N_{\rm p} - 1) h_{\rm T} = (8 - 1) \cdot 0.4 = 2.8 \text{ M}$$

Высоту h_R нижней камеры колонны рассчитаем, приняв семиминутный запас остатка (рафината) и расстояние от свободной поверхности жидкости в низу колонны до нижней тарелки равным 1 м [9, с. 184]:

$$h_R = \frac{R \cdot 7 \cdot 4}{60 \rho_{\rm M} \pi D_{\rm B}^2} + 1 = \frac{49\,000 \cdot 7 \cdot 4}{60 \cdot 720 \cdot 3, 14 \cdot 12} + 1 = 2,01 \text{ M}$$

Рабочая высота колонны:

$$H_{\rm p} = h_D + h_{\rm o} + h_R = 1.5 + 2.8 + 2.01 = 6.31$$
 M

Диаметры штуцеров колонны рассчитывают по обычным формулам гидравлики — см., например, [13].

ФРАКЦИОНИРУЮЩИЙ АБСОРБЕР

Рассчитать фракционирующий абсорбер для извлечения пропана и более тяжелых углеводородов из жидкой и газовой фаз питания, состав которых приводится в табл. 1.16.

Номера	Компоненты	Состач жидкой	Состав газовой
компо-		фазы I _f i,	фазы v _{fi} ,
нентов		кмоль/ч	кмоль/ч
1 2 3 4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34,8 60,0 147,0 54,0 116,8 45,2 60,4 63,2 581,4	$\begin{array}{c} 322,0\\ 135,6\\ 127,8\\ 26,6\\ 47,8\\ 9,8\\ 11,2\\ 2,8\\ 683,6\end{array}$

Таблица 1.16

Фракционирующий абсорбер предназначен для возможно более полного извлечения пропана из газожидкого сырья, содержащего значительные количества этана и метана. Конструктивно он представляет собой комбинированный аппарат, состоящий из абсорбционной и десорбционной частей (абсорбера и десорбера), получающих раздельное питание — газовое и жидкое. Газовое питание абсорбера состоит из газового сырья Σv_i , подаваемого извне, и

Рис. 1.8. Расчетная схема фракционирующего абсорбера.

большое количество этана, до 90—95% пропана и углеводороды.

Подробное описание работы фракционирующего абсорбера имеется в литературе [14, с. 33].

Фракционирующий абсорбер рассматривается как абсорбционно-десорбционная колонна. В основу его расчета положены уравнение и график Кремсера. Особенности и схема расчета процессов абсорбции многокомпонентных смесей изложены в литературе [5, с. 234—242].

В качестве расчетных температур для абсорбции и десорбции обычно принимают среднеарифметические значения температур верха и низа соответственно абсорбера и десорбера. Для абсорбции многокомпонентной углеводородной смеси эта средняя расчетная температура равна 303—313 К, для десорбции она составляет величину порядка 353—393 К.

продуктов отгонки $\sum v_{\rm c}$, поступающих нее в ИЗ лесорбера (рис. 1.8). Жидкое питание десорбера состоит из жидкого сырья $\sum l_{f}$, подаваемого извне, и насыщенного абсорбента. поступающего из абсорбера. Насыщенный абсорбент состоит из абсорбента La. тошего подаваемого со стороны на верх абсорбера и поглошенных ИМ в этой части аппарата углеводородов $\sum l_h$. Продуктами разделения во фракционирующем абсорбере являются: уходящий сверху сухой газ Σv_1 , включаюший весь метан, до 90-95% этана и небольшое количество пропана, И уходящий снизу жидкий остаток $\sum l_m + L_a$, включающий абсорбент. непропана и более тяжелые

Анализ работы фракционирующего абсорбера показывает, что при значительном количестве десорбируемых компонентов и относительно высокой их температуре может существенно ухудшиться работа абсорбера. При слишком же низкой температуре насыщенного абсорбента приходится подводить большее количество тепла в низ десорбера, что приводит к увеличению эксплуатационных расходов. Для того чтобы уменьшить влияние высокой температуры продуктов десорбции на процесс абсорбции, в качестве расчетной температуры абсорбции принимают температуру низа абсорбера.

Технологическим расчетом аппарата должны быть определены: количества и составы верхнего и нижнего продуктов, количество тощего абсорбента, температуры верха и низа десорбера, тепло кипятильника, точки отбора сорбента для промежуточного охлаждения его, основные размеры (диаметр и высота) абсорбера и десорбера, а также гидравлическое сопротивление тарелок.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА Фракционирующего абсорбера

1. На основании практических данных принимают: давление в аппарате; коэффициент извлечения пропана; содержание этана в нижнем продукте (остатке); число теоретических тарелок в абсорбере и десорбере; температуру низа абсорбера и среднюю температуру в десорбере.

2. Определяют количества пропана и этана в остатке. Сущность этого расчета сводится к подтверждению ранее принятой величины коэффициента извлечения пропана, поэтому вычисления ведутся методом постепенного приближения.

3. Составляют материальные балансы абсорбционной и десорбционной частей колонны по каждому компоненту и потоку.

4. Определяют количество тощего (свежего) абсорбента, подаваемого на верх абсорбера.

5. На основе полученных выше данных и заданного состава питания рассчитывают концентрации компонентов в потоках продуктов абсорбера и десорбера и их молекулярные массы. Состав потока, стекающего с низа десорбера, определяется с учетом количества тощего абсорбента.

6. Определяют температуры верха и низа десорбера: первую по уравнению изотермы паровой фазы, вторую — по уравнению изотермы жидкой фазы, составы которых рассчитаны выше. Проверяется ранее выбранная средняя температура этой части аппарата. При большом расхождении расчет необходимо повторить, задавшись новым значением средней температуры десорбера.

7. Составляют тепловой баланс абсорбера и определяют количество тепла, которое необходимо отнять от абсорбента путем его промежуточного охлаждения. Для этого предварительно рассчитывается количество тепла, выделяющегося при абсорбции. 8. Составляют тепловой баланс десорбера и определяют количество тепла, которое необходимо подвести в низ десорбера с целью отгонки абсорбированных легких углеводородов.

9. Определяют число практических тарелок в абсорбере и де-

10. Определяются точки отвода абсорбента по высоте абсорбера для промежуточного охлаждения его. Расчет ведется методом постепенного приближения.

11. Определяют диаметры абсорбера и десорбера. Предварительно рассчитывают массовую скорость паров в наиболее нагруженном ими сечении абсорбера (под его нижней тарелкой). Определяют диаметр десорбера. Предварительно находят массы газа в верхнем и нижнем сечениях десорбера и ведут расчет по наиболее нагруженному из них (чаще нижнему). Все вычисления делаются так же, как и при определении диаметра абсорбера.

12. Определяют рабочую (полезную) высоту аппарата.

13. Проводят гидравлический расчет тарелок, принятых для абсорбера и десорбера.

РАСЧЕТ

1. Принятые для расчета исходные данные (условия разделения)

На основании промышленной практики принимаем следующие исходные данные: давление в аппарате $\pi = 1,37 \cdot 10^6$ Па (здесь и далее в расчете давление всюду абсолютное); коэффициент извлечения пропана при абсорбции $\varphi_3 = 0,905$; количество этана в жидкости (остатке), уходящей с низа десорбера, не более 3 мол.% от количества пропана в этой же жидкости; число теоретических тарелок в абсорбере $N_a = 10$, в десорбере $N_{\pi} = 10$; температура низа абсорбера 316 К; средняя температура в десорбере 366 К; ключевыми компонентами приняты для абсорбции — пропан, для десорбции — этан.

В расчете приняты следующие обозначения: l_{fi} — количество данного углеводорода (*i* — номер компонента в табл. 1.16) в жидком питании аппарата, кмоль/ч; v_{fi} — то же в газовом питании, кмоль/ч; A_i — фактор абсорбции данного углеводорода; S_i — фактор десорбции данного углеводорода; φ_i — коэффициент извлечения данного углеводорода при абсорбции; φ'_i — то же при десорбции; Z_i — общий коэффициент извлечения данного углеводорода, равный отношению его количества в жидкости, уходящий с низа десорбционной части, к суммарному его количеству в жидкой и паровой фазах питания аппарата; k_i — константа фазового равновесия данного углеводорода при температуре и давлении в низу абсорбера; k'_i — константа фазового равновесия данного углеводорода при средней температуре в десорбере; l_{mi} — количество данного углеводорода, уходящего с жидкостью с низа десорбера, кмоль/ч.

52

Количества пропана и этана в остатке. Коэффициент извлечения, факторы абсорбции и десорбции

Количество пропана l_{m3} (в кмоль/ч), уходящего с низа десорбера, найдем по формуле:

 $l_{m3} = Z_3 (l_{f3} + v_{f3})$

где Z₃ — общий коэффициент извлечения пропана (третьего компонента) из жидкого и газового питания аппарата.

Величину общего коэффициента извлечения пропана определяем по формуле [4, с. 172]:

$$Z_3 = \varphi_3 \frac{1-\delta}{1-\varphi_3\delta}$$

где $\varphi_3 = 0,905$ (принято выше); $\delta = \frac{k'_3}{k'_2}$.

Здесь и ниже константы фазового равновесия k определяются по номограмме [2, с. 159]:

$$k'_3 = 2,3$$
 (при 366 К и 1,37 · 10⁶ Па)
 $k'_2 = 5,15$ (при 366 К и 1,37 · 10⁶ Па)
 $\delta = \frac{2,3}{5,15} = 0,446$

Тогда

$$Z_3 = 0,905 \frac{1 - 0,446}{1 - 0,905 \cdot 0,446} = 0,842$$

Подставив в формулу значения величин, получим:

$$l_{m3} = 0,842 (146 + 127,8) = 231$$
кмоль/ч

Присутствие этана в остатке нежелательно, поэтому допустимое его количество *l_{m2}* находим из условия:

 $l_{m2} \approx 0.03 l_{m3}$

или

$$l_{m2} = 0,03 \cdot 231 = 6,93$$
 кмоль/ч

Выше, при принятых условиях абсорбции и десорбции (температура, давление, число теоретических тарелок), была выбрана величина $\varphi_3 = 0,905$; необходимо подтвердить расчетом, что эта величина выбрана правильно.

Коэффициент извлечения пропана при абсорбции ϕ_3 определим по формуле [15, с. 30]:

$$\varphi_3 = \frac{l_{f3}(1 - \varphi_3') - l_{m3}}{\varphi_3'(v_{f3} - l_{m3}) - v_{f3}}$$

где ф' - коэффициент извлечения пропана при десорбции.

Предварительно найдем некоторые величины.

а. При принятом значении коэффициента извлечения пропана при абсорбции $\varphi_3 = 0,905$ и числе теоретических тарелок в абсорбционной части $N_a = 10$, по диаграмме Кремсера [13, с. 165] найдем фактор абсорбции пропана: $A_3 = 1$.

6. Из соотношения $A_2 = A_3 \frac{k_3}{k_2}$ найдем фактор абсорбции этана $(k_2 = 3$ и $k_3 = 1,02$ при 316 К и 1,37 · 10⁶ Па):

$$A_2 = 1 \frac{1,02}{3} = 0,34$$

в. По диаграмме Кремсера при $N_a = 10$ и $A_2 = 0,34$ определим коэффициент извлечения этана при абсорбции: $\varphi_2 = 0,34$.

г. Рассчитаем коэффициент извлечения этана при десорбции по формуле [14, с. 39]:

$$\frac{l_{f_2} - l_{m_2} + \varphi_2 v_{f_2}}{l_{f_2} + \varphi_2 (v_{f_2} - l_{m_2})} = \frac{60 - 6.93 + 0.34 \cdot 135.6}{60 + 0.34 (135.6 - 6.93)} = 0.961$$

д. По диаграмме Кремсера определим фактор десорбции этана S_2 при $N_{\pi} = 10$ и $\varphi'_2 = 0.961$. Получим $S_2 = 1.2$.

е. Определим фактор десорбции пропана S₃ из соотношения:

$$S_3 = S_2 \frac{k'_3}{k'_2} = \frac{1,2 \cdot 2,3}{5,15} = 0,536$$

ж. При $S_3 = 0,536$ и $N_{\pi} = 10$, найдем по диаграмме Кремсера: $\phi'_3 = 0,536$.

Подставив числовые значения величин, получим:

$$\varphi_3 = \frac{147 (1 - 0.536) - 231}{0.536 (127.8 - 231) - 127.8} = 0.896$$

Найденная величина $\varphi_3 = 0,896$ незначительно отличается от принятой ранее (расхождение составляет примерно 1%).

Проверим величины Z_3 , l_{m3} и l_{m2} по формулам, приведенным в начале расчета, подставив $\varphi_3 = 0,896$, и сравним полученные их значения с вычисленными ранее. Имеем:

$$Z_3 = 0,896 \frac{1 - 0,446}{1 - 0,896 \cdot 0,446} = 0,834$$

Найденная в начале расчета величина $Z_3 = 0,842$ отличается от 0,834 примерно на 1%.

Далее

$$l_{m3} = 0,834 (147 + 127,8) = 229,2$$
 кмоль/ч

Расхождение с найденной ранее величиной $l_{m3} = 231$ кмоль/ч составляет менее 1%.

Кроме того, получается:

Расхождение с вычисленным ранее значением составляет менее 1%.

Ввиду незначительного расхождения между ранее принятой величиной $\varphi_3 = 0,905$ и полученной расчетом $\varphi_3 = 0,896$, а также удовлетворительного совпадения соответствующих значений Z_3 , l_{m3} и l_{m2} повторного расчета не делаем. В случае большого расхождения между принятой и рассчитанной величинами φ_3 необходимо весь расчет повторить, выбрав другое значение φ_3 .

В дальнейшем расчете принимаем $\phi_3 = 0,905$ и соответствующие этому значению все другие величины.

Для определения составов и количеств потоков аппарата необходимо знать коэффициенты извлечения (φ_i при абсорбции и φ'_i при десорбции) каждого углеводорода.

Факторы абсорбции для всех углеводородов питания (кроме пропана и этана) рассчитываем по соотношению:

$$A_i = A_3 \frac{k_3}{k_i}$$
 или $A_i = A_2 \frac{k_2}{k_i}$

где *i* — номер компонента.

Факторы десорбции определим по соотношению:

$$S_i = S_3 \frac{k'_i}{k'_3}$$
или $S_i = S_2 \frac{k'_i}{k'_2}$

Результаты расчетов A_i и S_i для всех углеводородов сводим в табл. 1.17.

Таблица 1.17

	Абсорб н :	ция при Т _а = л == 1,37 · 106 Г	=316 K Ia	Десорб и	бция при Т _л π==1,37·106	—366 К Па
Қомпоненты	k _i	A _i	φ _i	<i>k</i> _i '	s _i	φ_i'
$\begin{array}{c} CH_4 & & \\ C_2H_6 & & \\ C_3H_8 & & \\ u_{30}-C_4H_{10} & & \\ \mu-C_4H_{10} & & \\ u_{30}-C_5H_{12} & & \\ \mu-C_5H_{12} & & \\ C_6H_{14} & & \\ \end{array}$	13,20 3,00 1,02 0,50 0,37 0,16 0,14 0,05	$\begin{array}{c} 0,0775\\ 0,3400\\ 1,0000\\ 2,0400\\ 2,7600\\ 6,4000\\ 7,2900\\ 20,0200\end{array}$	0,0775 0,3400 0.9050 1,0000 1,0000 1,0000 1,0000 1,0000	$16,80 \\ 5,15 \\ 2,30 \\ 1,40 \\ 0.95 \\ 0,50 \\ 0,42 \\ 0,22$	3,900 1,200 0,536 0,325 0,220 0,116 0,098 0,051	$\begin{array}{c} 1,000\\ 0,961\\ 0,536\\ 0,325\\ 0,220\\ 0,116\\ 0,098\\ 0,051\end{array}$

Коэффициенты извлечения для всех остальных углеводородов питания, кроме пропана и этана, находим по диаграмме Кремсера: при абсорбции — по известным значениям A_i и $N_a = 10$, а при десорбции — по известным значениям S_i и $N_{\pi} = 10$.

Результаты определений ϕ_i и ϕ'_i для всех углеводородов питания также помещены в табл. 1.17.

3. Материальный баланс абсорбции и десорбции

Количество газа, поступающее под нижнюю тарелку абсорбера, складывается из количеств углеводородного газа питания аппарата и углеводородов, отогнанных в десорбере:

$$v_{bi} = v_{fi} + v_{ci}$$

где v_{bi} — суммарное количество углеводорода, поступающего под нижнюю тарелку абсорбера в газовой фазе, кмоль/ч.

Количество десорбированных углеводородов, определяем по выражению [14, с. 37]:

$$v_{ci} = l_{ci} \varphi_i'$$

где l_{ci} — количество каждого углеводорода в жидкой фазе, поступающей в десорбер, кмоль/ч.

По формуле [15, с. 30]:

$$l_{ci} = \frac{l_{fi} + \varphi_i v_{fi}}{1 - \varphi_i \varphi_i'}$$

Необходимые величины для подстановки в эту формулу помещены в табл. 1.16 и 1.17.

Количество поглощенных абсорбентом углеводородов (в кмоль/ч), покидающих абсорбер в жидкой фазе, определяется по следующему выражению:

 $l_{bl} = v_{bl} \varphi_l$

Количество каждого углеводорода (в кмоль/ч) в сухом газе, покидающем абсорбционную часть аппарата, находим по формуле:

$$v_{1i} = v_{bi} - v_{bi} \varphi_i$$

Количество углеводородов (в кмоль/ч), покидающих десорбер в жидкой фазе, l_{mi} определяем по формуле [14, с. 38], зная для каждого из них величины l_{ci} и φ'_i

$$l_{ml} = l_{cl} \left(1 - \varphi_l' \right)$$

Результаты вычислений по определению материальных балансов абсорбции и десорбции сведены в габл. 1.18.

4. Количество тощего абсорбента

Данные по суммарному количеству газа, поступающего в абсорбер, и поглощенных углеводородов (табл. 1.18) позволяют определить количество тощего абсорбента.

Количество тощего (свежего) абсорбента, подаваемого в абсорбер, определяется с учетом поглощенных углеводородов из следующего выражения [14, с. 32]:

$$A_3 = \frac{L_a + \sum l_{bi}}{k_3 \sum v_{bi}}$$

80
1
~
07
10
-5
La La

Компоненты	Φ _i Φ ['] i	$1-\phi_i\phi_i'$	J ^j a ^j d	lfi + + φ _i σ _{fi}	$=\frac{l_{ci}}{l_{fi}+\varphi_i \varphi_{fi}}$ $=\frac{l_{fi}+\varphi_i \varphi_{fi}}{1-\varphi_i \varphi_i'}$		$=l_{ci}^{t_{mi}=t_{mi}}\left(1-\varphi_{i}^{\prime}\right)$	$v_{ci} = l_{ci} \varphi'_i$		${}^{l_{bi}=}_{v_{bi}\varphi_{i}}$	$v_{1i} = v_{bi} \phi_i \phi_i$
CH4	0,0775	0,9225	25,00	59,80	64,70	0,0	0'0	64,70	386,70	30,00	356,70
C ₂ H ₆	0,3270	0,6730	46,00	106,00	157,50	0,039	6,18	151,32	286,92	97,50	189,42
C ₃ H ₈	0,4850	0,5150	115,50	262,50	510,00	0,464	236,0	274,00	401,80	364,00	37,80
u30-C4H10	0,3250	0,6750	26,60	80,60	119,50	0,675	80,7	38,80	65,40	65,40	0,00
<i>н</i> -С ₄ Н ₁₀	0,2200	0,7800	47,80	164,60	206,00	0,780	160,5	45,50	93,30	93,30	0,00
u30-C ₅ H ₁₂	0,1160	0,8840	9,80	55,00	62,10	0,884	54,9	7,20	17,00	17,00	0'00
<i>н</i> -С ₅ Н ₁₂	0,0980	0,9020	11,20	71,60	79,20	0,902	71,5	7,70	18,95	18,95	0'00
C _s H ₁₄	0,0510	0,9490	2,80	66,00	69,60	0,949	66,05	3,55	6,35	6,35	0,00
Сумма	l	l		1	1268,60	1	675,83	592,77	1276,42	692,50	583,92

где L_a — количество тощего абсорбента, кмоль/ч; $\sum l_{bl}$ — суммарное количество поглощенных углеводородов в жидкой фазе, кмоль/ч; $\sum v_{bl}$ — суммарное количество газа, поступающего в абсорбер, кмоль/ч.

Тогда

$$L_{a} = A_{3}k_{3}\sum v_{bi} - \sum l_{bi} = 1 \cdot 1,02 \cdot 1276,42 - 692,5 = 609$$
 кмоль/ч

5. Составы и молекулярные массы потоков фракционирующего абсорбера

Мольный состав каждого из потоков фракционирующего абсорбера определяем делением часового количества киломолей данного углеводорода на суммарное часовое количество киломолей всех углеводородов в этом потоке. При этом состав x'_{mi} определяется как отношение l_{mi} к $(l_{mi} + L_a)$. Результаты вычисления состава потоков сведены в табл. 1.19.

Средняя молекулярная масса любого газового потока рассчитывается по формуле:

$$M_{\rm y} = \sum_{1}^{n} y_i' M_i$$

где y'_i — мольная доля *i*-го компонента в соответствующем газовом потоке (из табл. 1.19).

Например, средняя молекулярная масса газообразного сырья абсорбционной части равна:

$$M_{y} = 0,304 \cdot 16 + 0,224 \cdot 30 + 0,314 \cdot 44 + 0,0513 \cdot 58 + 0,0734 \cdot 58 + 0,0134 \cdot 72 + 0,0149 \cdot 72 + 0,0050 \cdot 86 = 35,1$$

Средняя молекулярная масса любого жидкого потока рассчитывается по формуле:

$$M_x = \sum_{1}^{n} x'_i M_i$$

где x_i — мольная доля *i*-го компонента в жидком потоке (из табл. 1.19).

Так, средняя молекулярная масса поглощенных углеводородов равна:

$$M_{x} = 0,0433 \cdot 16 + 0,1409 \cdot 44 + 0,524 \cdot 44 + 0,0944 \cdot 58 + 0,1347 \cdot 58 + 0,0245 \cdot 72 + 0,0288 \cdot 72 + 0,0094 \cdot 86 = 45,97$$

Вычисленные средние молекулярные массы потоков сведены в табл. 1.20.

Ταδлυμα 1.19						-		
Компоненты	×' ¹	, K K	*' ^{nt}	x' _{bi}	u'ft	u'i 1	y'ci	y'_{bi}
CH4	0,0599	0,0511	0,0000	0,0433	0.4712	0,6110	0,1090	0,3040
C_2H_6	0,1032	0,1241	0,0048	0,1409	0,1983	0,3243	0,2540	0,2240
C ₃ H ₈	0,2530	0,4020	0,1836	0.5240	0,1870	0,0647	0,4630	0,3140
<i>u</i> 30-C ₄ H ₁₀	0,0929	0,0943	0,0628	0,0944	0,0389	0,0000	0,0659	0,0513
<i>к</i> -С ₄ Н ₁₀	0,2010	0,1624	0,1252	0,1347	0,0699	0,0000	0,0769	0,0734
<i>u</i> 30-C ₅ H ₁₂	0,0777	0,0490	0,0425	0,0245	0,0143	0,0000	0,0122	0,0134
<i>н</i> -С ₅ Н ₁₂	0,1040	0,0623	0,0556	0,0288	0,0164	0,0000	0,0130	0,0149
C_6H_{14}	0,1083	0,0548	0,0515	0,0094	0,0040	0'0000	0,0060	0,0050
Абсорбент	I	I	0,4740	I	I	I	I	I
Сумма	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000

Таблица 1.20

Поток	Обозначение потоков на рис. 1.8	М _у нли М _х
Сырой газ (газовая фаза сырья)	$\sum v_{fl}$	30,60
Газовое сырье абсорбционной части	$\sum v_{bi} = \sum v_{fi} + \sum v_{ci}$	35,1
Сухой газ	$\sum v_{1i}$	22,31
Тощий абсорбент	L_{a}	120,00
Поглощенные углеводороды Насыщенный абсорбент, покидаю-	$\sum t_{bi}$	(принято) 45,97
щий абсорбционную часть	$\sum l_{bi} + L_a$	82,1
Жидкость на верху десорбера	$\sum t_{ci}$	49,59
Десорбированный газ	$\sum v_{ci}$	40,34
Остаток после десорбции	$\sum l_{mi} = \sum l_{ci} - \sum v_{ci}$	58,10
Жидкость, покидающая десорбер	$\sum l_{mi} + L_a$	88,14

6. Температурный режим десорбера

Температуру верха десорбера рассчитываем при помощи уравнения изотермы паровой фазы, покидающей верхнюю десорбционную тарелку:

$$\sum \frac{y'_{\rm cl}}{k_i} = 1$$

Значения y'_{ci} см. в табл. 1.19.

Расчет по этому уравнению ведется методом постепенного приближения. Задаемся значением температуры верха десорбера и для каждого компонента газового потока, покидающего верхнюю тарелку десорбера, определяем по графику [2, с. 159] константы

Компоненты	у _{сі} (табл. 1.19)	k _i при Т _с =323 К, π=1,37·106 Па	$x'_{ci} = \frac{y'_{ci}}{k'_i}$
$\begin{array}{c} CH_4 & & & \\ C_2H_6 & & & \\ C_3H_8 & & & \\ uso-C_4H_{10} & & & \\ w-C_4H_{10} & & & \\ w-C_5H_{12} & & & \\ uso-C_5H_{12} & & & \\ uso-C_6H_{12} & & & \\ C_6H_{14} & & & \\ \end{array}$	0,1090 0,2540 0,4630 0,0659 0,0769 0,0122 0,0130 0,0060 1,0000	13,800 3,300 1,200 0,572 0,430 0,190 0,169 0,066	$\begin{array}{c} 0.0079\\ 0.0769\\ 0.3870\\ 0.1150\\ 0.1830\\ 0.0641\\ 0.07800\\ 0.09250\\ 1.0044\approx 1\end{array}$

Таблица 1.21

фазового равновесия k_i . Результаты расчета представлены в табл. 1.21. Искомая температура $T_c = 323$ К.

Температура низа десорбционной части рассчитывается методом постепенного приближения при помощи уравнения изотермы жидкой фазы, покидающей низ десорбера:

$$\sum x'_{mi}k'_i = 1$$

Значения х'т, см. в табл. 1.19

Методика определения температуры низа десорбера подобна методике определения температуры верха десорбера. В результате расчета, который здесь не приводится, получим $T_m = 400$ K.

Средняя температура в десорбере:

$$T_{a} = \frac{T_{c} + T_{m}}{2} = \frac{323 + 400}{2} = 361,5 \,\mathrm{K}$$

Расхождение с принятым в условиях разделения значением средней температуры в десорбционной части 366 К составляет примерно 5%.

7. Тепловой баланс абсорбера

Тепловой баланс абсорбера составляется с целью определения количества тепла Q_0 , которое надо отнять от циркулирующего аб-

сорбента для поддержания температуры низа абсорбера, принятой ранее равной 316 К.

Уравнение теплового баланса абсорбера имеет следующий вид:

$$Q_{v_f} + Q_{v_c} + Q_{L_a} = Q_{v_1} + Q_{l_b} + Q'_{L_a} + Q_o$$

где Q — количество тепла соответствующего потока, кВт. Нижний индекс соответствует наименованию потока на схеме (рис. 1.9) и в табл. 1.23.

Величины, входящие в это уравнение, приведены в табл. 1.23. Энтальпии потоков определены по графику [4].

Абсорбция компонентов из газового потока сопровождается выделением тепла Q_a , количественно равного теплоте растворения компонентов в абсорбенте. В технологических расчетах, если нет более точных данных, теплота растворения углеводородов принимается равной их теплоте конденсации. Нетрудно показать, что тепло абсорбции Q_a несколько больше того тепла, кото-

Рис. 1.9. Схема для расчета теплового баланса абсорбционной части фракционирующего абсорбера.

рое надо отвести из абсорбера для поддержания в нем желательной температуры.

Пользуясь графиком [16, с. 67], определяем теплоту конденсации отдельных углеводородов, входящих в состав газового потока при давлении π == 1,37 · 106 Па и сводим эти величины в табл. 1.22.

Таблица 1.22

Компоненты	CH4	C ₂ H ₆	C ₃ H ₈	u30-C,H10	н-С ₄ Н ₁₀	<i>u30</i> -C5H12	<i>н</i> -С ₅ Н ₁₂	C ₆ H ₁ ,
Теплота конденсации, кДж/кг	419	362	295	244	257	232	232	204

Таблица 1.23

Обозначение потоков (рис. 1.9)	Количе- ство, кмоль/ч	Молеку- лярная масса	Количе- ство, кг/ч	Темпера- тура, К	Энталь- пия, кДж/кг	Обозна чение теплового потока	Количе- ство тепла, кВт
Приход							
$\sum v_{fi} \ldots$	683,60	30,60	20 920	303 (принято)	503	Q _{vi}	2 950
$\sum v_{ci} \ldots \ldots$	592,77	40,34	23 91 2	323	548	Q_{v}	3 650
$\overline{L_a}$	609,0	120,00	73 080	303 (принято)	315	$Q_{L_a}^{c}$	6 4 1 0
Сумма	1885,37	-	117912	-	—	_	13 010
Расход							
L_a	609,0	120,00	73 080	316	348	$Q'_{L_{\alpha}}$	7 065
$\sum v_{1i} \ldots$	583,92	22,31	13 000	303	470	Q_{v_1}	1 700
$\sum l_{bi}$	692,50	45,97	31 835	316	227	$Q_{l_{h}}$	2 025
Всего		-	-			Ū	10 790
llo разности с приходом	_		_	_	_	Q	2 220
Сумма	1885,42		117 915	-	-	_	13 010

Средняя мольная теплота конденсации определяется по правилу аддитивности. Зная мольные доли x'_{bi} углеводородов (табл. 1.19), перешедших в раствор, и их теплоты конденсации r_i (табл. 1.22), найдем среднюю мольную теплоту конденсации по формуле:

$$r'_{mi} = \sum_{1}^{n} r_i M_i x'_{bi} =$$

=419.16.0,0443 + 362.30.0,1409 + 295.44.0,524 + 244.58.0,0944 + +257.58.0,1347 + 232.72.0,0245 + 232.72.0,0288+204.86.0,0094 = = 13.032 кДж/кмоль Количество тепла, выделяющегося при абсорбции:

$$Q_a = r'_m \sum l_{bi} = 13\ 0.32 \cdot 692, 5 = 9 \cdot 10^6 \ \kappa \Pi ж/ч = 2500 \ \kappa BT$$

Как видно из табл. 1.23, количество тепла, которое надо отвести от абсорбента:

$$Q_0 = 13\,010 - 10\,790 = 2220 \text{ kBr}$$

Это количество тепла, как было сказано выше, несколько ниже тепла абсорбции.

8. Тепловой баланс десорбера

Количество тепла $Q_{\rm R}$, которое подается в низ десорбера для отгона от абсорбента легких углеводородов, поглощенных им в абсорбере (главным образом метана и эта-

абсорбере (главным образом метана и этана), определяется из уравнения теплового баланса десорбера.

В нашем случае уравнение запишется так:

$$Q_{l_{c}} + Q_{L_{a}} + Q_{\pi} = Q_{v_{c}} + Q_{l_{m}} + Q'_{L_{a}}$$

где Q — количество тепла соответствующего потока, кВт. Нижний индекс соответствует обозначению потока на схеме (рис. 1.10) и в табл. 1.24.

Величины, входящие в это уравнение, приведены в табл. 1.24.

Из табл. 1.24 следует:

$$Q_{\pi} = 20\,308 - 4160 - 7065 = 9083 \text{ kBr}$$

Тепло $Q_{\pi} = 9083$ кВт вносится в десорбер парами, состоящими главным образом из пропана и бутана. Эти пары выделяются из нижнего продукта десорбера, при его частичном испарении $(T_m = 400 \text{ K})$ в кипятильнике.

Примем, что средняя теплота испарения пропана и бутана r = 276 кДж/кг (табл. 1.22), и найдем количество паров:

$$V_{\rm m} = \frac{Q_{\rm m}}{r} = \frac{9083 \cdot 3600}{276} = 11\,800\,\,{\rm kr/m}$$

Рис. 1.10. Схема для расчета теплового баланса десорбционной части фракционирующего абсорбера.

Таблица 1.24

Обозначение потоков (рис. 1.10)	Количе- ство, кмоль/ч	Молеку- лярная масса	Количе ство, кг/ч	Темпе- ратура, Қ	Энталь- пия, кДж/кг	Обозна- чения теплового потока	Количе- ство тепла, кВт
Приход							
$\sum l_{ci}$	1268,6	49,59	62 910	316	238	Q_{i}	4 160
L_a	609,0	120,00	73 080	316	348	$Q_{L_{a}}^{c}$	7 065
По разности с расходом	<u> </u>	_	_				0 083
Сумма	1877,6	_	135 990	-	_	Фд —	20 308
Расход							
$\sum v_{ci} \ldots \ldots$	592,77	40,34	23 912	323	548	Q_{n}	3 640
$\sum l_{mi} \ldots \ldots$	675,83	58,1	39 000	400	485	$Q_{I}^{\circ c}$	5 260
<i>L</i> _a	609,0	120,00	73 080	400	565	$Q_{L_2}^m$	11 408
Сумма	1877,6		135 992	-	-	_	20 308

9. Число практических тарелок фракционирующего абсорбера

Число практических тарелок в абсорбционной части определяется по формуле:

$$N_a^p = \frac{N_a}{\eta_a}$$

где N_a — число теоретических тарелок; η_a — к. п. д. практической тарелки абсорбера.

Примем для абсорбера контактные тарелки клапанного типа [17, с. 41].

К. п. д. такой тарелки η_а = 0,5 [3, с. 630-633] и

$$N_{a}^{p} = \frac{10}{0.5} = 20$$

Число практических тарелок в десорбционной части определяем из выражения:

$$N_{\pi}^{\mathrm{p}} = \frac{N_{\pi}}{\eta_{\pi}}$$

где N_д — число теоретических тарелок в десорбере; η_д — к. п. д. тарелки.

Десорбер относительно более нагружен по жидкости, чем абсорбер. Здесь более устойчиво будут работать тарелки из S-образных элементов [18, с. 100], которые мы и будем устанавливать.

Подобный вариант, когда в одном и том же аппарате применяют тарелки различных конструкций, объясняется стремлением

64

интенсифицировать работу тарелок во всех сечениях колонны. Принимаем к. п. д. тарелок десорбера $\eta_{\pi} = 0,5$ [3, с. 630—633]. Тогда

$$N_{\mu}^{\rm p} = \frac{10}{0.5} = 20$$

10. Определение точек отвода абсорбента для промежуточного охлаждения его

Избыточное тепло Q_0 , выделяемое в процессе абсорбции, расходуется на нагрев абсорбента и растворенных в нем углеводородов. Если это тепло не будет отводиться, то температура в низу абсорбера T_{κ} окажется выше принятой $T_a = 316$ К. Ее можно определить из уравнения теплового баланса:

$$Q_{o} = (L_{a} + \sum l_{bi}) M_{x} (q_{T_{K}}^{*} - q_{316}^{*})$$

где M_x — средняя молекулярная масса насыщенного абсорбента, покидающего абсорбционную часть (из табл. 1.20); $q_{T_{\kappa}}^{*}$ — энтальпия насыщенного абсорбента при искомой температуре T_{κ} , кДж/кг; q_{316}^{*} — то же при температуре $T_a = 316$ К.

Тогда

$$q_{T_{\rm K}}^{\rm m} = q_{316}^{\rm m} + \frac{Q_{\rm o}}{\left(L_{\rm a} + \sum l_{\rm b}\right)M_{\rm x}} = 293 + \frac{2220 \cdot 3600}{(609 + 692,5) \cdot 82,1} = 368 \text{ km/m}$$

По графику [4, с. 10] найдем: T_к = 348 К.

Тепло Q₀ отводится за счет промежуточного охлаждения абсорбента.

Абсорбент необходимо выводить с той очередной *i*-й, считая сверху, тарелки, на которой его температура T_i станет равной или несколько большей принятой ранее максимальной температуры абсорбции $T_a = 316$ К. Охлажденный от температуры T_i до его начальной температуры $T_{\rm H} = 303$ К абсорбент возвращается на (i+1)-ю тарелку и направляется на повторное охлаждение при новом предельном повышении температуры абсорбента. Очевидно, последней ступенью охлаждения должна считаться та, после которой абсорбент, стекающей с нижней, в нашем случае — двадцатой, тарелки абсорбера будет иметь температуру $T_a = 316$ К.

Осуществляемое таким образом ступенчатое охлаждение абсорбента позволяет поддерживать по высоте абсорбера среднюю температуру, близкую к средней температуре абсорбции, равной $\frac{T_a + T_u}{2}$.

Решение поставленной задачи возможно в том случае, если известна закономерность изменения температуры по высоте абсорбера. Однако такая закономерность не установлена из-за отсутствия надежных данных, позволяющих определить степень извлечения отдельных компонентов газовой смеси на каждой контактной ступени абсорбера. Поэтому считаем, что при переходе газа от тарелки к тарелке снизу вверх количество его уменьшается на одну и ту же величину, характеризуемую коэффициентом сокращения количества газового потока.

Из практики известно, что температура газа по высоте абсорбера изменяется незначительно. Поэтому примем температуру газа в абсорбере постоянной и равной 303 К.

Приступая к расчету промежуточного охлаждения абсорбента, нужно знать:

1) коэффициент сокращения количества газа по высоте абсорбера при переходе от тарелки к тарелке;

2) число молей абсорбента, стекающего с *i*-й на (*i* + 1)-ю тарелку;

3) среднюю молекулярную массу абсорбента на любой *i*-й тарелке;

4) температуру на любой *i*-й тарелке.

Ниже последовательно рассматривается определение этих величин.

а. Коэффициент сокращения количества газа по высоте абсорбера.

Предполагая, что коэффициент сокращения количества газа при переходе от тарелки к тарелке остается постоянным, по формуле [5, с. 239] найдем:

$$\left(\frac{\sum v_1}{\sum v_b}\right)^{1/N_a^{\mathrm{p}}} = \frac{v_i}{v_{i+1}}$$

где $\left(\frac{\sum v_1}{\sum v_b}\right)^{1/N_a^p} = \Gamma_c$ — коэффициент сокращения количества газо-

вого потока при переходе от тарелки к тарелке; v_i , v_{i+1} — количества газа, прошедшего (i + 1)-ю тарелку и поступившего под *i*-ю тарелку соответственно.

Получим

$$\Gamma_{\rm c} = \left(\frac{\sum v_1}{\sum v_b}\right)^{1/N_{\rm a}^{\rm p}} = \left(\frac{583,92}{1276,42}\right)^{1/20} = 0,962$$

(числовые значения величин см. табл. 1.18).

б. Количество насыщаемого абсорбента, стекающего с i-й на (i + 1)-ю тарелку, рассчитывается, согласно материальному балансу, по выражению:

$$l_i = L_a + (v_{i+1} - v_1)$$

где l_i — количество жидкости, стекающей с *i*-й и поступающей на (i+1)-ю тарелку, кмоль/ч.

В табл. 1.25 приведен расчет количества жидкости, стекающей с тарелок абсорбера. Например, количество жидкости, стекающей с первой сверху тарелки абсорбера, равно:

$$l_1 = L_a + (v_2 - v_1) = 609 + (606,98 - 583,92) = 632,06$$
 кмоль/ч

Таблица 1.25

Номера ∗арелок	$v_{i+1} = \frac{v_1}{\Gamma_c}$	$v_{i+1} - v_1$	$l_i = L_a + (v_{i+1} - v_1)$
l	583,92	23,06	632,06
2	606,98	47,03	656,03
3	630,95	71,95	680,95
4	655,87	97,85	706,85
5	681,77	124,78	733,78
6	708,70	152,77	761,77
7	736,69	181,87	790,87
8	765,79	212,11	821,11
9	796,03	243,55	852,55
10	827,47	$\begin{array}{c} 276,23\\ 310,20\\ 345,51\\ 382,22\\ 420,41\\ 460,08\\ 501,31\\ 544,17\\ 589,83\\ 636,18\\ 692,50\\ \end{array}$	885,23
11	860,15		919,20
12	894,12		954,51
13	929,43		991,22
14	966,14		1029,41
15	1004,33		1069,08
16	1044,00		1110,31
17	1085,23		1153,17
18	1128,09		1198,83
19	1173,75		1245,28
20	1220.1		1301,50

в. Изменение средней молекулярной массы насыщаемого абсорбента по высоте абсорбционной части.

По мере движения абсорбента в низ абсорбера происходит насыщение его поглощаемыми легкими углеводородами и уменьшение средней молекулярной массы всей системы. Зная количество поглощенных углеводородов и считая (для упрощения расчетов), что их средняя молекулярная масса по высоте абсорбера изменяется незначительно, можно вычислить по правилу аддитивности среднюю молекулярную массу насыщенного абсорбента на каждой из всех двадцати тарелок по выражению:

$$M_{ll} = M_{a} x'_{a} + M_{n, y} (1 - x'_{a})$$

где M_{li} — средняя молекулярная масса насыщенного абсорбента на *i*-й тарелке; M_a — средняя молекулярная масса тощего абсорбента; $M_{n,y}$ — средняя молекулярная масса поглощенных углеводородов (из табл. 1.20); x'_a — мольная доля тощего абсорбента L_a в насыщенном ($l_{bi} + L_a$), стекающем с *i*-й тарелки.

Например, средняя молекулярная масса насыщенного абсорбента, стекающего с первой сверху тарелки абсорбера, равна:

$$M_{l1} = 120 \frac{609}{632,06} + 45,97 \frac{632,06 - 609}{632,06} = 117,08$$

То же — со второй тарелки:

$$M_{I_2} = 120 \frac{609}{656,03} + 45,97 \frac{656,03 - 609}{656,03} = 114,6$$

Аналогично рассчитаны средние молекулярные массы насыщенного абсорбента на всех последующих тарелках абсорбера. Результаты расчета представлены графически (кривая 1 на рис. 1.11).

г. Температура на тарелках абсорбера.

На основе предположения, что изменение температуры по высоте абсорбера пропорционально сокращению газового потока при переходе от тарелки к тарелке, для определения температуры абсорбента на любой *i*-й тарелке используем соотношение [5, с. 239]:

Рис. 1.11. График для определения

промежуточных охлаждений абсорбента

$$\frac{T_{\kappa} - T_{i}}{T_{\kappa} - T_{\mu}} = \frac{\sum v_{b} - v_{i+1}}{\sum v_{b} - \sum v_{i}}$$

откуда

$$T_i = T_{\mathrm{K}} - (T_{\mathrm{K}} - T_{\mathrm{H}}) \frac{\sum v_b - v_{i+1}}{\sum v_b - \sum v_1}$$

где T_i — искомая температура на *i*-й тарелке абсорбера, К; $T_{\rm H}$ температура абсорбента на входе в абсорбер, К; $T_{\rm R}$ — температура абсорбента на выходе из абсорбера при отсутствии промежуточного охлаждения, К.

Таким образом

$$T_{i} = 348 -$$

$$- (348 - 303) \frac{1276,42 - v_{i+1}}{1276,42 - 583,92} =$$

$$= 348 - 0,065 (1276,42 - v_{i+1})$$

Например, температура жидкости, поступающей на первую тарелку:

 $T_0 = 348 - 0,065 (1276,42 - 583,92) = 303 \text{ K}$

Температура жидкости на первой тарелке:

$$T_1 = 348 - 0,065 (1276,42 - 606,98) = 304,5 \text{ K}$$

Аналогично рассчитаны температуры на второй и последующих тарелках абсорбера и результаты расчета представлены кривой 2 на рис. 1.11. Как видно, на восьмой тарелке температура насыщенного абсорбента $T_8 = 316,8$ К.

Если абсорбент вывести при этой температуре и охладить до температуры $T'_8 = 303 K$, то количество тепла, снимаемого при этом в промежуточном холодильнике, можно определить по следующему уравнению теплового баланса:

$$Q_1 = l_8 M_{l8} \left(q_{316,8}^* - q_{303}^* \right)$$

мест

где Q_I — количество тепла, снимаемого при первом промежуточном охлаждении абсорбента, кДж/ч; l_8 — количество насыщенного абсорбента, выводимого с восьмой тарелки (табл. 1.25), кмоль/ч; M_{l8} — средняя молекулярная масса насыщаемого абсорбента на восьмой тарелке (по кривой l, рис. 1.11).

Получим:

 $Q_1 = 821, 11 \cdot 101 (340 - 296) = 3,64 \cdot 10^6 \text{ KJ} \text{K/H} = 1010 \text{ KBT}$

В результате охлаждения абсорбента температура в низу абсорбера понизится от $T_{\kappa} = 348$ К до T'_{κ} .

Определим энтальпию абсорбента при новой конечной температуре T'_{κ} по уравнению:

$$q_{T'_{\kappa}}^{\star} = q_{303}^{\star} + \frac{Q_0 - Q_1}{(L_a + \sum l_b)M_x} = 296 + \frac{8 \cdot 10^6 - 3.64 \cdot 10^6}{(609 + 692.5) \cdot 82.1} = 337 \text{ km/kr}$$

По графику [4, с. 10] найдем: $T'_{\kappa} = 335$ К. Эта температура превышает расчетную $T_a = 316$ К. Необходимо в какой-то точке снова охладить абсорбент. Для этого рассчитаем температуры абсорбента на девятой — двадцатой тарелках при T'_{κ} по уравнению:

$$T_{i} = T'_{\kappa} - (T'_{\kappa} - T_{\kappa}) \frac{\sum v_{b} - v_{i+1}}{\sum v_{b} - v_{i}} = 335 - (335 - 303) \frac{1276, 42 - v_{i+1}}{1276, 42 - 796, 03} = 335 - 0,0665 (1276, 42 - v_{i+1})$$

Например, новая температура жидкости на десятой тарелке: $T_{10} = 335 - 0,0665 (1276,42 - 860,15) = 307,3 \text{ K}$

Аналогично рассчитаны температуры на всех последующих тарелках абсорбера и результаты расчета представлены в виде кривой 3 на рис. 1.11.

Выведем абсорбент на второе промежуточное охлаждение с четырнадцатой тарелки при температуре $T_{14} = 317$ К и охладим его до температуры $T'_{14} = 303$ К.

Тогда

$$Q_{11} = l_{14}M_{l14}(q_{317}^{*} - q_{303}^{*}) = 1029,41 \cdot 89,5 (314 - 285) =$$

= 2,67 \cdot 10⁶ kДж/ч = 741 kBT
$$q_{T_{K}''}^{*} = q_{303}^{*} + \frac{Q_{0} - Q_{1} - Q_{11}}{(L_{a} + \sum l_{b})M_{x}} = \frac{8 \cdot 10^{6} - 3,64 \cdot 10^{6} - 2,67 \cdot 10^{6}}{(603 + 692,5) \cdot 82,4} = 300,7 \text{ kДж/kr}$$

По графику [4, с. 10] $T''_{\kappa} = 317$ К.

Новые температуры на пятнадцатой — двадцатой тарелках рассчитываются по уравнению:

$$T_{i} = T_{\kappa}'' - (T_{\kappa}'' - T_{H}) \frac{\sum v_{b} - v_{i+1}}{\sum v_{b} - v_{i}} =$$

 $= 317 - (317 - 303) \frac{1276,42 - v_{i+1}}{1276,42 - 1004,33} = 317 - 0,0515 (1276,42 - v_{i+1})$

Результаты расчета температур по этому уравнению на пятнадцатой — двадцатой тарелках абсорбера представлены в виде кривой 4 на рис. 1.11.

Полученная температура низа абсорбера мало отличается от ранее принятой $T_a = 316$ К. Следовательно, в нашем случае двухступенчатое охлаждение абсорбента позволяет поддерживать в низу абсорбера назначенную в начале расчета температуру.

Определения теплообменной поверхности промежуточных холодильников здесь не приводится. В качестве теплообменной поверхности в соответствующих межтарелочных отделениях абсорбера следует применить трубчатые провальные тарелки, которые одновременно будут играть роль добавочных абсорбционных тарелок.

11. Диаметры абсорбера и десорбера

Наиболее нагружено по газу сечение абсорбера под его нижней тарелкой. Диаметр абсорбера (в м) в этом сечении:

$$D_{\rm a} = \sqrt{\frac{4G_{\rm a}}{\pi u_{\rm a}}}$$

где G_a — количество газа, проходящее через рассчитываемое сечение, кг/ч; u_a — массовая скорость газов в сечении абсорбера под нижней тарелкой, кг/(м²·ч).

Величина G_а определяется выражением:

$$G_{a} = \sum v_{bi} M_{v} = 1276, 42 \cdot 35, 1 = 44\,802$$
 Kr/4

при этом M_y — средняя молекулярная масса газа (табл. 1.20).

Пропускная способность клапанных тарелок на 12—50% выше пропускной способности тарелок с круглыми колпачками. Примем увеличение пропускной способности клапанных тарелок по отношению к колпачковым равным 20%. Тогда скорость газов по уравнению Саудерса и Брауна определится уравнением:

$$u_{a} = 1,20 \cdot 0,305c \sqrt{\rho_{r} (\rho_{w} - \rho_{r})}$$

где с — постоянная, зависящая от расстояния между тарелками, — определяется по графику [6, с. 639] как для колпачковых тарелок

Расстояние между тарелками мм	Постоянная о
450	600
500	670
550	720
600	760
65 0	800
7 00	830

Таблица 1.26

или по табл. 1.26; ρ_{Γ} и $\rho_{\#}$ — соответственно плотности газов и жидкости в рабочих условиях низа абсорбера ($\pi = 1,37 \cdot 16^6$ Па, $T''_{K} = 317$ K), кг/м³.

Плотность газа:

$$\rho_{\Gamma} = \frac{M\pi \cdot 273}{22,4T''_{\kappa}\pi_{0}} = \frac{35,1\cdot 1,37\cdot 10^{6}\cdot 273}{22,4\cdot 317\cdot 0,1\cdot 10^{6}} = 19,1 \text{ Kr/M}^{3}$$

где $\pi_0 = 0, 1 \cdot 10^6 \, \Pi a$ — нормальное давление.

Плотность жидкости (насыщенного абсорбента) находим по формуле Крэга:

$$\rho_{288}^{288} = \frac{1,03M_x}{44,29+M_x} = \frac{1,03 \cdot 82,1}{44,29+82,1} = 0,670$$

где M_x — молекулярная масса насыщенного абсорбента, стекающего с двадцатой тарелки (табл. 1.20).

В пересчете на температуру $T''_{\kappa} = 317 K$:

$$\rho_{\pi} = 649,4 \text{ Kr/m}^3$$

Приняв расстояние между тарелками $h_{\tau} = 500$ мм, по табл. 1.26 определяем коэффициент c = 670.

Тогда

$$u_{a} = 1,20 \cdot 0,305 \cdot 670 \sqrt{19,1(649,4 - 19,1)} = 27000 \$$
кг/(м² · ч)
 $D_{a} = \sqrt{\frac{4 \cdot 44\ 802}{3,14 \cdot 27\ 000}} = 1,52 \$ м

Согласно нормальному ряду диаметров по ГОСТ 9617—61 принимаем диаметр абсорбера $D_a = 1,6$ м.

Диаметр десорбера, как и абсорбера, определяется по наиболее нагрум снному газами сечению. Количества газа в верхнем и нижнем сечении десорбера соответственно равны:

$$G^{\text{B}}_{\text{A}} = \sum v_{\text{c}i} M_b = 592,77 \cdot 40,34 = 23\ 912\ \text{kr/y}$$

 $G^{\text{B}}_{\text{A}} = V_{\text{A}} = 118\ 000\ \text{kr/y}$

Таким образом, диаметр рассчитываем по нижнему сечению десорбера:

$$D_{a} = \sqrt{\frac{4V_{a}}{\pi u_{a}}}$$

где $u_{\rm d}$ — массовая скорость газов в сечении под нижней тарелкой десорбера, кг/(м²·ч).

Пропускная способность выбранных нами тарелок на S-образных элементов равна пропускной способности тарелок с круглыми колпачками. Поэтому скорость газов определим по уравнению Саудерса и Брауна, записанному так:

$$u_{\rm g} = 0.305c \, \sqrt{\rho_{\rm r} \left(\rho_{\rm w} - \rho_{\rm r}\right)}$$

где $\rho_{\rm r}$ и $\rho_{\rm st}$ — соответственно плотность газа и жидкости в рабочих условиях низа десорбера ($\pi = 1,37 \cdot 10^6$ Па, $T_m = 400$ K), кг/м³.

По содержанию пропана и бутана в остатке десорбера (табл. 1.18) несколько упрощенно определяем среднюю молекулярную массу их смеси, подаваемой в низ десорбера:

$$M_{\rm r} = \frac{236,0}{477,2} \cdot 44 + \frac{241,2}{477,2} \cdot 58 = 51,3$$

Тогда

$$\rho_{\rm r} = \frac{M_{\rm r} \pi \cdot 273}{22.4 T_m \pi_3} = \frac{51.3 \cdot 1.37 \cdot 10^6 \cdot 273}{22.4 \cdot 400 \cdot 0.1 \cdot 10^6} = 21.8 \text{ Kr/m}^3$$

По формуле Крэга находим плотность жидкости, покидающей десорбер:

$$\rho_{288}^{288} = \frac{1.03M_x}{44.29 + M_x} = \frac{1.03 \cdot 88.14}{44.29 + 88.14} = 0.685$$

где M_x — молекулярная масса жидкости, покидающей десорбер (из табл. 1.20).

В пересчете на температуру $T_m = 400 \ K$ плотность $\rho_{\mathcal{H}} = 579 \ \mathrm{kr/M^3}$.

Приняв расстояние между тарелками $h_{\rm T} = 600$ мм по табл. 1.26, определяем коэффициент c = 760. Тогда

$$u_{\rm m} = 0.305 \cdot 760 \sqrt{21.8 (579 - 21.8)} = 25\,800 \,\text{kg/(m^2 \cdot q)}$$
$$D_{\rm m} = \sqrt{\frac{4 \cdot 118\,000}{3.14 \cdot 25\,800}} = 2.43 \,\text{m}$$

Согласно нормальному ряду диаметров по ГОСТ 9617—61, принимаем диаметр десорбера $D_{\pi} = 2,6$ м.

12. Высота аппарата

Полезная высота аппарата (рис. 1.12):

$$H_{\pi} = h_1 + h_2 + h_3 + h_4 + h_5$$

где h_1 — высота над верхней абсорбционной тарелкой, м; h_2 — высота, занятая тарелками абсорбе-

ра, м; h_3 — расстояние между нижней тарелкой абсорбера и верхней тарелкой десорбера, м; h_4 — высота, занятая тарелками десорбера, м; h_5 — высота нижней части десорбера, м.

Высоту над верхней абсорбционной тарелкой с учетом расположения отбойного устройства примем в три раза большей расстояния между тарелками в абсорбере:

$$h_1 = 3h_{\rm T} = 3 \cdot 0.5 = 1.5$$
 M

Высота, занятая абсорбционными тарелками:

$$h_2 = (N_a^p - 1) h_r = (20 - 1) \cdot 0,5 = 9,5 \text{ M}$$

Рис. 1.12. Схема для расчета рабочей высоты фракционирующего абсорбера.

Примем расстояние между нижней абсорбционной и верхней десорбционной тарелками равным $h_3 = 2$ м.

Высота, занятая десорбционными тарелками:

$$h_4 = (N_{\rm g}^{\rm p} - 1) h_{\rm t} = (20 - 1) \cdot 0.05 = 9.5 \text{ M}$$

Примем высоту нижней части десорбера $h_5 = 3,1$ м. Тогда

$$H_{\rm m} = 1,5 + 9,5 + 2 + 9,5 + 3,1 = 25,6$$
 M

Элементы конструктивного оформления клапанной тарелки и ее гидравлическое сопротивление

Диаметр контактной клапанной тарелки на 30 мм меньше внутреннего диаметра абсорбера. Тарелка располагается на опорном кольце. Клапанные элементы размещены по вершинам равностороннего треугольника, одно из оснований которого обязательно параллельно линии слива и приема жидкости (рис. 1.13).

Рис. 1.13. Схема клапанной тарелки.

Рис. 1.14. Схема клапанного элемента тарелки: 1-клапан; 2-скоба-ограничитель.

Принимаем шаг элементов в одном ряду 100 мм, между рядами 87 мм. Длина линии слива обычно составляет $(0,7+0,9)D_a$. В нашем случае диаметр абсорбера $D_a = 1600$ мм. Примем длину линии слива $L_D = 0.75D_a = 0.75 \cdot 1600 = 1200$ мм.

На такой тарелке можно разместить 144 клапанных элемента. Схема клапанного элемента с указанием размеров приведена на рис. 1.14. Высота сливной перегородки $h_{c\pi}$ (рис. 1.13), выполняемой в виде вертикальной пластины, составляет от 25 до 50 мм [3, с. 392]. Примем $h_{c,\pi} = 37$ мм. Гидравлическое сопротивление клапанной тарелки [20, с. 114]:

$$\Delta P = \Delta P_{\rm c} + \Delta P_{\sigma} + \Delta P_{\star}$$

где ΔP_c — перепад давления на сухой тарелке. Па: ΔP_{σ} — перепад давления, необходимый для преодоления сил поверхностного натяжения жидкости, Па; $\Delta P_{\#}$ — перепад давления, необходимый для преодоления сопротивления столба жидкости на тарелке. Па.

а. Перепад давления на сухой тарелке:

$$\Delta P_{\rm c} = \xi \frac{w_{\rm o}^2}{2} \rho_{\rm r}$$

Здесь ٤ — коэффициент местного сопротивления, определяемый опытным путем и в среднем для клапанных тарелок равный 2,5—3,5 (примем ξ = 3,0); pr — плотность газа в рабочих условиях низа абсорбера, кг/м³; w_o — скорость газа в отверстиях под клапанами, м/с:

$$w_{\rm o} = \frac{V_{\rm cek}}{f_{\rm o}N_{\rm o}}$$

где V_{сек} — секундный объем газов под нижней тарелкой абсорбера, м³/с; f₀ — сечение одного отверстия под клапаном, м²; N₀ — число отверстий (клапанов) на тарелке, равное 144.

Имеем:

$$V_{cek} = \frac{22.4v_{bl}T''_{\kappa}\pi_{0}}{3600 \cdot 273\pi} = \frac{22.4 \cdot 1276.42 \cdot 317 \cdot 0.1 \cdot 10^{6}}{3600 \cdot 273 \cdot 1.37 \cdot 10^{6}} = 0,658 \text{ m}^{3}/\text{c}$$
$$f_{0} = \frac{\pi d_{0}^{2}}{4} = \frac{3.14 \cdot 0.035^{2}}{4} = 0,000962 \text{ m}^{2}$$

Величина *d*_o == 0,035 м — диаметр отверстия под клапаном (рис. 1.14).

Тогда

$$w_{\rm o} = \frac{0,658}{0,000962 \cdot 144} = 4,75$$
 m/c

Плотность газа $\rho_{\rm r} = 19,1 \ {\rm kr/m^3}.$

Подставляя найденные величины в формулу перепада давления на сухой тарелке, получим:

$$\Delta P_{\rm c} = 3.0 \frac{4.75^2}{2} \cdot 19.1 = 646 \ \Pi a$$

б. Перепад давления, необходимый для определения сил поверхностного натяжения жидкости:

$$\Delta P_{\sigma} = \frac{4\sigma}{d_{\vartheta}}$$

где $\sigma = 0.015 \text{ H/M}$ — поверхностное натяжение жидкости [21, с. 44]; d. — эквивалентный (гидравлический) диаметр щели под кла-74

паном, м. Для клапанных тарелок $d_{\theta} = 2a = 0,012$ м (рис. 1.14), следовательно

$$\Delta P_{\sigma} = \frac{4 \cdot 0.015}{0.012} = 5 \ \Pi a$$

в. Перепад давления, необходимый для преодоления сопротивления столба жидкости на тарелке, определяется по эмпирическому уравнению:

$$\Delta P_{\rm sc} = 9.81 k h_{\rm cs} + 28 \, \sqrt[8]{K \left(\frac{Q}{L_D}\right)^2}$$

Здесь К — коэффициент, равный для клапанных тарелок 0,5; Q — часовой объем жидкости, стекающей с нижней (двадцатой) тарелки абсорбера:

$$Q = \frac{l_{20}M_x}{\rho_{\rm sc}} = \frac{1301,5 \cdot 82,1}{649,4} = 164,5 \text{ m}^{3/4}$$

где $l_{20} = 1301,5$ кмоль/ч — количество насыщенного абсорбента, покидающего двадцатую тарелку абсорбера (табл. 1.25); $M_x = 82,1$ молекулярная масса насыщенного абсорбента (табл. 1.20); $\rho_{\rm H} = 649,4$ кг/м³ — плотность насыщенного абсорбента (см. стр. 60 и 71).

Поэтому

$$\Delta P_{\rm sc} = 9,81 \cdot 0,5 \cdot 0,037 + 28 \sqrt[8]{0,5 \left(\frac{164,5}{1,2}\right)^2} = 591 \,\Pi {\rm a}$$

Тогда

$$\Delta P = 646 + 5 + 591 = 1242 \Pi a$$

Рассмотрим условие открытия клапана на орошаемой жидкостью тарелке. Он откроется при скорости газа (в м/с), определяемой по формуле [20, с. 114]:

$$\omega_0' = \sqrt[3]{\frac{2g\left(G_{\rm K} - G_{\rm K}\right)}{f\rho_{\rm r}}}$$

где G_{κ} — масса стального клапана, кг; G_{m} — масса цилиндрического столбика жидкости над клапаном, кг; f — площадь клапана, на которую действует давление газа, м²; $\rho_{\Gamma} = 19,1$ кг/м³ — плотность газа в рабочих условиях низа абсорбера.

Масса стального клапана (см. рис. 1.14) подсчитывается по формуле:

$$G_{\kappa} = \frac{\pi d_{\kappa}^2}{4} \, \delta \rho_{\rm ct}$$

где $d_{\kappa} = 0,065$ м — диаметр клапана; $\delta = 0,001$ м — толщина клапана; $\rho_{\rm CT} = 7800$ кг/м³ — плотность стального материала клапана. Тогда

огда

$$G_{\rm k} = \frac{3,14 \cdot 0,065^2}{4} \cdot 0,001 \cdot 7800 = 0,026 \ {\rm kr}$$

75

Массу цилиндрического столбика жидкости над клапаном можно подсчитать по формуле:

$$G_{\mathrm{sc}} = \frac{\pi d_{\mathrm{sc}}^2}{4} \left(h_{\mathrm{cs}} + \Delta h \right) \rho_{\mathrm{sc}}$$

где $h_{c\pi} - 37$ мм — высота сливной перегородки (рис. 1.13); Δh — высота подпора жидкости над сливной перегородкой, м; $\rho_{\rm ж} - 649.4$ кг/м³ — плотность насыщенного абсорбента.

Высоту подпора жидкости над сливной перегородкой определим по формуле [22, с. 34]:

$$\Delta h = \sqrt[3]{\left(\frac{q}{6400}\right)^2}$$

где q — количество жидкости, приходящееся на единицу длины слива в l ч

$$q = \frac{Q}{L_D} = \frac{154.5}{1.2} = 137 \text{ m}^3/(\text{m} \cdot \text{y})$$

Поэтому

$$\Delta h = \sqrt[3]{\left(\frac{137}{6400}\right)^2} = 0,076 \text{ M}$$

И

$$G_{\rm sc} = \frac{3,14 \cdot 0,065^2}{4} (0,037 + 0,076) \cdot 649,4 = 0,244 \text{ km}$$

Для упрощения принимаем, что сферическая поверхность клапана (рис. 1.14), на которую действует давление газа, равна площади круга, диаметром 0,045 м, поэтому

$$f = \frac{3,14 \cdot 0,045}{4} = 0,00159 \text{ m}^2$$

Тогда

$$w'_{\rm o} = \sqrt{\frac{2 \cdot 9,81 (0,026 + 0,244)}{0,00159 \cdot 19,1}} = 13,2$$
 M/c

Такую скорость должен иметь поток газа в отверстии под клапаном, чтобы поднять клапан и цилиндрический столбик жидкости над ним. После поднятия клапана в отверстии под ним установится скорость газа $w_0 = 4,75$ м/с.

14. Гидравлическое сопротивление тарелки из S-образных элементов

Определим гидравлическое сопротивление верхней тарелки десорбера. Конструкция ее соответствует нормали ВНИИНефтемаша Н939—61.

Уравнение для определения гидравлического сопротивления тарелки из S-образных элементов имеет вид [23, с. 38]:

$$\Delta P = \Delta P_{\rm c} + \Delta P_{\sigma} + \Delta P_{\rm *}$$

где $\Delta P_{\rm c}$ — перепад давления на сухой тарелке, Па; $\Delta P_{\rm \sigma}$ — перепад давления, необходимый для преодоления сил поверхностного натя-

жения и сил трения, Πa ; ΔP_{π} — перепад давления, необходимый для преодоления сопротивления столба жидкости высотой, равной глубине погружения прорезей S-образных элементов в жидкость, Πa .

а. Перепад давления на сухой тарелке:

$$\Delta P_{\rm c} = \xi \frac{w_{\rm o}^2}{2} \rho_{\rm r}$$

где ξ — коэффициент сопротивления сухой тарелки (для тарелок из S-образных элементов $\xi = 20$); w_0 — скорость газа в патрубках, м/с; ρ_r — плотность газа под верхней тарелкой в рабочих условиях ($\pi = 1,37 \cdot 10^6 \text{ Па}, T = 331 \text{ K}$ — принята), кг/м³.

Скорость газа (в м/с):

$$w_{o} = \frac{v_{cek}}{f_{o}}$$

где v_{сек} — секундный объем газа в сечении под верхней десорбционной тарелкой, м³/с; f_o — площадь для прохода газов (живое сечение тарелки); по нормали Н939—61 выбираем f_o = 0,585 м².

Количество газа в сечении под верхней тарелкой примем равным секундному объему газа над верхней тарелкой. Зная количество киломолей газа, покидающего верхнюю тарелку (из табл. 1.18 $\sum v_{cl} = 592,77$ кмоль/ч), и температуру под верхней тарелкой T = 331 K, найдем:

$$v_{\rm cek} = \frac{22.4 \sum v_{\rm cl} T \pi_0}{3600 \cdot 273 \pi} = \frac{22.4 \cdot 592.77 \cdot 331 \cdot 0.1 \cdot 10^6}{3600 \cdot 273 \cdot 1.37 \cdot 10^6} = 0.318 \,\,{\rm m}^3/{\rm c}$$

Тогда

$$w_0 = \frac{0.318}{0.585} = 0.544$$
 M/c

Плотность газа под верхней тарелкой при $M_r = 40,34$ (табл. 1.20) найдем по формуле:

$$\rho_{\rm r} = \frac{M_{\rm r} \pi \cdot 273}{22,47\pi_0} = \frac{40.34 \cdot 1.37 \cdot 10^6 \cdot 273}{22,4 \cdot 331 \cdot 0.1 \cdot 10^6} = 21 \ {\rm kr/m^3}$$

После подстановки числовых значений величин получим:

$$\Delta P_{\rm c} = 20 \frac{0.544^2}{2} \cdot 21 = 61 \ \Pi a$$

6. Перепад давления, необходимый для преодоления сил поверхностного натяжения, находим по эмпирической формуле:

$$\Delta P_{\sigma} = 1,11 w_{o}^{2,4} \rho_{r}^{1,2} = 1,11 \cdot 0,544^{2,4} \cdot 21^{1,2} = 9,75 \ \Pi a$$

в. Перепад давления, необходимый для преодоления сопротивления столба жидкости:

$$\Delta P_{\mathbf{x}} = (h + \Delta h) \rho_{\mathbf{x}} g$$

77

где h — глубина погружения прорезей S-образных элементов в жидкость, м (примем h = 0,027 м); Δh — высота подпора жидкости над сливной перегородкой (рис. 1.15), м; $\rho_{\mathfrak{R}}$ — плотность жидкости

Рис. 1.15. Схема тарелки из S-образных элементов.

в рабочих условиях на верхней тарелке десорбера ($T_c = 323$ K), кг/м³.

Высота подпора жидкости (в м) определяется по формуле:

$$\Delta h = \sqrt[3]{\left(\frac{q}{6400}\right)^2}$$

Здесь q — количество жидкости, приходящееся на единицу длины слива в 1 ч, $M^3/(M \cdot q)$:

$$q = \frac{\sum_{\substack{l \in I M_x \\ \rho_{x} L_D}} M_x}{\rho_{x} L_D}$$

где $\sum l_{ci}$ — количество жидкости, поступающей на верхнюю тарелку десорбера (из табл. 1.18), кмоль/ч; M_x — молекулярная масса этой жидкости (из табл. 1.20 $M_x = 49,59$); $\rho_{\rm H}$ — плотность жидкости в рабочих условиях на верхней тарелке, кг/м³; L_D —

1,93 м— длина сливной перегородки для тарелки диаметром 2,6 м по нормали Н939—61. Относительную плотность жидкости определяем по формуле Крэга:

$$\rho_{288}^{288} = \frac{1.03M_x}{44.29 + M_x} = \frac{1.03 \cdot 49.59}{44.29 + 49.59} = 0.545$$

В пересчете на температуру T = 323 К и в кг/м³ получим: $\rho_{\rm w} = 513$ кг/м³.

Поэтому

$$q = \frac{1268.6 \cdot 49.59}{513 \cdot 1.93} = 64 \text{ m}^3/(\text{m} \cdot \text{q})$$
$$\Delta h = \sqrt[3]{\left(\frac{64}{6400}\right)^2} = 0.047 \text{ m}$$
$$\Delta P_{\text{w}} = (0.027 + 0.047) \cdot 513 \cdot 9.81 = 372 \text{ }\Pi\text{a}$$

Сопротивление тарелки:

$$\Delta P = 61 + 9,75 + 372 \approx 443$$
 IIa

Расчет диаметров штуцеров фракционирующего абсорбера делается по обычным формулам гидравлики и здесь не приводится.

ЭКСТРАКЦИОННАЯ КОЛОННА

Рассчитать экстракционную колонну для разделения смеси ароматического углеводорода о-ксилола и парафинового углеводорода *н*-октана, используя в качестве растворителя диметилсульфоксид (ДМСО), при следующих исходных данных: производительность колонны по сырью $G = 25\,000$ кг/ч; кривая равновесия (рис. 1.16) [24]; состав сырья — о-ксилола $v_{\kappa} = 30$ объемн. % и н-октана $v_0 = 70$ объемн. %; содержание о-ксилола в рафинате $v_{\kappa R} = 5$ объемн. %; относительная плотность о-ксилола $\rho_{277}^{293} = 0,8668$ а н-октана $\rho_{277}^{293} = 0,6849$; температура процесса T = 313 К.

Экстракционная колонна предназначена для экстракции ароматических углеводородов из смеси с неароматическими углеводородами, входящими в состав катализатов ри-

Углеводородное питание G в экстрактор поступает в нижнюю часть, а растворитель S подается в верхнюю часть аппарата

Рис. 1.16. Диаграмма равновесия системы диметилсульфоксид — о-ксилол — н-октан при T = 313 К.

Рис. 1.17. Расчетная схема экстракционной колонны.

(рис. 1.17). Продуктами колонны являются уходящая сверху рафинатная фаза R и уходящая снизу экстрактная фаза E. На схеме экстракционной колонны рядом с массовым количеством каждого потока указано также его объемное количество V.

Для создания дополнительной движущей силы экстракции в колонне поддерживают определенный температурный градиент [25, с. 230]. Поэтому на верху колонны температура $T_{\rm B}$ выше температуры $T_{\rm H}$ в низу аппарата. Давление в колонне практически не оказывает влияния на процесс.

Для экстракционной колонны должны быть известны условия равновесия системы растворитель — ароматический углеводород — неароматический углеводород.

При данной температуре, отвечающей условиям равновесия системы, противсточная экстракция одним растворителем характеризуется следующими параметрами [25, с. 112]:

- а) числом теоретических ступеней контакта;
- б) относительным расходом растворителя;

в) составом фаз рафината R и экстракта E.

Эти переменные нельзя выбирать произвольно из-за существования между ними определенной зависимости. Можно выбрать любые два из параметров, тогда два других будут определены расчетом. Часто в качестве независимых переменных назначаются составы фаз R и E. Число ступеней контакта, необходимое для получения заданного состава этих фаз, и соответствующий расход растворителя определяются построением или расчетом.

Для определения числа ступеней контакта построением по известным методам [26] помимо кривых равновесия должны быть заданы линии сопряжения (ноды). Если по условиям равновесия систем растворитель — ароматический углеводород — неароматический углеводород в литературе [24, 27—33] имеются в настоящее время обширные сведения, то для линий сопряжения они весьма ограничены [27, 31, 34]. Расчет числа ступеней контакта в экстракционных колоннах методами построения вызывает в этой связи определенную трудность и поэтому часто его осуществляют по эмпирическим формулам [25].

При наличии достаточных сведений о фазовых равновесиях систем жидкость — жидкость удобно расчет материального баланса экстракционной колонны производить при помощи диаграмм равновесия, а число ступеней экстракции определять, пользуясь эмпирической формулой Альдерса [25].

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА ЭКСТРАКЦИОННОЙ КОЛОННЫ

1. По заданным производительности и составам сырья и рафинатной фазы на треугольной диаграмме определяют количество растворителя, экстрактного и рафинатного растворов, минимальное содержание экстрагируемого вещества в экстракте.

2. Составляют материальный баланс экстракционной колонны, при этом учитывают градиент температуры в аппарате. Проверяют правильность составления материального баланса колонны сопоставлением количеств экстрагируемого вещества в исходном растворе и в растворах, покидающих аппарат. Расчетом подтверждают минимальное содержание экстрагируемого вещества в экстракте.

3. Составляют тепловой баланс колонны. При этом, если в расчете принимают температуру верха колонны равной температуре, при которой заданы условия равновесия системы, то из теплового баланса определяют температуру подачи сырья в аппарат. Если в расчете принимают температуру низа колонны равной температуре равновесия системы, то из теплового баланса определяют температуру подачи растворителя в колонну.

4. Определяют число теоретических тарелок в колонне.

5. Определяют число практических тарелок в колонне. Предварительно задаются типом тарелок и величиной их к.п.д.

6. Определяют диаметр колонны. Для этого предварительно задаются числовым значением диаметра и подтверждают его расчетом расстояния между тарелками. При правильно подобранном диаметре колонны расчетное расстояние между тарелками должно находиться в рекомендуемых пределах. Расчет ведут по тарелке, на которой разность плотностей встречных потоков минимальна. При этом скорость потока в переливном патрубке (устройстве) тарелки сравнивается с предельным допустимым ее числовым значением, рассчитываемым по формуле Стокса.

7. Определяют высоту колонны.

8. Рассчитывают диаметры штуцеров, а затем принимают их по существующим нормалям.

PACHET

1. Материальный баланс колонны

Материальный баланс экстракции рассчитывается при помощи построений на диаграмме равновесия (см. рис. 1.18). Из точки S проведем касательную линию к кривой равновесия в точке Q. Точка $E_{\rm M}$ пересечения касательной линии со стороной треугольной диаграммы равновесия определяет максимальное содержание

Рис. 1.18. Схема к расчету материального баланса экстракции.

о-ксилола в экстракте, равное отрезку \overline{OE}_{M} или $v'_{KE} = 92,5$ объемн. %. Дальнейшим расчетом эту величину надо подтвердить.

На стороне OK треугольной диаграммы отметим точку G, координата которой соответствует отрезку \overline{OG} и равна содержанию о-ксилола в сырье $v_{\rm R} = 30$ объемн. %. Точки G и S соединим линией \overline{GS} . На стороне OK треугольной диаграммы отметим точку P, координата которой соответствует отрезку \overline{OP} и равна содержанию о-ксилола в рафинате $v_{\rm KR} = 5$ объемн. %. Точки P и Q соединим линией \overline{PQ} и получим точку пересечения M линий \overline{GS} и \overline{PQ} . Отношение величин отрезков \overline{GM} и \overline{MS} определяет объемную кратность подачи растворителя к исходному сырью:

$$\alpha = \frac{\overline{GM}}{\overline{MS}} = 1,41$$

Количество растворителя (в м³/ч) рассчитывается по формуле: $S_n = \alpha V_c$

где V_{c} — количество сырья, м³/ч.

Количество сырья (в м³/ч) равно:

$$V_{\rm c} = \frac{G}{\rho_{\rm c}}$$

где ρ_c — плотность сырья при температуре подачи его в аппарат T = 313 K, кг/м³.

Плотность сырья при температуре Т = 313 К найдем так:

$$\rho_{\rm c} = \rho_{\rm \kappa} v_{\rm \kappa} + \rho_{\rm o} v_{\rm o}$$

где ρ_{κ} и ρ_{o} — плотность α -ксилола и *н*-октана при температуре T = 313 K, $\kappa \Gamma/m^{3}$; v_{κ} и v_{o} — содержание *о*-ксилола и *н*-октана в сырье, объемн. доли.

Опустив подробности вычисления величин ρκ и ρο, имеем:

$$\rho_c = 866.8 \cdot 0.3 + 684.9 \cdot 0.7 = 739 \text{ Kr/m}^3$$

Тогда

$$V_{\rm c} = \frac{25000}{739} = 33,8 \text{ m}^3/\text{y}$$
$$S_{\rm p} = 1,41 \cdot 33,8 = 47,65 \text{ m}^3/\text{y}$$

Отношение величин отрезков \overline{PM} и \overline{MQ} определяет отношение количеств конечных фаз. Оно равно:

$$\beta = \frac{\overline{PM}}{\overline{MQ}} = 2,32$$

Количество фазы экстракта (в м³/ч) рассчитывается по формуле:

$$E_v = \frac{\beta F_v}{\beta + 1}$$

где *F*_v — суммарная загрузка сырья и растворителя в колонну, м³/ч. Величина загрузки колонны равна:

 $F_v = V_c + S_v = 33.8 + 47.65 = 81.45 \text{ M}^{3/4}$

При известной величине загрузки экстрактора, количество фазы экстракта будет равно:

$$E_v = \frac{2.32 \cdot 81.45}{2.32 + 1} = 56,95 \text{ M}^3/4$$

Количество фазы рафината (в м³/ч) найдем как разность между количеством загрузки аппарата и количеством фазы экстракта:

 $R_v = F_v - E_v = 81,45 - 56,95 = 24,5 \text{ m}^3/4$

Для расчета количеств растворителя S, рафинатного раствора R и экстрактного раствора E (в кг/ч) необходимо знать плотности этих потоков при соответствующей температуре.

Температуру подачи сырья в аппарат приняли равной температуре процесса T = 313 К. Для поддержания температурного градиента в колонне и создания дополнительной движущей силы экстракции примем температуру на верху колонны равной $T_{\rm B} = 318$ К, а температуру в низу колонны — равной $T_{\rm H} = T = 313$ К.

Количество растворителя (в кг/ч), если допустить, что его плотность не зависит от температуры и равна $\rho_S = 1101,4$ кг/м³ [35, с. 319], определяется так:

$$S = S_{n}\rho_{s} = 47,65 \cdot 1101,4 = 52500 \text{ Kr/y}$$

Количество рафинатного раствора (в кг/ч) вычисляется по формуле:

$$R = R_v \rho_R$$

где ок — плотность рафинатного раствора при T = 318 К, кг/м³. Плотность рафинатного раствора при указанной температуре

равна:

$$\rho_R = \rho_{\kappa} v_{\kappa R} + \rho_0 v_{0R}$$

где ρ_{κ} и ρ_0 — плотность *о*-ксилола и *н*-октана при $T_{\rm B} = 318$ К, кг/м³; $v_{\kappa R}$ и v_{0R} — содержание *о*-ксилола и *н*-октана в рафинатном растворе, объемн. доля.

Состав рафинатного и экстрактного растворов дан в табл. 1.27.

	Состав растворов			
Қомпоненты	фаза рафината (точка Р на рис. 1.18)	фаза экстракта (точка Q на рис. 1.18)		
	об. доли	об. доли		
о-Ксилол	0,05 0,95 — 1,00	0,1550 0,0114 0,8336 1,0000		

Таблица 1.27

Подставляя числовые значения величин в формулу для ρ_{R} , найдем:

 $\rho_R = 863, 5 \cdot 0, 05 + 680, 4 \cdot 0, 95 = 690$ Kr/m³

Тогда количество рафинатного раствора:

 $R = 24,5 \cdot 690 = 16920 \text{ KG/H}$

Количество экстрактного раствора найдем из материального баланса аппарата (см. табл. 1.28):

E = 77500 - 16920 = 60580 kg/y

Таблица 1.28

Поступает	Количество		Выводится	Количество	
в экстрактор (см. рис. 1.17)	м ³ /ч	кг/ч	из экстрактора (см. рис. 1.17)	м ³ /ч	кг/ч
Исходный раствор <i>G</i> Растворитель <i>S</i> Сумма	33,80 47,65 81,45	25 000 52 500 77 500	Рафинатный раствор <i>R</i> Экстрактный раствор <i>Ê</i> Сумма	24,5 56,95 81,45	16 920 60 580 77 500

Проверим правильность материального баланса по о-ксилолу. Для этого необходимо рассчитать в массовых долях состав исходного сырья, экстрактного и рафинатного растворов по формуле:

$$x_i = v_i \frac{\rho_{277i}^T}{\rho_{277\pi}^T}$$

где v_i — содержание компонента в потоке, объемн. доли; ρ_{277i}^T — относительная плотность компонентов потока при температуре T (см. табл. 1.29); ρ_{277n}^T — относительная плотность потока при температуре T.

Относительная плотность ρ_{277n}^{T} потоков дана в табл. 1.29. Расчет состава потоков в массовых долях сделан в табл. 1.30.

Потоки (см. рис. 1.17)	Температура потока, К	Относительная плотность потока $ ho_{277\pi}^{T}$
Исходный раствор	313	0,739
Рафинатный раствор	318	0,690
Экстрактный раствор	313	1,063

Таблица 1.29

Количество о-ксилола в исходном растворе:

 $G_{\rm m} = x_{\rm m}G = 0,352 \cdot 25\ 000 = 8790\ {\rm kg/m}$

Количество о-ксилола в рафинатном растворе:

$$R_{\rm k} = x_{\rm k} R = 0,0626 \cdot 16\,920 = 1060\,\,{\rm kr/y}$$

Количество о-ксилола в экстрактном растворе:

 $E_{\rm k} = x_{\rm k} E = 0,1266 \cdot 60580 = 7680 \, {\rm kg/m}$

Таблица 1.30

Потоки	Содержание компонентов v _i , объемн. доли	Относительная плотность р ^Т при температуре потока	Содержание компонентов $x_i = v_i \frac{\rho_{277i}^T}{\rho_{277i}^T}$, масс. доли
Исходный раствор:			
<i>н-</i> октан	0,7 0,3	0,6849 0,8668	0,648 0,352
Сумма	1,0	-	1,000
Рафинатный раствор:			
н-октан о-ксилол	0,95 0,05	0,6804 0,8635	0,9374 0,0626
Сумма	1,00		1,0000
Экстрактный раствор:			
н-октан	0,0114	0,6849	0,0073
дмсо	0,1550 0,8336	0,8668 1,1014	0,1266 0,8661
Сумма	1,0000	-	1,0000

Количество о-ксилола, покидающего колонну:

$$R_{\kappa} + E_{\kappa} = 1060 + 7680 = 8740 \text{ kg/y}$$

Расхождение между величинами количеств о-ксилола на выходе из аппарата и на входе в аппарат составляет примерно 0,6%.

Относительное содержание о-ксилола в экстракте (без учета растворителя):

$$v_{\kappa E}'' = \frac{v_{\kappa E}}{v_{\kappa E} + v_{0E}} \cdot 100 = \frac{0,1550}{0,1550 + 0.0114} \cdot 100 = 93,1$$
 объемн. %

где $v_{\kappa E}$ и v_{oE} — содержание *о*-ксилола и *н*-октана в экстрактном растворе соответственно (см. табл. 1.27), объемн. доли.

Расхождение между значениями величин $v'_{\kappa E}$ и $v'_{\kappa E}$ составляет 0,65% и указывает на достаточно высокую точность расчета материального баланса экстракции.

2. Тепловой баланс колонны

В нашем случае тепловой баланс экстрактора составляется для определения температуры, при которой следует подавать в аппарат растворитель, чтобы поддерживать температуру на верху его $T_{\rm B} = 318$ K.

Составление теплового баланса является простой задачей и поэтому расчет здесь не приводим. Температура, при которой растворитель поступает в аппарат, равна 319 К.

3. Число теоретических и практических тарелок в колонне

Число теоретических тарелок при противоточной экстракции одним растворителем можно рассчитать по формуле Альдерса [25, с. 122]:

$$\varphi = \frac{e-1}{e^{n+1}-1}$$

где ф — неэкстрагированная доля о-ксилола; є — коэффициент экстракции; n — число теоретических тарелок в аппарате.

Неэкстрагированная доля о-ксилола равна отношению его количества в фазе рафината к количеству в сырье:

$$\varphi = \frac{v_{\kappa R} R_v}{v_{\kappa} V_c} = \frac{0.05 \cdot 24.5}{0.30 \cdot 33.8} = 0.1207$$

Коэффициент экстракции є, объемы фаз экстракта E_v и рафината R_v связаны следующим соотношением [25, с. 91]:

$$\mathbf{e} = \kappa \frac{E_v}{R_v}$$

в котором к — коэффициент распределения о-ксилола, выраженный в нашем случае в объемных единицах.

Величина коэффициента распределения экстрагируемого компонента между фазами экстракта и рафината определяется экспериментально. В нашем случае k = 0,47 [24]. Тогда

$$\varepsilon = 0,47 \frac{56.95}{24.5} = 1,09$$

Подставив числовые значения величин в формулу Альдерса, получим:

$$0,1207 = \frac{1.09 - 1}{1.09^{n+1} - 1}$$

откуда n = 5,4.

Из всех видов колонных аппаратов наиболее перспективными для многотоннажной экстракции являются экстракционные колонны с ситчатыми (перфорированными) тарелками [36]. К. п. д. ситчатых тарелок в экстракционных колоннах колеблется в пределах от 0,2 до 0,45 [26, с. 260]. Примем к. п. д. тарелки $\eta_{\rm T} = 0,3$. Тогда число практических тарелок в колонне:

$$N_{\rm p} = \frac{n}{\eta_{\rm r}} = \frac{5.4}{0.3} = 18$$

4. Днаметр колонны

Диаметр экстракционной колонны и расстояние между ее тарелками взаимосвязаны. Расстояние (в м) между ситчатыми тарелками при струйном режиме их работы рекомендуется принимать равным [36]:

$$h_{\rm T} = h_{\rm c} + 0.2$$

где $h_{\rm c}$ — высота слоя диспергируемой жидкости, скопляющейся на тарелке, м.

Диаметр колонны нужно подобрать так, чтобы расстояние между тарелками находилось в пределах 0,25—0,6 м.

Так как в аппарат поступает растворителя больше, чем сырья, то диспергированной фазой является тяжелая, а сплошной — легкая (сырье).

Экстрактор рассчитывается по тарелке, на которой разность плотностей минимальна [36]. В нашем случае минимальная разность плотностей будет на нижней тарелке. Она равна:

$$\Delta \rho = \rho_E - \rho_c = 1063 - 739 = 324 \text{ Kr/m}^3$$

При этом плотность фазы экстракта в низу колонны (см. табл. 1.28):

$$\rho_E = \frac{60580}{56,95} = 1063 \text{ Kg/m}^3$$

Высота слоя диспергируемой жидкости, скопляющейся на тарелке (см. рис. 1.19):

$$h_{\rm c} = \Delta h_1 + \Delta h_2 + \Delta h_3$$

где Δh_1 — высота слоя диспергируемой фазы, необходимая для преодоления сопротивлений потоку диспергированной фазы в отверстиях перфорированной тарелки, м; Δh_2 — высота слоя диспергируемой фазы, необходимая для создания скорости сплошной фазы в переливном патрубке тарелки, м; Δh_3 — высота слоя диспергируемой фазы, необходимая для

Рис. 1.19. Схема к расчету расстояния между тарелками:

1-диспергированная среда; 2-сплошная среда.

преодоления сопротивлений при протекании сплошной фазы в межтарелочном отделении, м.

Величина Δh_1 рассчитывается по формуле [26, с. 341]:

$$\Delta h_1 = \frac{\rho_{\pi}}{\Delta \rho} \cdot \frac{(1-\psi^2) w_0^2}{2 \gamma c_0^2}$$

где ρ_д — плотность диспергированной фазы, равная для нижней тарелки плотности ρ_Е экстрактного раствора, кг/м³;

$$\psi = \frac{f_o}{F_\kappa} = \frac{1}{100} \frac{1}{$$

 w_o — скорость диспергированной фазы в отверстиях тарелки, м/с; g — ускорение силы тяжести, м/с²; $c_o \approx 0.7$ — коэффициент сужения. Ситчатые тарелки (рис. 1.20), применяемые в экстракционных колоннах, мало отличаются от ситчатых тарелок, применяемых в ректификационных колоннах. Диаметр отверстий у ситчатых га-

Рис. 1.20. Схема ситчатой та-

релки (в плане):

S₃—площадь сечения переливного патрубка:

S1 — перфорированная

S2- неперфорированная

релок может быть в пределах 0,003— 0.008 м.

При расположении отверстий по треугольной сетке суммарная их доля по отношению ко всей площади тарелки рассчитывается по формуле:

$$f_{\rm n} = 0,9065 \left(\frac{d_{\rm o}}{t_{\rm o}}\right)^2$$

где d_0 — диаметр отверстий, м; t_0 — шаг отверстий, м.

Числовые значения величины f_{π} (в % ко всей площади тарелки) в зависимости от диаметра отверстий и их шага даны в табл. 1.31.

Долю $f_{\rm fn}$ площади отверстий тарелки найдем из табл. 1.31, приняв диаметр отверстий $d_{\rm o} = 0,005$ м и шаг между ними $t_{\rm o} = 0,015$ м. Она будет равна 10,1%.

Примем диаметр колонны $D_{\kappa} = 1,2$ м. Тогда площадь поперечного сечения колонны составит:

$$F_{\kappa} = S_1 + S_2 + S_3 = \frac{\pi D_{\kappa}^2}{4} = \frac{3.14 \cdot 1.2^2}{4} = 1.13 \text{ m}^2$$

Площади S₁, S₂ и S₃ см. на рис. 1.20.

плошадь;

площадь;

Таблица 1.31

Шаг f _о между отверстиями, м	Доля f _п площади отверстий в % ко всей площади тарелки при диаметре d _о отверстий в м					
	0,003	0,004	0,005	0,006	0,007	0,008
0,007 0,008 0,009 0,010 0,011 0,012 0,013 0,014 0,015	16,8 12,7 10,1 8,2 6,7 5,7 4,8 4,2 3,6	29.6 22,6 17.9 14,5 12,0 10,1 8,6 7,4 6,5	35,4 28,0 22,6 18,7 15,7 13,4 11,6 10,1	32,8 26,9 22,6 19,3 16,8 14,5	36,7 30,8 26,3 22,6 19,7	34,3 29,6 25,7

Величина отношения площади отверстия к площади поперечного сечения колонны при этом равна:

$$\psi = \frac{\pi d_o^2}{4F_{\rm K}} = \frac{3.14 \cdot 0.005^2}{4 \cdot 1.13} = 17.4 \cdot 10^{-6}$$

Суммарная площадь отверстий на тарелке:

$$F_{\rm o} = f_{\rm n} F_{\rm k} = 0,101 \cdot 1,13 = 0,114 \,{\rm M}^2$$

Количество отверстий на тарелке:

$$n_{\rm o} = \frac{4F_{\rm o}}{\pi d_{\rm o}^2} = \frac{4 \cdot 0.114}{3.14 \cdot 0.005^2} = 5800$$

Скорость диспергированной фазы в отверстиях тарелки рассчитывается по формуле:

$$w_{o} = w_{A} \frac{F_{\kappa}}{F_{o}}$$

где $w_{\rm d}$ — фиктивная скорость диспергированной фазы в полном сечении колонны, м/с.

Величина фиктивной скорости равна:

$$w_{\rm m} = \frac{E_v}{3600F_{\rm m}} = \frac{56,95}{3600 \cdot 1.13} = 0,014 \, {\rm m/c}$$

Тогда

$$w_{o} = \frac{0.014 \cdot 1.13}{0.114} = 0.139$$
 M/c

Скорость жидкости в отверстиях тарелок в промышленных экстракционных колоннах составляет 0,1—0,3 м/с [37, с. 362].

Подставив в формулу для Δh_1 числовые значения всличин, получим:

$$\Delta h_1 = \frac{1063}{324} \cdot \frac{(1 - 17.4 \cdot 10^{-6}) \cdot 0.139^2}{2 \cdot 9.81 \cdot 0.7^2} = 0,0066 \text{ m}$$

Величина Δh_2 рассчитывается по формуле [36]:

$$\Delta h_2 = \mathbf{\epsilon}_{\mathrm{i}} \frac{w_{\mathrm{n}}^2 \mathbf{\rho}_{\mathrm{c}}}{2g \, \Delta \mathbf{\rho}}$$

где ε_{π} — коэффициент гидравлического сопротивления переливного патрубка тарелки, равный 1,5—4,5; ω_{π} — скорость сплошной фазы в переливном патрубке, м/с; ρ_c — плотность сплошной фазы под нижней тарелкой экстрактора, принимаемая равной плотности сырья, кг/м³.

Скорость сплошной фазы в переливном патрубке:

$$w_{\rm n} = \frac{V_{\rm c}}{3600S_3}$$

при этом S₃ — площадь поперечного сечения переливного патрубка, м².

Величина S₃ равна:

$$S_3 = f_{\pi\pi} F_{\kappa}$$

где f_{пт} — доля площади переливного патрубка от площади поперечного сечения колонны.

Для промышленных экстракционных колонн величина $f_{n\tau}$ находится в пределах 0,013—0,036 [26, с. 343]. Примем $f_{n\tau} = 0,03$. Тогда площадь поперечного сечения переливного патрубка будет равна:

$$S_3 = 0.03 \cdot 1.13 = 0.0339 \text{ M}^2$$

Внутренний диаметр переливного патрубка:

$$d_{\rm b} = 1,128 \ \sqrt{S_3} = 1,128 \ \sqrt{0,0339} = 0,207 \ {\rm m}$$

Наружный диаметр переливного патрубка при толщине его стенки $\delta_{c\tau} = 0,006$ м составит величину $d_{\rm H} = 0,219$ м. Такого диаметра $d_{\rm H}$ трубы выпускаются промышленностью.

Подставив в формулу для w_{π} числовые значения величин, найдем:

$$w_{\rm m} = \frac{33.8}{3600 \cdot 0.0339} = 0.278$$
 M/c

Экстракционная колонна будет работать неудовлетворительно, если значительное количество диспергированных капель будут уноситься через переливной патрубок со сплошной фазой. Поэтому скорость ω_n сплошной фазы в переливном патрубке должна быть меньше скорости осаждения капель с диаметром 0,001—0,002 м [36]. Для нахождения предельного допустимого значения скорости $\omega_{n. A}$ сплошной фазы в переливном патрубке воспользуемся формулой Стокса [37, с. 375]:

$$w_{\mathrm{n.\,\,a}} = \frac{g \,\Delta \rho \, d^2}{18 \mu_{\mathrm{c}}}$$

где $g = 127 \cdot 10^6$ м/ч² — ускорение свободного падения; d — диаметр капель, м; μ_c — динамическая вязкость сплошной фазы, кг/(м·ч).

Динамическую вязкость сплошной фазы (сырья) при температуре $T_{\rm H} = 313$ К определим по формуле [8, с. 58]:

$$\lg \mu_{c} = x'_{o} \lg \mu_{0} + x'_{\kappa} \lg \mu_{\kappa}$$

где x'_{o} и x'_{κ} — мольные доли *н*-октана и *о*-ксилола в сырье соответственно; μ_{0} , μ_{κ} — динамические вязкости октана и *о*-ксилола при 313 К соответственно, г/(см·с) [7, стр. 225 и 323].

Зная массовые доли *н*-октана и *о*-ксилола в сырье (табл. 1.30), найдем их мольные доли:

$$x'_{o} = \frac{\frac{0.648/114}{0.648} + \frac{0.352}{106}}{\frac{0.352/106}{114} + \frac{0.352}{106}} = 0,63$$
$$x'_{\kappa} = \frac{\frac{0.352/106}{0.648} + \frac{0.352}{106}}{\frac{0.648}{114} + \frac{0.352}{106}} = 0,37$$

Получим:

$$\lg \mu_{c} = 0.37 \lg 0.00625 + 0.63 \lg 0.00425 = -2.31 = \overline{3},69$$

или

90

Тогда, приняв диаметр самых мелких капель равным d = 0,001 м и подставив числовые значения величин в формулу для $w_{n. d}$, найдем предельное числовое значение скорости сплошной фазы в переливном патрубке:

$$w_{n. \pi} = \frac{127 \cdot 10^6 \cdot 324 \cdot 0.001^2}{18 \cdot 1.76} = 1300 \text{ M/H} = 0.37 \text{ M/C}$$

Унос диспергированных капель происходить не будет, так как $w_{\pi} < w_{n, \mu}$. В случае получения $w_{\pi} > w_{n, \mu}$ следует увеличить диаметр колонны и поперечное сечение переливного патрубка.

Подставив в формулу для Δh_2 числовые значения величин, предварительно при этом приняв коэффициент $\varepsilon_{\rm B} = 4.5$, получим:

$$\Delta h_2 = 4.5 \frac{0.278^2 \cdot 739}{2 \cdot 9.81 \cdot 324} = 0.04 \text{ M}$$

Величина Δh_3 рассчитывается по формуле [26, с. 341]

$$\Delta h_3 = 1.5 \frac{\omega_0^2 \rho_c}{2g \, \Delta \rho} = 1.5 \frac{0.014^2 \cdot 739}{2 \cdot 9.81 \cdot 324} = 0.000034 \text{ M}$$

Таким образом

 $h_{\rm c} = 0,0066 + 0.04 + 0.000034 = 0.046634$ M

Примем высоту слоя диспергируемой жидкости $h_c = 0,2$ м.

Расстояние между тарелками должно быть равно:

$$h_{\rm T} = 0.2 + 0.2 = 0.4$$
 M

Условие $0,25 < h_{\rm T} < 0,6$ выполняется и потому диаметр колонны $D_{\rm K} = 1,2$ м выбран правильно.

5. Высота колонны

Рабочая высота аппарата (рис. 1.21):

$$H_{\rm p} = H_{\rm p, \ \kappa} + H_{\rm T} + h_4 + 0.5$$

где H_p — рабочая высота аппарата, м; $H_{p. \kappa}$ высота разделительной камеры, м; H_T — высота, занятая тарелками, м; h_4 — высота слива рафината над верхней тарелкой, м.

Высоту разделительной камеры примем в 5 раз большей расстояния между тарелками в аппарате:

$$H_{\rm p, \kappa} = 5h_{\rm r} = 5 \cdot 0, 4 = 2$$
 M

Высота, занятая тарелками:

$$H_{\rm T} = (N_{\rm p} - 1) h_{\rm T} = (18 - 1) \cdot 0.4 = 6.8$$
 M

Высоту слива рафината над верхней тарелкой примем равной

$$h_4 = 2h_7 = 2 \cdot 0, 4 = 0.8$$
 M

Рис. 1.21. Схема для расчета рабочей высоты экстракционной колонны.

Тогда

• $H_{\rm p} = 2 + 6,8 + 0,8 + 0,5 = 10,1$ м

Высота слоя тяжелой жидкости в разделительной камере:

 $h_1 = 0.5 H_{p, K} = 0.5 \cdot 2 = 1 M$

Высота слива рафината равна:

$$h_3 = H_{p. \kappa} + H_{\tau} + h_4 = 2 + 6.8 + 0.8 = 9.6$$
 M

Высота слоя сплошной фазы в колонне:

 $h_2 = h_3 - h_1 = 9,6 - 1 = 8,6$ M

Диаметры штуцеров колонны рассчитываются по обычным формулам гидравлики — см. например, [39, стр. 97—98] — и принимаются в соответствии с действующими нормалями.

Глава 2

Т F П Л 0 B Ы F L П Р 0 E C C Ы

В настоящей главе приводятся технологические расчеты теплообменных аппаратов и трубчатых нагревательных печей, широко применяемых в современных процессах нефтеперерабатывающей промышленности.

Из теплообменных аппаратов наиболее распространенными являются поверхностные аппараты рекуперативного типа, в которых теплопередача от горячего теплоносителя к холодному через разделяющую их стенку происходит непрерывно.

Особенности теплового расчета теплообменного аппарата определяются его назначением и конструкцией.

В задачу теплового расчета любого теплообменного аппарата входит определение величины поверхности теплообмена путем совместного решения уравнения теплового баланса и теплопередачи.

В зависимости от технологического назначения теплообменника исходные данные для его расчета должны быть различными.

При расчете теплообменника основными исходными данными должны быть количества и начальные температуры потоков. При расчете холодильника (конденсатора-холодильника) должны быть заданы количество, а также начальная и конечная температура горячего охлаждаемого продукта. При расчете подогревателя (испарителя, кипятильника) должны быть заданы количество, а также начальная и конечная температуры нагреваемого продукта. Кроме перечисленных исходных данных во всех трех случаях необходимо знать некоторые физические свойства теплоносителей, главным образом их плотности и вязкости.

Следует иметь в виду, какой расчет теплообменного аппарата проводится — проектный или поверочный. При проектном расчете наряду с тепловым ведется и конструктивный расчет, состоящий в определении основных размеров аппарата и компоновки его элементов (например, определении количества труб и способа их размещения, диаметра теплообменника и т. д.).

Поверочный тепловой расчет проводится в том случае, когда имеется готовый (стандартный) теплообменник и требуется определить, сколько таких аппаратов необходимо установить, чтобы поверхность их теплообмена соответствовала полученной в результате расчета.

При проектировании технологических установок для нефтеперерабатывающих заводов чаще всего приходится делать поверочные тепловые расчеты стандартных теплообменных аппаратов. Поверочному тепловому расчету теплообменного аппарата должен предшествовать его выбор на основе ряда технологических и технико-экономических соображений, которые излагаются в курсах технологии нефти и газа и процессов и аппаратов нефтеперерабатывающей промышленности.

Задачей технологического расчета любой нагревательной или реакционно-нагревательной трубчатой печи является определение ее поверхности нагрева, размеров камер радиации и конвекции, потерь напора в змеевике и основных размеров дымовой трубы.

Прежде чем приступить к технологическому расчету, необходимо выбрать тип печи. Выбор типа печи, а также большинства показателей режима работы в значительной мере определяются ее конкретным назначением.

Исходными данными для расчета нагревательной трубчатой печи являются следующие: производительность по сырью; фракционный состав (разгонка) сырья и его плотность; начальная и конечная температуры сырья; давление в конце змеевика печи; характеристика топлива. Если в печи должен быть установлен пароперегреватель, то задаются количеством водяного пара, подлежащим перегреву, его начальными параметрами (давление, степень влажности) и конечной температурой нагрева.

В процессе технологического расчета печи следует обратить особое внимание на выбор (принятие) некоторых величин, которые в значительной степени влияют на весь режим работы печи и ее размеры. К таким величинам относятся: коэффициент избытка воздуха, температура отходящих дымовых газов, потери тепла в окружающую среду кладкой и печными двойниками, допускаемая теплонапряженность радиантных труб и температура дымовых газов в конце топки (выбор двух последних показателей, связанных друг с другом, должен быть подтвержден расчетом), скорость сырья на входе в змеевик печи, система экранирования топки (тип экранов), компоновка конвекционной поверхности и некоторые другие.

Наиболее ответственной и трудоемкой частью технологического расчета печи является определение величины прямой отдачи (лучистого теплообмена в топке), которое в принципе осуществляется методом постепенного приближения: исходя из конкретного технологического назначения печи, выбирают теплонапряженность радиантных труб и температуру дымовых газов в конце топки (на перевале), а затем расчетом устанавливают их взаимное соответствие. Если расчет показывает, что выбранная температура газов на перевале не соответствует принятой теплонапряженности радиантных труб, то расчет повторяют, задавшись другим значением этой температуры. В результате расчета прямой отдачи находят количество тепла, воспринимаемого радиантными трубами, поверхность нагрева радиантных труб, их теплонапряженность и температуру дымовых газов в конце топки или на входе в камеру копвекции. Расчет прямой отдачи в случае трубчатых печей с чисто факельным сжиганием топлива ведется по методу Белоконя, подробно рассмотренному в литературе [5, 40, 41].

При проектировании трубчатых печей с панельными горелками расчет прямой отдачи следует вести по методу, предложенному ВНИИНефтемашем и достаточно подробно изложенному в литературе [42].

Важным этапом расчета трубчатой печи является гидравлический расчет ее змеевика, в результате которого определяется давление в начале змеевика. Если в трубах печи происходит частичное или полное испарение сырья, то потерю напора в змеевике определяют по методу Бакланова [5], предполагающему ряд допущений. При этом расчет ведется методом постепенного приближения.

ТЕПЛООБМЕННЫЙ АППАРАТ ТИПА "ТРУБА В ТРУБЕ"

Рассчитать необходимую поверхность теплообмена и число теплообменных аппаратов типа «труба в трубе» для нагревания нефти дистиллятом дизельного топлива при следующих исходных данных:

а) дистиллят дизельного топлива: количество $G_1 = 16\,000$ кг/ч; относительная плотность $\rho_{277}^{293} = 0,835$; кинематическая вязкость при 293 К $v_{293} = 1,05 \cdot 10^{-6}$ м²/с, при 323 К $v_{323} = 1 \cdot 10^{-6}$ м²/с; начальная температура $T'_1 = 538$ К

б) нефть: количество $G_2 = 80\,000$ кг/ч; относительная плотность $\rho_{277}^{293} = 0,860$; кинематическая вязкость — при 293 К $v_{293} = 2 \cdot 10^{-6}$ м²/с, при 323 К $v_{323} = 1,7 \cdot 10^{-6}$ м²/с; начальная температура $T'_2 = 393$ К.

Рассмотреть два варианта расчета: 1) наружная и внутренняя трубы гладкие; 2) наружная поверхность внутренней трубы оребренная.

Основными элементами аппарата в соответствии с нормалями ВНИИНефтемаша Н382—56 является секция пучка, показанная на рис. 2.1 (см. ниже). Один из теплоносителей движется по внутренним трубам, делая в них два хода. Другой теплоноситель движется в межтрубном пространстве кольцевого сечения, делая в нем тоже два хода.

Из конструктивной схемы секции на рис. 2.1 видно, что в теплообменнике осуществляется полный противоток. Теплообменные аппараты данного типа могут иметь одну, две или три секции. Секции включаются последовательно.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА ТЕПЛООБМЕННИКА

1. Выбирают конечную температуру одного из потоков теплообменивающих сред. Она должна быть принята такой, чтобы обеспечить достаточно высокий средний температурный напор в теплообменнике. 2. Из уравнения теплового баланса теплообменника определяют энтальпию того потока, конечная температура которого неизвестна. По энтальпии находят конечную температуру этого потока. Рассчитывают тепловую нагрузку геплообменника.

3. Рассчитывают средний температурный напор в теплообменнике. Определяют поверхность теплообменника по предварительно выбранному коэффициенту теплопередачи.

4. По нормали ВНИЙНефтемаша Н382—56 [43, с. 215] для расчета принимают один из теплообменников типа «труба в трубе».

5. Определяют физические параметры теплоносителей: коэффициент теплопроводности, теплоемкость, плотность, кинематическую вязкость теплоносителей при их средних температурах в теплообменнике.

6. Определяют коэффициент теплоотдачи со стороны теплоносителя, проходящего по внутренним трубам теплообменника. Предварительно рассчитывают скорость этого теплоносителя и величину критерия Рейнольдса (последнюю необходимо определить также для предварительного выбора расчетной формулы, по которой находится коэффициент теплоотдачи). Затем находят коэффициент теплоотдачи со стороны теплоносителя, проходящего в межтрубном пространстве кольцевого сечения.

7. Определяют коэффициент теплопередачи в теплообменном аппарате для следующих четырех случаев:

а) при отсутствии оребрения и чистых поверхностях внутренних труб;

б) при отсутствии оребрения и загрязненных поверхностях внутренних труб;

в) при оребрении наружной поверхности внутренних труб и отсутствии загрязнений;

г) при оребрении наружной поверхности внутренних труб и наличии загрязнений.

Коэффициенты теплопередачи для случаев а) и в) в последующих расчетах не используются. Их определяют только для того, чтобы путем сравнения можно было показать влияние загрязнений на величину коэффициента теплопередачи в аппарате.

8. Определяют поверхность теплообмена и необходимое число принятых для расчета (см. п. 4) теплообменных аппаратов.

PACHET

1. Выбор конечной температуры

На основании практических данных примем конечную температуру дистиллята дизельного топлива $T'_1 = 433$ К. Во всех последующих расчетах, за исключением специально оговоренных случаев, в обозначениях величин нижний индекс «1» относится к горячему теплоносителю (дистиллят дизельного топлива), а нижний индекс «2» — к холодному теплоносителю (нефти).

2. Температура нефти на выходе из теплообменника и его тепловая нагрузка

Запишем уравнение теплового баланса аппарата в следующем виде:

$$G_1\left(q_{T_1'}^{\mathbf{m}} - q_{T_1'}^{\mathbf{m}}\right) \eta = G_2\left(q_{T_2'}^{\mathbf{m}} - q_{T_2'}^{\mathbf{m}}\right)$$

где $q_{T_1'}^*, q_{T_1''}^*$ — энтальпия дистиллята дизельного топлива при начальной (T_1') и конечной (T_1'') температурах, кДж/кг; $q_{T_2'}^*, q_{T_2''}^*$ энтальпия нефти при начальной (T_2') и конечной (T_2'') температурах, кДж/кг; η — коэффициент использования тепла, равный 0,93—0,97 (для данного расчета принято значение 0,95).

Из этого уравнения определим энтальпию $q_{T'_2}^{*}$ нефти и затем ее конечную температуру T''_2 .

Для дальнейших расчетов необходимо относительные плотности теплоносителей пересчитать с ρ_{277}^{293} на ρ_{288}^{288} [44, с. 34]. Тогда получим (вычисления опущены): $\rho_{288}^{288} = 0,839 - для$ дистиллята дизельного топлива; $\rho_{288}^{288} = 0,863 - для$ нефти.

Энтальпии теплоносителей определены по таблице (см. Приложение 2):

$$q_{T_1'}^{*} = q_{538}^{*} = 618 \text{ кДж/кг}$$

 $q_{T_1'}^{*} = q_{433}^{*} = 342 \text{ кДж/кг}$
 $q_{T_2'}^{*} = q_{393}^{*} = 244 \text{ кДж/кг}$

Подставляя найденные величины в уравнение теплового баланса, получим:

$$16\ 000\ (618-342)\ \cdot\ 0,95 = 80\ 000\ \left(q_{T_2'}^{\text{\tiny H}}-244\right)$$

откуда $q_{T_2}^{*} = 297$ кДж/кг. Этой энтальпии соответствует температура $T_2^{''} = 414$ К.

Тепловая нагрузка теплообменника равна:

$$Q_{1} = G_{1} \left(q_{T_{1}}^{\texttt{m}} - q_{T_{1}}^{\texttt{m}} \right) = 16\ 000\ (618 - 342) =$$
$$= 4.42 \cdot 10^{6} \text{ kJm/4} = 1226.7 \text{ kBT}$$

3. Средний температурный напор

Средний температурный напор $\Delta T_{\rm cp}$ в теплообменнике определяем по формуле Грасгофа, имея в виду, что в аппарате

4 Зак. 100

осуществляется противоток теплоносителей по схеме:

$$\Delta T_{\rm cp} = \frac{\Delta T_{\rm Makc} - \Delta T_{\rm MH}}{2.3 \lg \frac{\Delta T_{\rm Makc}}{\Delta T_{\rm MH}}} = \frac{124 - 40}{2.3 \lg \frac{\Delta T_{\rm MAK}}{\Delta T_{\rm MH}}} = \frac{124 - 40}{2.3 \lg \frac{\Delta T_{\rm MAK}}{\Delta T_{\rm MH}}}$$

4. Выбор теплообменника

Для того чтобы по действующим нормалям выбрать один из теплообменных аппаратов типа «труба в трубе», следует ориентировочно определить необходимую поверхность теплообмена.

Примем на основании практических данных коэффициент теплопередачи в теплообменнике k = 290 Вт/(м²·K). Тогда предполагаемая поверхность теплообмена определится по формуле:

$$F = \frac{Q_1}{k \,\Delta T_{\rm cp}} = \frac{1226.7 \cdot 10^3}{290 \cdot 74} = 57 \,\,{\rm M}^2$$

По нормали ВНИИНефтемаша Н382—56 [43, с. 215] выбираем теплообменник «труба в трубе» ТТР7-2 с поверхностью теплообмена по наружному диаметру внутренней трубы (без ребер) 30 м².

Рис. 2.1. Схема теплообменника.

Чтобы обеспечить предварительно найденную поверхность теплообмена 57 м², очевидно, следует установить два таких аппарата.

Техническая характеристика теплообменника ТТР7-2: диаметр внутренних труб 48 × 4 мм; диаметр наружных труб 89 × 5 мм; допускаемая максимальная температура в трубном пространстве не более 723 К; в межтрубном пространстве — не более 473 К.

Учитывая допускаемые температуры потоков, направим по внутренним трубам дистиллят дизельного топлива, а по межтрубному пространству — нефть.

Схема теплообменного аппарата (одной секции) показана на рис. 2.1.

5. физические параметры топлоносителей при их средних температурах

Дистиллят дизельного топлива. Средняя температура:

$$T_{\rm cp. 1} = \frac{T_1' + T_1''}{2} = \frac{538 + 433}{2} = 486 \text{ K}$$

Коэффициент теплопроводности [13]:

$$\lambda_{\rm cp. 1} = \frac{0.1346}{\rho_{288}^{288}} (1.0 - 0.00047T_{\rm cp. 1}) =$$

= $\frac{0.1346}{0.839} (1 - 0.00047 \cdot 486) = 0.123 \text{ BT/(M \cdot K)}$

Теплоемкость [13]:

$$c_{\rm cp. 1} = \frac{1}{\sqrt{\rho_{288}^{288}}} (0,762 + 0,0034T_{\rm cp. 1}) = \frac{1}{\sqrt{0.839}} (0,762 + 0,0034 \cdot 486) = 2,64 \text{ K} \ \text{K} \ \text{K} / (\text{Kr} \cdot \text{K})$$

Относительная плотность:

$$\rho_{277}^{T_{\rm cp.\ 1}} = \rho_{277}^{293} - \alpha \left(T_{\rm cp.\ 1} - 293 \right) = 0,835 - 0,000725 \left(486 - 293 \right) = 0,696$$

Кинематическая вязкость по формуле Гросса [13]:

$$\lg \frac{v_1}{v_2} = n \lg \frac{T_2 - 273}{T_1 - 273}$$

где *n* — коэффициент.

В нашем случае:

$$\mathbf{v}_1 = \mathbf{v}_{293} = 1,05 \cdot 10^{-6} \text{ m}^2/\text{c}; \ \mathbf{v}_2 = \mathbf{v}_{323} = 1 \cdot 10^{-6} \text{ m}^2/\text{c}$$

 $T_1 = 293 \text{ K}; \ T_2 = 323 \text{ K}$

Решив формулу относительно *n* при известных v_1 и v_2 , получим

$$n = \frac{\lg \frac{v_1}{v_2}}{\lg \frac{T_2 - 273}{T_1 - 273}} = \frac{\lg \frac{1.05 \cdot 10^{-6}}{1.10^{-6}}}{\lg \frac{323 - 273}{293 - 273}} = 0.05$$

Тогда кинематическая вязкость для дистиллята дизельного топлива при 486 К определится из уравшения:

$$\lg \frac{1.05 \cdot 10^{-6}}{v_{486}} = 0.05 \lg \frac{T_{\text{cp. 1}} - 273}{T_1 - 273} = 0.05 \lg \frac{486 - 273}{293 - 273} = 0.0513$$

откуда

$$v_{dp.1} = v_{486} = 0.92 \cdot 10^{-6} \text{ m}^2/\text{c}$$

Нефть. Средняя температура:

$$T_{\text{cp.}2} = \frac{T'_2 + T''_2}{2} = \frac{393 + 414}{2} = 403,5 \text{ K}$$

4*

99

Расчеты физических параметров сделаны по приведенным выше формулам: коэффициент теплопроводности $\lambda_{cp.2} = 0,125$ Вт/(м · K); теплоемкость $c_{cp.2} = 2,282$ кДж/(кг · K); отно-сительная плотность $\rho_{277}^{T_{cp.2}} = 0,784$.

Кинематическая вязкость определена аналогично предыдущему расчету:

$$v_{\text{cp. 2}} = v_{404} = 1,43 \cdot 10^{-6} \text{ m}^2/\text{c}$$

6. Козффициенты теплоотдачи

а. Коэффициент теплоотдачи α₁ от дистиллята дизельного топлива к внутренней поверхности малой трубы.

Скорость потока дизельного топлива (в м/с):

$$w_1 = \frac{G_1}{3600\rho_{\rm cp.\ 1}f_1}$$

Здесь $\rho_{cp.1} = 593$ кг/м³ — плотность дистиллята дизельного топлива при $T_{cp.1} = 486$ К; f_1 — площадь поперечного сечения всех труб в одном ходу аппарата:

$$f_1 = \frac{\pi d_B^2}{4} N_1 = 0,785 \cdot 0,04^2 \cdot 7 = 0,0088 \text{ M}^2$$

где $d_{\rm B} = 0,04$ м—внутренний диаметр внутренней трубы; $N_1 = 7$ —число труб в одном ходу [43, с. 215].

Тогда

$$w_1 = \frac{1.6 \cdot 10^4}{3600 \cdot 696 \cdot 0.0088} = 0.73 \text{ m/c}$$

Критерий Рейнольдса:

$$\operatorname{Re}_{\operatorname{cp. 1}} = \frac{w_1 d_{\mathrm{B}}}{v_{\mathrm{cp. 1}}} = \frac{0.73 \cdot 0.04}{0.92 \cdot 10^{-6}} = 31\ 700$$

Следовательно, режим движения турбулентный, поэтому величину α_1 [в Вт/($m^2 \cdot K$)] рассчитываем по формуле [45, с. 89]:

$$\alpha_{i} = 0,021 \ \frac{\lambda_{\rm cp.\,1}}{d_{\rm B}} {\rm Re}_{\rm cp1}^{0,8} \ {\rm Pr}_{\rm cp.1}^{0,43} \left(\frac{{\rm Pr}_{\rm cp.\,1}}{{\rm Pr}_{\rm w.\,1}}\right)^{0,25}$$

Критерий Прандтля:

$$\Pr_{\text{cp. 1}} = \frac{\nu_{\text{cp. 1}}c_{\text{cp. 1}}}{\lambda_{\text{cp. 1}}} = \frac{0.92 \cdot 10^{-6} \cdot 2.64 \cdot 10^3 \cdot 696}{0.123} = 13.7$$

Предварительный расчет показывает, что отношение

$$\left(\frac{\mathbf{Pr}_{\mathrm{cp. 1}}}{\mathbf{Pr}_{w. 1}}\right)^{0,25} \approx 1$$

Тогда

$$\alpha_1 = 0,021 \frac{0,123}{0,04} \cdot 31\ 700^{0,8} \cdot 13,7^{0,43} = 791 \text{ Br/(M}^2 \cdot \text{K})$$

100

б. Коэффициент теплоотдачи α₂ от гладкой наружной поверхности малой трубы к нефти.

Нефть движется в межтрубном пространстве кольцевого сечения, площадь в (м²) которого для одного хода подсчитывается по формуле:

$$f_2 = 0,785 N_1 (D_B^2 - d_H^2)$$

где $D_{\rm B} = 0,079\,$ м— внутренний диаметр наружной трубы; $d_{\rm H} = 0.048\,$ м— наружный диаметр внутренней трубы.

Тогда

$$f_2 = 0.785 \cdot 7 (0.079^2 - 0.048^2) =$$

= 0.022 m²

Скорость потока нефти:

$$w_2 = \frac{G_2}{3600\rho_{\text{cp. }2}f_2} = \frac{80\ 000}{3600 \cdot 784 \cdot 0.022} = 1,29 \text{ m/c}$$

Эквивалентный диаметр кольцевого сечения:

$$d_{\mathfrak{s}} = D_{\mathfrak{b}} - d_{\mathfrak{h}} = 0,079 - 0,048 = 0,031 \text{ M}$$

Критерий Рейнольдса:

$$\operatorname{Re}_{\operatorname{cp.2}} = \frac{w_2 d_9}{v_{\operatorname{cp.2}}} = \frac{1,29 \cdot 0,031}{1,43 \cdot 10^{-6}} = 28\,000$$

Рис. 2.2. Поперечный разрез труб теплообменника.

Режим движения турбулентный, поэтому величину α_2 [в Вт/(м² · K)] определяем по формуле [45, с. 89]:

$$\alpha_2 = 0.021 \frac{\lambda_{\rm cp.\ 2}}{d_3} \operatorname{Re}_{\rm cp.\ 2}^{0.8} \operatorname{Pr}_{\rm cp.\ 2}^{0.43} \left(\frac{\operatorname{Pr}_{\rm cp.\ 2}}{\operatorname{Pr}_{w.\ 2}} \right)^{0.25}$$

Критерий Прандтля:

$$\Pr_{\text{cp. 2}} = \frac{\nu_{\text{cp. 2}} c_{\text{cp. 2}} \rho_{\text{cp. 2}}}{\lambda_{\text{cp. 2}}} = \frac{1.43 \cdot 10^{-6} \cdot 2.282 \cdot 10^3 \cdot 784}{0.125} = 20.5$$

Принимая по изложенным выше соображениям значение сомножителя $\left(\frac{\Pr_{\text{гр. 1}}}{\Pr_{w. 2}}\right)^{0.25} \approx 1$, найдем: $\alpha_2 = 0.021 \frac{0.125}{0.031} \cdot 28\,000^{0.8} \cdot 20.5^{0.43} = 1104 \text{ Bt/(M}^2 \cdot \text{K})$

в. Коэффициент теплоотдачи α₂ от оребренной наружной поверхности малой трубы к нефти (рис. 2.2).

Расчет а2 [в Вт/(м2 · K)] ведем по формуле [5, с. 554]:

$$\alpha_2' = \alpha_2 \left(1 + \frac{2h\beta - \delta}{S} \right)$$

.101

где h — высота ребра, м; β — характеристика эффективности прямых продольных ребер; δ — толщина ребра, м; S — шаг ребер по окружности трубы, м.

Для принятых оребренных труб h = 0,013 м и $\delta = 0,001$ м.

Значение в определяется из выражения:

$$\beta = \frac{\operatorname{th}(mh)}{mh}$$

Здесь th(mh) — гиперболический тангенс произведения mh, определяемый по таблице [45, с. 380]; величина m рассчитывается по формуле:

$$m = \sqrt{\frac{2\alpha_2}{\delta\lambda_p}}$$

в которой λ_р — коэффициент теплопроводности материала ребер, равный в нашем случае 46,5 Вт/(м·К).

Находим значение β:

$$\beta = \frac{\ln\left(\sqrt{\frac{2\alpha_2}{\delta\lambda_{\rm p}}}h\right)}{\sqrt{\frac{2\alpha_2}{\delta\lambda_{\rm p}}}h} = \frac{\ln\left(\sqrt{\frac{2\cdot1104}{0,001\cdot46,5}}\cdot0,013\right)}{\sqrt{\frac{2\cdot1104}{0,001\cdot46,5}}\cdot0,013} = 0,348$$

Во многих случаях значения β можно брать из таблиц [46, c. 564].

Шаг ребер по окружности трубы определим по формуле:

$$S = \frac{\pi d_{\rm H}}{n}$$

где n = 20 — число прямых продольных ребер. Тогда

$$S = \frac{3,14 \cdot 0,048}{20} = 0,0075 \text{ M}$$

Коэффициент теплоотдачи:

$$\alpha'_{2} = 1104 \left(1 + \frac{2 \cdot 0.013 \cdot 0.348 - 0.001}{0.0075}\right) = 2265 \text{ Bt/(M}^{2} \cdot \text{K})$$

Как видно, коэффициент теплоотдачи от оребренной поверхности к нефти более чем в 2 раза выше коэффициента теплоотдачи от гладкой поверхности к нефти.

Хоблер [46, с. 565] считает, что если $\frac{2\lambda_p}{\alpha_2\delta} > 5$, то применение ребристой поверхности целесообразно. В нашем случае

$$\frac{2\lambda_{\rm p}}{\alpha_2 \delta} = \frac{2 \cdot 46,5}{1104 \cdot 0,001} = 84 > 5$$

7. Коэффициент теплопередачи

а. При отсутствии оребрения и чистых поверхностях труб:

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_{\rm cr}}{\lambda_{\rm cr}} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{791} + \frac{0.004}{46.5} + \frac{1}{1104}} = 446 \text{ Br/(M}^2 \cdot \text{K})$$

б. При отсутствии оребрения и загрязненных поверхностях труб:

$$k' = \frac{1}{\frac{1}{k} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2}}$$

Согласно литературным данным [5, с. 558], принимаем тепловое сопротивление загрязнений со стороны дистиллята дизельного топлива

$$\frac{\delta_1}{\lambda_1} = 0,00061 \ (M^2 \cdot K)/BT$$

со стороны нефти

$$\frac{\delta_2}{\lambda_2} = 0,00104 \ (M^2 \cdot K)/BT$$

Тогда

$$k' = \frac{1}{\frac{1}{446} + 0.00061 + 0.00104}} = 258 \text{ Bt/(M}^2 \cdot \text{K})$$

в. При оребрении наружной поверхности внутренней трубы и отсутствии загрязнения.

Коэффициент теплопередачи, отнесенный к гладкой поверхности, определим по формуле [45, с. 196]:

$$k_1 = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_{\text{cT}}}{\lambda_{\text{cT}}} + \frac{1}{\alpha'_2} \cdot \frac{F_1}{F_2}}$$

В принятом для расчета теплообменнике поверхность теплообмена (по наружному диаметру внутренней трубы, без ребер) $F_1 = 30 \text{ м}^2$, а коэффициент оребрения (при 20 ребрах) $\varphi = 4,3$ [43, с. 215], поэтому величина ребристой поверхности:

 $F_2 = \varphi F_1 = 4,3 \cdot 30 = 129 \text{ m}^2$

Тогда

$$k_1 = \frac{1}{\frac{1}{791} + \frac{0,004}{46,5} + \frac{1}{2265} \cdot \frac{30}{129}} = 688 \text{ Br/(M}^2 \cdot \text{K})$$

Как видно, в данном случае коэффициент теплопередачи в <u>688</u> — 1,54 раза выше, чем при неоребренной поверхности.

г. При оребрении наружной поверхности внутренней трубы и наличии загрязнений, принимая те же, что и в п. «в», значения тепловых сопротивлений, получим:

$$k'_1 = \frac{1}{\frac{1}{k_1} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2}} = \frac{1}{\frac{1}{688} + 0,00061 + 0,00104}} = 323 \text{ Br/(M}^2 \cdot \text{K})$$

8. Поверхность теплообмена

В соответствии с заданием, рассчитаем поверхность теплообмена для двух случаев.

а. При отсутствии оребрения и загрязненных поверхностях:

$$F' = \frac{Q_1}{k_1 \,\Delta T_{\rm cp}} = \frac{1226.7 \cdot 10^3}{258 \cdot 74} = 65 \,\,{\rm M}^2$$

Необходимое число сдвоенных секций (теплообменников):

$$Z' = \frac{65}{30} = 2,2$$

С запасом принимаем Z' = 3

б. При оребрении труб и загрязненных поверхностях:

$$F_1' = \frac{Q_1}{k_1' \Delta T_{\rm cp}} = \frac{1226.7 \cdot 10^3}{323 \cdot 74} = 51 \,\,{\rm m}^2$$

Необходимое число сдвоенных секций:

$$Z_1' = \frac{51}{30} = 1,7$$

Рис. 2.3. Схема соединения секций теплообменников. С запасом принимаем $z'_1 = 2$.

Из расчета следует, что потребная условная (гладкая) поверхность теплообмена при оребрении в 1,27 раза меньше, чем при

гладких трубах. Эффект оребрения наружной поверхности внутренней трубы был бы значительно большим, если бы в межтрубном пространстве проходил более вязкий продукт.

Сдвоенные секции включаются в схему установки последовательно, причем теплоносители движутся противотоком (рис. 2.3).

ХОЛОДИЛЬНИК ВОЗДУШНОГО ОХЛАЖДЕНИЯ

Рассчитать горизонтальный холодильник для охлаждения керосинового дистиллята воздухом при следующих исходных данных: количество охлаждаемого керосина $G_1 = 35\,000$ кг/ч; относительная плотность керосина $\rho_{277}^{293} = 0,800$; начальная температура керосина $T'_1 = 377$ К; конечная температура керосина $T''_1 = 315$ К; начальная температура воздуха (сухого) $T'_2 = 299$ К; конечная температура воздуха $T''_2 = 333$ К.

При расчете рассмотреть аппарат с гладкой и оребренной наружной поверхностью.

В нефтеперерабатывающей промышленности все большее распространение получают воздушные холодильники и конденсаторыхолодильники различных технологических потоков.

Применение аппаратов воздушного охлаждения дает ряд эксплуатационных преимуществ, из которых главнейшими являются: экономия охлаждающей воды и уменьшение количества сточных вод; значительное сокращение затрат труда на чистку аппарата ввиду отсутствия накипи и отложения солей; уменьшение расходов, связанных с организацией оборотного водоснабжения технологических установок.

Трубки в аппаратах воздушного охлаждения применяются с наружным спиральным оребрением, в результате чего существенно улучшается теплопередача. Интенсификация теплообмена с помощью оребрения поверхности труб может быть достигнута только при условии хорошего подвода тепла от стенок труб к ребрам, что обеспечивается изготовлением ребристых труб из материалов с высоким коэффициентом теплопроводности или изготовлением ребристых труб из биметалла, причем материал ребер должен обладать большим коэффициентом теплопроводности, чем материал трубы.

Ниже приводится проектный расчет воздушного холодильника горизонтального типа.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА ХОЛОДИЛЬНИКА

1. Определяют тепловую нагрузку холодильника, т.е. количество тепла, отнимаемого от керосина в холодильнике за 1 ч.

2. Из уравнения теплового баланса аппарата определяют количество холодного теплоносителя — воздуха (в кг/ч), а затем рассчитывают секундный объемный расход воздуха при его начальной температуре и подбирают тип вентилятора.

3. Выбирают тип труб для аппарата.

4. Определяют коэффициент теплоотдачи со стороны горячего теплоносителя, проходящего по трубам. Предварительно находят физические параметры горячего теплоносителя и выбирают линейную скорость движения его в трубах пучка, при которой обеспечивается устойчивый турбулентный поток.

5. Определяют коэффициент теплоотдачи со стороны воздуха в случае применения гладких труб. Предварительно принимают размеры фронтального к потоку воздуха сечения аппарата, т.е. длину трубы, шаг труб по ширине пучка и количество труб в одном горизонтальном ряду. Желательно, чтобы сечение аппарата, фронтальное к потоку воздуха, было квадратным или близким к квадрату, так как при этом достигается наиболее равномерное охлаждение труб.

6. Определяют коэффициент теплопередачи для холодильника с гладкими трубами, учитывая тепловые сопротивления внутреннего и наружного слоев загрязнений.

7. Определяют средний температурный напор в холодильнике.

8. Определяют приведенный коэффициент теплоотдачи со стороны воздуха в случае использования оребренных труб. Этот коэффициент учитывает влияние конвективного теплообмена между оребренной поверхностью и потоком воздуха и теплообмена теплопроводностью через металл ребер на теплоотдачу пучка оребренных труб к воздуху. Поэтому предварительно находят коэффициент теплоотдачи конвекцией при поперечном обтекании воздухом пучка оребренных труб, а также коэффициенты, учитывающие эффективность передачи тепла теплопроводностью через ребра.

9. Определяют коэффициент теплопередачи для холодильника с оребренными трубами, учитывая тепловые сопротивления внутреннего и наружного слоев загрязнения. При этом необходимо иметь в виду, что коэффициент теплопередачи через ребристую стенку имеет различные числовые значения в зависимости от того, по какой поверхности ведется расчет — гладкой или ребристой [45, с. 196].

Так как выше (см. п. 6) коэффициент теплопередачи в холодильнике рассчитывался на единицу гладкой поверхности трубы, то коэффициент теплопередачи в холодильнике с оребренными трубами необходимо рассчитывать также на единицу гладкой поверхности трубы, чтобы учесть влияние оребрения гладкой поверхности на эффективность теплопередачи.

10. Рассчитывают поверхность теплообмена холодильника с оребренными трубами и количество труб. Проводится компоновка поверхности теплообмена, т.е. определяется число труб в одном горизонтальном ряду пучка, число труб в одном ходу, число ходов, которое делает горячий теплоноситель в одном горизонтальном ряду (или пучке труб), и, наконец, число горизонтальных рядов в пучке. Вычерчивают конструктивную схему трубного пучка и определяют его толщину (высоту).

11. Определяют аэродинамическое сопротивление и мощность электродвигателя к вентилятору.

РАСЧЕТ

1. Тепловая нагрузка холодильника

Тепловую нагрузку определяем по формуле:

$$Q_{1} = G_{1} \left(q_{T_{1}'}^{\mathsf{m}} - q_{T_{1}''}^{\mathsf{m}} \right)$$

где Q_1 — количество тепла, отнимаемого от керосина в холодильнике, кДж/ч; $q_{T_1'}^{**}, q_{T_1'}^{**}$ — энтальпия керосина соответственно при температуре $T_1' = 377$ К и $T_1'' = 315$ К, определяемая по формуле Крэга или по таблице (см. Приложение 2).

Ниже ведется расчет по формуле:

$$q_T^{\mathsf{m}} = \frac{1}{\sqrt{\rho_{288}^{288}}} \left(0,762T + 0,0017T^2 - 334,253 \right)$$

где T — соответствующая (T'_1 и T''_1) температура керосина; ρ_{288}^{288} — относительная плотность керосина при 288 К, которая рассчитывается по формуле [44, с. 34].

Находим:

$$q_{T_{1}}^{*} = q_{377}^{*} = \frac{r_{1}}{\sqrt{0,804}} (0,762 \cdot 377 + 0,0017 \cdot 377^{2} - 334,253) =$$

$$= 216 \ \text{K} \ \text$$

2. Массовый и объемный расходы воздуха

Из уравнения теплового баланса холодильника

$$G_1\left(q_{T_1'}^{\mathsf{m}} - q_{T_1''}^{\mathsf{m}}\right) = G_2\left(c_p''T_2'' - c_p'T_2'\right)$$

найдем:

$$G_2 = \frac{G_1\left(q_{T_1'}^{\mathfrak{m}} - q_{T_1'}^{\mathfrak{m}}\right)}{c_p'' T_2'' - c_p' T_2'} = \frac{Q_1}{c_p'' T_2'' - c_p' T_2'}$$

где G_2 — количество воздуха, кг/ч; c'_p , c'_p — средние теплоемкости (при постоянном давлении) воздуха соответственно при его конечной и начальной температурах, определяемые по таблице 2.1 [47, с. 547], кДж/(кг · K).

Таблица 2,1

<i>Т</i> , К	ρ _в . кг/м ³	^с р, кДж/(кг•К)	λ, Βτ/(м·Κ)	v·106, M ² /c	Pr
273	1,2930	1,005	0,0243	13,30	0,714
293	1,2045	1,005	0,0257	15,11	0,713
313	1,1267	1,009	0,0271	16,97	0,711
333	1,0595	1,009	0,0285	18,90	0,709
353	0,9998	1,009	0,0299	20,94	0,708
373	0,9458	1,013	0,0314	23,06	0,704

Имеем:

$$G_2 = \frac{4.67 \cdot 10^6}{1,009 \cdot 333 - 1,005 \cdot 299} = 136\ 000 \ \text{kr/y}$$

Найдем плотность воздуха при его начальной температуре $T'_2 = 299$ К и барометрическом давлении, равном нормальному $P_0 = 101308$ Па, из уравнения:

$$\rho_{\rm B} = \frac{\rho_0 T_0}{T_2'} = \frac{1,293 \cdot 273}{299} = 1,18 \text{ kg/m}^3$$

где ро — плотность воздуха при нормальных условиях, кг/м³.

Секундный расчетный расход воздуха:

$$V_{\rm B} = \frac{G_2}{3600\rho_{\rm B}} = \frac{136\ 000}{3600\cdot 1.18} = 32\ {\rm M}^3/{\rm c}$$

При выборе вентилятора необходимо иметь в виду, что он должен не только обеспечить подачу необходимого количества воздуха при колебании его температуры, но и преодолеть гидравлическое сопротивление пучка труб, т.е. создать необходимый напор при колебании нагрузки по воздуху.

Для проектируемого аппарата выбираем осевой вентилятор ЦАГИ УК-2М, с регулируемым углом установки лопастей [48, с. 76, табл. 11].

В зависимости от угла наклона лопастей вентилятора его аэродинамическая характеристика изменяется в пределах: производительность по воздуху 65·10³—290·10³ м³/ч или 18—80 м³/с; полный напор 42—403 Па; потребляемая мощность 3,9—53 кВт.

3. Характеристика труб

а. Оребренная труба (рис. 2.4, а).

Для холодильника выбираем оребренные биметаллические трубы. Отечественная промышленность выпускает оребренные трубы

Рис. 2.4. Оребренная (а) и гладкая (б) трубы: А-алюминий; Б-бронза.

для воздушных холодильников длиной 4 и 8 м. Для дальнейшего расчета принимаем L = 4 м. Материал внутренней трубы — латунь ЛО-70-1. Материал оребрения — алюминиевый сплав АД1М. Количество спиральных витков (ребер), приходящихся на 1 м трубы, X = 286. Коэффициент оребрения $\varphi = 9$.

б. Гладкая труба (рис. 2.4, б).

Для сравнения принимается тот же материал, что и у оребренной трубы.

108
4. Коэффициент теплоотдачи со стороны керосина

Коэффициент теплоотдачи со стороны керосина α_1 будет иметь одно и то же значение как в случае гладкой наружной поверхности трубы, так и в случае оребренной.

Определим физические параметры керосина при его средней гемпературе в холодильнике:

$$T_{\rm cp. 1} = \frac{T_1' + T_1''}{2} = \frac{377 + 315}{2} = 346 \text{ K}$$

Коэффициент теплопроводности:

$$\lambda_{\rm cp. 1} = \frac{0.1346}{\rho_{288}^{288}} (1 - 0.00047 T_{\rm cp. 1}) =$$

= $\frac{0.1346}{0.804} (1 - 0.00047 \cdot 346) = 0.14 \text{ BT/(M \cdot K)}$

Теплоемкость:

Относительная плотность:

$$\rho_{277}^{T_{\text{cp. 1}}} = \rho_{277}^{293} - \alpha (T_{\text{cp}} - 293) = 0.8 - 0.000765 (346 - 293) = 0.760$$

где а — средняя температурная поправка на 1К, определяемая по таблице [44, с. 34].

Кинематическую вязкость керосина при $T_{\rm cp.\ 1} = 346$ К примем по практическим данным: $v_{\rm cp.\ 1} = 0.9 \cdot 10^{-6} \, {\rm m}^2/{\rm c}.$

Этот параметр может быть рассчитан, если известны значения v₁ и v₂ при каких-либо двух температурах. Для этого можно воспользоваться, например, известной формулой Гросса [13, с. 61].

Определим теперь минимальную линейную скорость движения керосина в трубах холодильника, при которой обеспечивается устойчивый турбулентный поток, т.е. при которой Re_{мин} = 10⁴

$$\mathrm{Re} = 10^4 = \frac{w_{\mathrm{MHH}}d_1}{v_{\mathrm{cp. 1}}}$$

откуда

$$w_{\text{MHH}} = \frac{10^4 v_{\text{cp. 1}}}{d_1} = \frac{10^4 \cdot 0.9 \cdot 10^{-6}}{0.021} = 0.43 \text{ M/c}$$

Обычно при расчете теплообменников скорость жидкости внутри труб принимается от 0,5 до 2,5 м/с. Для проектируемого холодильника выбираем скорость керосина w = 1,5 м/с > $w_{\text{мин}}$. Тогда

$$\operatorname{Re}_{\operatorname{cp.1}} = \frac{1,50 \cdot 0,21}{0,9 \cdot 10^{-6}} = 35\,000$$

109

При Re ≥ 10⁴ для определения коэффициента теплоотдачи со стороны керосина воспользуемся формулой [49, с. 186]:

$$\alpha_{1} = 0.021 \frac{\lambda_{\rm cp. 1}}{d_{1}} \operatorname{Re}_{\rm cp. 1}^{0.8} \operatorname{Pr}_{\rm cp. 1}^{0.43} \left(\frac{\operatorname{Pr}_{\rm cp. 1}}{\operatorname{Pr}_{w. 1}} \right)^{0.25} \varepsilon_{l}$$

где $\Pr_{cp. 1}$ — критерий Прандтля при температуре $T_{cp. 1} = 346$ К; $\Pr_{w. 1}$ — критерий Прандтля при температуре стенки трубы со стороны керосина $T_{w. 1}$; ε_l — поправочный коэффициент, учитывающий отношение длины трубы L к ее диаметру [49, с. 186], в нашем случае равный единице.

Найдем критерий Прандтля при температуре T_{ср. 1} = 346 К:

$$\Pr_{\mathbf{cp. 1}} = \frac{v_{\mathbf{cp. 1}} c_{\rho_{\mathbf{cp. 1}}} \rho_{\mathbf{cp. 1}}}{\lambda_{\mathbf{cp. 1}}} = \frac{0.9 \cdot 10^{-6} \cdot 2.18 \cdot 760 \cdot 3600}{0.5} = 10,73$$

Предварительно принимаем (с последующей проверкой) температуру стенки трубы со стороны керосина $T_{w.1} = 344$ К. Находим также, как это сделано выше, физические параметры керосина при этой температуре: $c_{pw.1} = 2,14$ кДж/(кг·K); $v_{w.1} = 0,96 \cdot 10^{-6}$ м²/с; $\rho_{w.1} = 0,760$; $\lambda_{w.1} = 0,50$ кДж/(м·ч·K) = 0,14 Вт/(м·K).

Тогда критерий Прандтля при T_{w.1} = 344 K

$$\Pr_{w.1} = \frac{0.96 \cdot 2.14 \cdot 760 \cdot 3600}{10^6 \cdot 0.5} = 11,24$$

и коэффициент теплоотдачи со стороны керосина:

$$\alpha_1 = 0,021 \frac{0,14}{0,021} \cdot 35\ 000^{0,8} \cdot 10,73^{0,43} \left(\frac{10,73}{11,24}\right)^{0,25} \cdot 1 = 1676 \text{ Bt/(M}^2 \cdot \text{K})$$

5. Коэффициент теплоотдачи а2 со стороны воздуха в случае применения гладких труб

В целях правильного выбора расчетной формулы для α_2 , следует определить значение критерия Re для воздуха при поперечном обтекании им шахматного пучка труб холодильника.

Примем, что фронтальное к потоку воздуха сечение аппарата будет $L \times B = 4 \times 4$ м² (рис. 2.5) с шагом труб по ширине пучка $S_1 = 0,052$ м. Шаг труб по глубине пучка S_2 найдем следующим образом:

$$S_2 = \sqrt{S_1^2 - \left(\frac{S_1}{2}\right)^2} = \sqrt{52 - \left(\frac{52}{2}\right)^2} = 45 \text{ mm}$$

Определим число *n* труб в одном горизонтальном ряду пучка (рис. 2.5) из формулы:

$$B = (n-1)S_1 + d_3$$

Получим:

$$n = 1 + \frac{B - d_3}{S_1} = 1 + \frac{4 - 0.028}{0.052} = 76$$

В дальнейшем уточним это число расчетом отдельных секций пучка. Примем число рядов труб по вертикали одной секции n_в=6.

Определим площадь сжатого (наименьшего) сечения в пучке труб, через которое проходит воздух:

 $F_{\rm c} = L(B - nd_3) = 4(4 - 76 \cdot 0.028) = 7.5 \text{ M}^2$

Скорость воздушного потока в сжатом сечении:

$$w_0 = \frac{V_{\pi}}{F_c} = \frac{64}{7.5} = 8.5 \text{ M/c}$$

где V_{π} — действительный секундный расход воздуха (берется из паспортных данных на вентилятор), M^{3}/c .

Средняя температура воздуха:

$$T_{\text{cp.}2} = \frac{T'_2 + T''_2}{2} = \frac{299 + 333}{2} = 316 \text{ K}$$

По табл. 2.1 находим интерполяцией кинематическую вязкость воздуха при его средней температуре: v == 17.26 · 10⁻⁶ M²/c.

Теперь определим величину критерия Рейнольдса:

$$\operatorname{Re} = \frac{w_0 d_3}{v} = \frac{8.5 \cdot 0.028}{17.26 \cdot 10^{-6}} = 13\,800$$

Рис. 2.5. Схема размещения труб в воздушном холодильнике.

Коэффициент теплоотдачи α₂ определим из уравнения [49, с. 191], справедливого при Re = 2·10² ÷ 0,2·10⁶:

$$Nu = 0,37\varepsilon_{a\tau}Re^{0.6}$$

Получим:

$$\alpha_2 = 0.37 \frac{\lambda}{d_3} \varepsilon_{a\tau} \text{Re}^{0.6} = 0.37 \frac{0.0273}{0.028} \cdot 1 \cdot 13\ 800^{0.6} = 105 \text{ BT/(M}^2 \cdot \text{K})$$

где $\varepsilon_{a\tau} = 1$ — поправочный коэффициент, учитывающий угол атаки, принимается по таблице [49, с. 190]; $\lambda = 0.0273 \text{ Bt/(M} \cdot \text{K})$ — коэффициент теплопроводности воздуха при его средней температуре; $T_{cp.2} = 316 \text{ K}$ (табл. 2.1).

6. Коэффициент теплопередачи для пучка гладких труб

Для биметаллических труб (латунь — алюминий) и загрязненной поверхности теплообмена (внутренней и наружной) этот коэффициент определяется по формуле:

$$k = \frac{1}{\frac{1}{\alpha_1} + \left(\frac{\delta}{\lambda}\right)_{3. B} + \left(\frac{\delta}{\lambda}\right)_{\pi} + \left(\frac{\delta}{\lambda}\right)_{a} + \left(\frac{\delta}{\lambda}\right)_{3. H} + \frac{1}{\alpha_2}}$$

где $\left(\frac{\delta}{\lambda}\right)_{3. B}$ — тепловое сопротивление внутреннего слоя загрязнения [принимаем для прямогонного керосина равным 0,00035 (м²·K)/Вт (см. Приложение 5)]; $\left(\frac{\delta}{\lambda}\right)_{n} = \frac{0,002}{91,9} = 0,000022$ (м²·K)/Вт — тепловое вое сопротивление латунной стенки трубы при $\delta = 0,002$ м и $\lambda = 91,9$ Вт/(м·K); $\left(\frac{\delta}{\lambda}\right)_{a} = \frac{0,0015}{205} = 0,000073$ (м²·K)/Вт — тепловое сопротивление алюминиевого слоя трубы при $\delta = 0,0015$ м и $\lambda = 205$ Вт/(м·K); $\left(\frac{\delta}{\lambda}\right)_{3. H}$ — тепловое сопротивление наружного слоя загрязнения — выбираем в пределах 0,00017 — 0,00086 [50], для дальнейшего расчета эта величина принята равной 0,00060 (м²·K)/Вт.

Подставив эти значения в формулу получим:

$$k = \frac{1}{\frac{1}{1676} + 0,00035 + 0,000022 + 0,000073 + 0,00060 + \frac{1}{105}}} = 90 \text{ Br/(M}^2 \cdot \text{K})$$

7. Средний температурный напор

При многоходовом потоке теплоносителя в трубном пространстве холодильника (в нашем случае — керосин) и одноходовом потоке теплоносителя в межтрубном пространстве (в нашем случае воздух) средний температурный напор определяется по методу Белоконя [5, с. 561]:

$$\Delta T_{\rm cp} \coloneqq \frac{\tau_{\rm Makc} - \tau_{\rm MHH}}{2,3 \, \lg \frac{\tau_{\rm Makc}}{\tau_{\rm MHH}}}$$

Здесь ΔT_{cp} — средний температурный напор, К; $\tau_{\text{макс}}$, $\tau_{\text{мин}}$ — соответственно бо́льшая и меньшая разность температур, определяемая по формулам:

$$\tau_{\text{MARC}} = \theta + 0.5 \,\Delta T$$
$$\tau_{\text{MAR}} = \theta - 0.5 \,\Delta T$$

где 0-- разность среднеарифметических температур горячего и холодного теплоносителей

$$\theta = \frac{T_1' + T_1''}{2} - \frac{T_2' + T_2''}{2}$$

а ΔT — характеристическая разность температур. Рассчитаем ΔT по формуле:

$$\Delta T = \sqrt{(\Delta T_1 + \Delta T_2)^2 - 4P \,\Delta T_1 \,\Delta T_2}$$

где $\Delta T_1 = T'_1 - T''_1$ — перепад температур в горячем потоке; $\Delta T_2 = T'_2 - T'_2$ — перепад температур в холодном потоке; P — индекс противоточности. В нашем случае P = 0.98 [5, с. 562].

112

Имеем

$$\Delta T_1 = 377 - 315 = 62K$$

$$\Delta T_2 = 333 - 299 = 34K$$

$$T = \sqrt{(62 + 34)^2 - 4 \cdot 0.98 \cdot 62 \cdot 34} = 30.9K$$

$$\theta = \frac{377 + 315}{2} - \frac{299 + 333}{2} = 30K$$

$$\tau_{\text{Makc}} = 30 + 0.5 \cdot 30.9 = 45.5K$$

$$\tau_{\text{MHH}} = 30 - 0.5 \cdot 30.9 = 14.5K$$

Тогда

$$\Delta T_{\rm cp} = \frac{45,5 - 14,5}{2,3 \, \lg \frac{45,5}{14,5}} = 27,3 \, \mathrm{K}$$

Проверим температуру стенки трубы.

Температуру стенки трубы со стороны керосина найдем по формуле:

$$T_{w.1} = T_{cp.1} - \frac{k \Delta T_{cp}}{\alpha_1} = 73 - \frac{90 \cdot 27,3}{1676} = 71,5K$$

Найденная температура близка к ранее принятой $T_{w,1} = 71$ К.

8. Козффициент теплоотдачи $lpha_{v}$ при поперечном обтекании воздухом пучка оребренных труб

При спиральном оребрении труб, расположенных в шахматном порядке, для определения коэффициента теплоотдачи [в Вт/(м²·К)] воспользуемся формулой [51]:

$$\alpha_{\kappa} = 0.364\lambda \left(\frac{\rho_{\rm B} \omega_{\rm o}'}{\mu}\right)^{0.68} \Pr^{0.33} d_3^{-0.77} \delta_{\rm p}^{0.3} d_4^{0.15}$$

где $\lambda = 0.0273 \text{ Br}/(M \cdot \text{K})$ — коэффициент теплопроводности воздуха при его средней температуре (табл. 2.1); рв — плотность воздуха при T_{ср. 2}, кг/м³; w'_o — скорость воздушного потока в сжатом (узком) сечении одного ряда труб оребренного пучка, м/с; и - динамическая вязкость воздуха при $T_{cp, 2}$, Па · с; Pr = 0.71 - критерий Прандтля при T_{ср. 2}; δ_p — средняя толщина ребра, м. Величину w'_0 определим по формуле [52]:

$$w_{o}' = w_{H} \frac{\sigma}{\sigma - 1 - 2 \frac{\sigma_{p}}{d_{3}} \cdot \frac{h_{p}}{d_{3}} \cdot \frac{d_{3}}{S_{p}}}$$

где w_н — скорость набегающего воздушного потока при входе в трубный пучок, т. е. в свободном сечении перед секциями оребренных труб; $\sigma = S_n/d_3$ (S_n — поперечный шаг оребренных труб, принятый ранее равным 0,052 м)

$$\sigma = \frac{0,052}{0,028} = 1,86$$

h_p == 0,0105 м — высота ребра; S_p == 0,0035 м — шаг ребер. Скорость набегающего воздушного потока:

$$w_{\rm H} = \frac{V_{\rm A}}{LB} = \frac{V_{\rm A}}{F_{\rm CB}}$$

где $V_{\rm g}$ — действительный секундный расход воздуха, м/с; $F_{\rm CB} = = L \times B = 4 \times 4 = 16$ м² — фронтальное к потоку воздуха сечение аппарата.

Таким образом

$$w_{\rm H} = \frac{64}{16} = 4 \, {\rm M/c}$$

Средняя толщина ребра:

$$\delta_{\rm p} = \frac{\delta_1 + \delta_2}{2}$$

где $\delta_1 = 0,0006$ м — толщина ребра в его вершине; $\delta_2 = 0,0011$ м — толщина ребра в его основании.

Имеем:

$$\delta_{\rm p} = \frac{0,0006 + 0,0011}{2} = 0,00085$$
 M

Скорость воздушного потока в сжатом сечении:

$$w'_{o} = \frac{4 \cdot 1,86}{1,86 - 1 - 2 \frac{0,00085}{0,028} \cdot \frac{0,0105}{0,028} \cdot \frac{0,028}{0,0025}} = 10,6 \text{ M/c}$$

Динамическая вязкость воздуха при T_{ср. 2}:

$$\mu = \nu \rho_{\rm B} = 17,26 \cdot 10^{-6} \cdot 1,1166 = 19,26 \cdot 10^{-6} \, \Pi a \cdot c$$

(численные значения v и $\rho_{\rm B}$ взяты из табл. 2.1).

Подставив в формулу значения всех величин, получим:

$$\alpha_{\kappa} = 0,364 \cdot 0,0273 \left(\frac{1,1166 \cdot 10,6}{19,26 \cdot 10^{-6}}\right)^{0,68} \cdot 0,71^{0,33} \cdot 0,028^{-0,77} \times 0,00085^{0,3} \cdot 0,049^{0.15} = 95 \text{ Bt/(M}^2 \cdot \text{K)}$$

. ...

Коэффициент теплоотдачи $\alpha_{\rm K}$ сильно зависит от диаметра трубы d_3 , несколько меньше от толщины ребра $\delta_{\rm p}$ и почти не зависит от диаметра ребра d_4 .

9. Приведенный коэффициент теплоотдачи апр со стороны воздуха в случае пучка оребренных труб

Приведенный коэффициент теплоотдачи α_{np} учитывает конвективный теплообмен между оребренной поверхностью и потоком воздуха и передачу тепла теплопроводностью через металл ребер. Его величину необходимо знать, чтобы определить коэффициент теплопередачи k.

В литературе отсутствуют надежные данные, позволяющие подсчитать α_{пр} для случая ребристой спиральной поверхности. Ввиду

малого шага спирали определяем приведенный коэффициент теплоотдачи по формуле [53, с. 137] для дисковых (круглых) ребер:

$$\alpha_{\rm np} = \left[1 + \frac{F_{\rm p}}{F_{\rm n}} (E\varepsilon_{\Delta} - 1)\right] \frac{\psi \alpha_{\rm K}}{1 + \beta_3 \psi \alpha_{\rm K}}$$

где $F_{\rm p}$ — поверхность ребер, приходящаяся на 1 м длины трубы, м²/м; F_п — полная наружная поверхность 1 м оребренной трубы. M^2/M : Е — коэффициент эффективности ребра, учитывающий понижение его температуры по мере удаления от основания, — находим по рис. 2.6 [53, с. 52]; ел - коэффициент, учитывающий трапециевидформу сечения ребную ра, — находим по рис. 2.7 [53, c. 52]; $\psi = 0.85 - \Im$ риментально найденный коэффициент. учитывающий неравномерность теплоотдаповерхности ЧИ по реб- $)_{3...} = 0,00060$ $\beta_3 = \left(\frac{\check{\lambda}}{\lambda}\right)$ pa; м² · К/Вт — тепловое сопрозагрязнения тивление наружной поверхности трубы, принимаемое (для сравне-

Рис. 2.6. График для определения коэффициента Е.

Рис. 2.7. График для определения коэффициента $\Sigma_\Delta.$

ния) равным тепловому сопротивлению наружного загрязнения поверхности гладких труб (см. выше).

Находим поверхность ребер, приходящуюся на 1 м длины трубы (см. рис. 2.4):

$$F_{\rm p} = \pi x \left(2 \, \frac{d_4^2 - d_3^2}{4} + d_4 \delta_{\rm cp} \right)$$

где x = 286 — число спиральных витков ребер, приходящихся на 1 м длины трубы. Имеем:

$$F_{\rm p} = 3.14 \cdot 286 \left(2 \frac{0.049^2 - 0.028^2}{4} + 0.049 \cdot 0.00085 \right) = 0.761 \,{\rm m}^2/{\rm m}$$

Определяем наружную поверхность участков гладкой трубы между ребрами, приходящуюся на 1 м длины трубы:

$$F_{\rm tp} = \pi d_3 \left(1 - x \delta_2\right) = 3,14 \cdot 0,028 \left(1 - 286 \cdot 0,0011\right) = 0,06 \, {\rm m}^2/{\rm m}$$

где δ_2 — ширина ребер у основания (см. рис. 2.4).

Полная наружная поверхность і м оребренной трубы будет равна:

$$F_{\rm n} = F_{\rm p} + F_{\rm tp} = 0.761 + 0.06 = 0.821 \, \text{m}^2/\text{m}$$

Предварительно вычисляем соотношения, необходимые для пользования рис. 2.6 и 2.7:

$$\frac{d_4}{d_3} = \frac{49}{28} = 1,75$$
 и $\sqrt{\frac{\delta_1}{\delta_2}} = \sqrt{\frac{0,6}{1,1}} = 0,738$

Чтобы учесть наружное загрязнение труб, необходимо вычислить подкоренные выражения аргументов графических зависимостей (см. рис. 2.6 и 2.7) и поделить их на величину $(1 + \beta_3 \psi \alpha_{\mu})$.

Получим:

$$\sqrt{\frac{\alpha_{\kappa}\psi}{\lambda_{a}(\delta_{1}+\delta_{2})(1+\beta_{3}\psi\alpha_{\kappa})}} (d_{4}-d_{3}) = \sqrt{\frac{95\cdot0.85}{201.2(0,0006+0,0011)(1+0,00026\cdot0.85\cdot95)}} (0,049-0.028) = 0.3$$

Здесь $\lambda_a = 201.2$ Вт/(м·К) — коэффициент теплопроводности алюминиевого ребра трубы.

Так как $d_4 - d_3 = 2h_p$, то

$$2h_{\rm p}\sqrt{\frac{\alpha_{\rm K}\psi}{\lambda_{\rm a}\,(\delta_1+\delta_2)\,(1+\beta_3\psi\alpha_{\rm K})}}=0.3$$

Тогда по рис. 2.6 E = 0.96, по рис. 2.7 $\epsilon_{\Lambda} = 1.02$. Определяем приведенный коэффициент теплоотдачи:

$$\alpha_{\rm np} = \left[1 + \frac{0.761}{0.84} (0.96 \cdot 1.02 - 1)\right] \frac{0.85 \cdot 95}{1 + 0.0060 \cdot 0.85 \cdot 95} = 76 \quad {\rm Bt}/({\rm M}^2 \cdot {\rm K})$$

10. Коэффициент теплопередачи для пучка оребренных труб

Ведем расчет на единицу гладкой поверхности трубы по формуле [45, с. 196]:

$$k_{o} = \frac{1}{\frac{1}{\alpha_{\star}} + \left(\frac{\delta}{\lambda}\right)_{3.B} + \left(\frac{\delta}{\lambda}\right)_{\pi} + \left(\frac{\delta}{\lambda}\right)_{a} + \left(\frac{\delta}{\lambda}\right)_{3.H} + \frac{F_{cT}}{F_{T}} \cdot \frac{1}{\alpha_{\pi p}}}$$

где F_{ct} — поверхность гладкой трубы (по наружному диаметру), приходящаяся на 1 м ее длины

$$F_{\rm ct.} = \pi d_3 \cdot 1 = 3,14 \cdot 0,028 \cdot 1 = 0,088 \, \text{m}^2/\text{m}$$

Все остальные величины и обозначения — прежние. Получим:

$$k_{0} = \frac{1}{\frac{1}{1676} + 0,00035 + 0,00022 + 0,000075 + 0,00060 + \frac{0,088}{0,821} \cdot \frac{1}{76}} = 330 \text{ Br/(m}^{2} \cdot \text{K})$$

Следовательно, при прочих равных условиях оребрение гладкой поверхности трубы со стороны воздуха приводит к значительному увеличению коэффициента теплопередачи (в $\frac{330}{90} = 3,7$ раза).

Поверхность теплообмена холодильника и компоновка труб в нем

Находим поверхность теплообмена холодильника с оребренными трубами, отнесенную к гладким трубам, так как значение k_o для этих труб также рассчитывалось на единицу гладкой поверхности трубы.

$$F = \frac{Q_1}{k_0 \,\Delta T_{\rm cp}} = \frac{13 \cdot 10^6}{330 \cdot 27,3} = 145 \,\,{\rm m}^2$$

Количество труб:

$$N = \frac{F}{F_1} = \frac{145}{0,352} = 412$$

где $F_1 = 3,14 \cdot 0,028 \cdot 4 = 0,352 \text{ м}^2$ — поверхность теплообмена одной трубы.

Если бы наружная поверхность труб не была оребрена, то поверхность теплообмена аппарата

$$F_{\rm r} = \frac{Q_{\rm l}}{k \,\Delta T_{\rm cp}} = \frac{13 \cdot 10^6}{90 \cdot 27,3} = 529 \,\,{\rm m}^2$$

т. е. была бы больше в

$$\frac{F_{\rm r}}{F} = \frac{529}{145} = 3,7$$
 pasa

Определим число n_1 труб для одного хода керосина при принятой ранее скорости движения керосина $\omega = 1,5$ м/с:

 $n_1 = \frac{G_1 \cdot 4}{3600\rho_{\text{cp. 1}}\pi d_1^2 \omega} = \frac{35\ 000 \cdot 4}{3600 \cdot 760 \cdot 3, 14 \cdot 0, 021^2 \cdot 1, 5} = 25 \text{ rpy}6$

Для удобства монтажных работ пучок труб распределим на три секции, в каждой секции разместим по 141 трубе. Схема компоновки пучка одной секции аппарата показана на рис. 2.8, а.

Из этой схемы видно, что охлаждаемый продукт — керосин последовательно делает 6 ходов в секции, причем в каждом из них движется одновременно по 24 и 23 трубам. Такая схема теплообмена называется смешанно-перекрестным током. Индекс противоточности для нее P = 1. Выше при расчеге было принято P = 0.98. Это не вносит сколько-нибудь заметной погрешности в определение величины $\Delta T_{\rm cp}$.

Рис. 2.8. Схема движения керосина в трубном пучке (a) и компоновка трубных пучков (б).

Как видно из схемы расположения труб в секциях, общее число труб в холодильнике составляет $N_{\rm g} = 423$.

12. Аэродинамическое сопротивление пучка труб

Аэродинамическое сопротивление пучка труб (в Па) определяем по формуле [52, с. 93]:

$$\Delta P = 9.7 \frac{\rho_{\rm B}}{g} (w_{\rm o}')^2 n_{\rm B} \left(\frac{S_{\rm p}}{d_3}\right)^{-0.72} {\rm Re}^{-0.24}$$

где $\rho_{\rm B} = 1,18$ кг/м³ — плотность воздуха при его начальной температуре; $\omega'_0 = 10,6$ м/с — скорость воздуха в сжатом (узком) сечении оребренного трубного пучка; $n_{\rm B} = 6$ — число горизонтальных рядов труб в пучке (по вертикали); $d_3 = 0,028$ м — наружный диаметр трубы (см. рис. 2.4).

Критерий Рейнольдса, отнесенный к диаметру труб d₃:

$$\operatorname{Re} = \frac{w_0' d_3}{v_{\text{cp. 2}}} = \frac{10.6 \cdot 0.028}{17.26 \cdot 10^{-6}} = 16\,800$$

Подставляя указанные величины в формулу, получим:

$$\Delta P = 9.7 \frac{1.18}{9.81} \cdot 10.6^2 \cdot 6 \left(\frac{0.0035}{0.0280}\right)^{-0.72} \cdot 16800^{-0.24} = 334 \ \Pi a$$

Выбранный выше вентилятор ЦАГИ УК-2М развивает напор до 403 Па, поэтому он с известным запасом по производительности и напору обеспечит работу холодильника.

13. Мощность электродвигателя к вентилятору

Расход электроэнергии для вентилятора (в кВт) определим по формуле:

$$N_{\mathfrak{s}} = 0,00981 \, \frac{V_{\mathfrak{B}} \Delta P}{\eta}$$

где n = 0,62 — к.п.д. вентилятора (принимается). Имеем:

$$N_{\mathfrak{s}} = 0,00981 \frac{32 \cdot 334}{9,81 \cdot 0,62} = 17,5 \text{ KBr}$$

При подборе электродвигателя расчетную мощность следует увеличить на 10% для обеспечения пуска двигателя. Поэтому действительная мощность двигателя:

$$N_{2,1} = 1, 1N_2 = 1, 1 \cdot 17, 5 = 20 \text{ KBr}$$

Согласно [48, с. 67, табл. 11], установочная мощность электродвигателя составляет 53 кВт. Коэффициент использования установочной мощности

$$\varphi = \frac{N_{\mathfrak{s. n}}}{N_{\mathrm{ycr}}} = \frac{20}{53} \approx 0.37$$

Как правило, $\varphi = 0.3 \div 0.5$.

КОЖУХОТРУБЧАТЫЙ КОНДЕНСАТОР-ХОЛОДИЛЬНИК

Рассчитать кожухотрубчатый конденсатор-холодильник установки каталитического крекинга при следующих исходных данных: в конденсатор-холодильник из ректификационной колонны поступает парогазовая смесь в количестве 79740 кг/ч, в том числе сухого газа 8440 кг/ч, бутан-бутиленовой фракции 12 300 кг/ч, дебутанизированного бензина 56 000 кг/ч, водяного пара 3000 кг/ч; относительная плотность дебутанизированного бензина $\rho_{277}^{293} = 0,745$; начальная температура охлаждающей воды $T'_2 = 298$ К; давление на верху ректификационной колонны 157.10³ Па (1,6 ат).

Состав углеводородной части газов и паров, поступающих в аппарат, приводится в табл. 2.2, кривая ИТК дебутанизированного бензина изображена на рис. 2.9.

Особенности работы конденсаторов-холодильников и общие принципы их технологического расчета достаточно подробно изложены в литературе [5, с. 563—566]. Ниже приводится поверочный расчет стандартного кожухотрубчатого конденсатора-холодильника установки каталитического крекинга. В этом аппарате происходит неполная конденсация продуктов парогазового потока, который затем в газосепараторе разделяется на жирный газ, нестабильный бензин и воду. Жирный газ содержит небольшое количество водяного пара и значительное количество бензиновых фракций, нестабильный бензин содержит заметное количество растворенных газов с высокой летучестью. Именно поэтому жирный газ и нестабильный бензин направляются на газофракционирующую установку, на которой получают стабильный бензин, бутанбутиленовую и пропан-пропиленовую фракции и сухой газ. Подробно об этом сказано в литературе [54, с. 216—219].

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА КОНДЕНСАТОРА-ХОЛОДИЛЬНИКА

1. Определяют температуру парогазового потока на входе в конденсатор-холодильник. Она должна равняться температуре на верху колонны, из которой этот поток поступает в конденсаторхолодильник. Углеводородная часть потока представляет насыщенные пары, поэтому их температуру нужно определять по уравнению изотермы паровой фазы методом постепенного приближения. Так как дебутанизированный бензин является сравнительно широкой фракцией, то для большей точности расчета разбиваем его на четыре узких фракции, каждую из которых принимаем за условный компонент с температурой кипения, равной средней температуре кипения этой узкой фракции по ИТК бензина. С другой стороны, в целях некоторого упрощения расчета этан и этилен объединяются в одну этан-этиленовую фракцию, летучесть которой будет определяться как для этана; пропан и пропилен будут считаться одной пропан-пропиленовой фракцией, с летучестью, определяемой по пропану; бутаны и бутилены считаются одной бутан-бутиленовой фракцией, с летучестью, определяемой по бутану.

2. Определяют температуру в конце первой зоны конденсаторахолодильника. В этой зоне происходит частичная конденсация углеводородной части паров, а водяные пары достигают температуры насыщения. Расчет температуры в конце первой зоны ведется по следующей схеме: а) задаются несколькими значениями этой температуры и при каждом из них находят долю несконденсировавшихся углеводородных паров по методу Трегубова, а затем строят кривую «доля паров — температура»; б) по этой кривой при нескольких температурах определяют доли паров, рассчитывают соответствующие им парциальные давления водяного пара и строят кривую «парциальное давление водяного паратемпература»; в) при тех же температурах (или любых других в том же интервале) находят давление насыщенного водяного пара в чистом виде и на графике (п. «б») строят кривую «давление насыщенного водяного пара - температура»; г) координатами точки пересечения двух последних кривых будут температура в конце первой зоны и соответствующее ей парциальное давление

насыщенного водяного пара; д) по кривой (п. «а») находят долю паров, соответствующую температуре в конце первой зоны.

3. Во второй зоне конденсатора-холодильника будет происходить совместная конденсация углеводородных и водяных паров. Температура в конце второй зоны, а значит и на выходе из конденсатора-холодильника, будет зависеть от начальной температуры охлаждающей воды: чем ниже последняя, тем ниже температура на выходе из аппарата и выше степень конденсации паров. Однако полной конденсации паров не произойдет и, как сказано выше, конденсатор-холодильник будет покидать поток, находящийся в парожидком состоянии. Температура в конце второй зоны или, что все равно, на выходе из аппарата должна назначаться на 10-15 К выше начальной температуры охлаждающей воды. При этой температуре рассчитывают, по методу Трегубова, лолю паров (а следовательно, и долю конденсата) на выходе парожидкого потока из конденсатора-холодильника и количества каждого компонента в парах и конденсате. Определяют также количество сконденсировавшегося водяного пара.

4. На основе результатов предыдущих расчетов рассчитывают тепловые нагрузки обеих зон конденсатора-холодильника.

5. Определяют расход охлаждающей воды и ее температуру в конце первой зоны аппарата.

6. Выбирают тип кожухотрубчатого конденсатора-холодильника по существующим нормалям. Для этого на основании практических данных выбирают коэффициент теплопередачи в проектируемом аппарате, а также рассчитывают средний температурный напор в нем. Затем определяют предполагаемую поверхность теплообмена, а по ней выбирают подходящий стандартный аппарат. Следует учесть при этом, чтобы скорость воды, проходящей по трубкам, не была низкой, так как коэффициент теплоотдачи от стенок труб к воде ниже, чем коэффициент теплоотдачи со стороны конденсирующихся паров, и, следовательно, им будет определяться значение коэффициента теплопередачи в аппарате.

7. Определяют средние температурные напоры в обеих зонах конденсатора-холодильника.

8. Определяют коэффициенты теплопередачи для обеих зон выбранного в п. 6 стандартного аппарата.

9. Определяют поверхности теплообмена каждой зоны аппарата, общую поверхность теплообмена и необходимое число аппаратов ранее выбранной конструкции.

РАСЧЕТ

1. Температура смеси углеводородных и водяных паров на входе в конденсатор-холодильник

Задача сводится к определению температуры на верху колонны, из которой углеводородные пары (табл. 2.2) в смеси с водяным паром поступают в конденсатор-холодильник. С целью некоторого упрощения расчета давление в аппарате считаем

Таблица 2.2

Компонен- ты	H2	CH4	C ₂ H4	C ₂ H ₆	С ₃ Н 8	C ₃ H ₈	<i>изо</i> - -С4Н ₈	<i>н-</i> С4Н8	<i>цзо</i> . -С4Н10	н-С4H10	Дебутани- зирован- ный бензин	Сумма
Количе- ство, кг/ч	100	1560	620	1190	3170	1800	54	00	69	00	56 000	76 740

постоянным и равным $\pi = 157 \cdot 10^3$ Па (1,6 ат). Для всех последующих расчетов принимаем, что углеводородная часть парогазовой

Рис. 2.9. График разгонки дебутапизированного бензина по ИТК.

смеси, поступающей в конденсаторхолодильник, состоит из следующих компонентов: водорода, метана, этан-этиленовой фракции, пропанпропиленовой фракции, бутан-бутиленовой фракции и четырех узких фракций дебутанизированного бензина, с содержанием каждой из них в бензине по 25 масс. %.

а. Среднюю температуру кипения узкой фракции бензина находим как температуру ее 50%-го отгона (выкипания) по ИТК. В нашем случае по рис. 2.9 будем иметь: $T_{\rm cp.1} = 326$ K, $T_{\rm cp.2} = 353$ K, $T_{\rm cp.3} =$ = 391 K, $T_{\rm cp.4} = 450$ K.

б. Среднюю молекулярную массу каждой узкой фракции определяем по формуле Воинова:

$$M = 52,63 - 0,246T_{\text{cp. }i} + 0,001T_{\text{cp. }i}^2$$

Средняя молекулярная масса первой бензиновой узкой фракции:

$$M_1 = 52,63 - 0,246 \cdot 326 + 0,001 \cdot 326^2 = 79$$

Аналогично получим: $M_2 = 90$, $M_3 = 109$, $M_4 = 145$. Находим среднюю молекулярную массу бензина:

$$M_6 = \frac{1}{\sum_{i=1}^{4} \frac{c_i}{M_i}}$$

где c_i — массовые доли узких фракций — компонентов в бензине $(c_1 = c_2 = c_3 = c_4 = 0.25)$. Имеем:

$$M_6 = \frac{1}{\frac{0.25}{79} + \frac{0.25}{90} + \frac{0.25}{109} + \frac{0.25}{145}} = 104$$

в. По массовым количествам (табл. 2.2) и молекулярным массам углеводородов определим молекулярные массы углеводородных фракций по формуле:

$$M_{cl} = \frac{m_1 + m_2 + \dots + m_n}{\frac{m_1}{M_1} + \frac{m_2}{M_2} + \dots + \frac{m_n}{M_n}}$$

где m_1, m_2, \ldots, m_n — массовые количества углеводородов, входящих в данную фракцию; M_1, M_2, \ldots, M_n — молекулярные массы этих углеводородов. Этан-этиленовая фракция (ΣC_2):

$$M_{\rm C_2} = \frac{\frac{620 + 1190}{20}}{\frac{620}{28} + \frac{1190}{30}} = 29,4$$

Пропан-пропиленовая фракция ($\sum C_3$):

$$M_{\rm C_s} = \frac{3170 + 1800}{\frac{3170}{42} + \frac{1800}{44}} = 42,6$$

Бутан-бутиленовая фракция ($\sum C_4$)

$$M_{\rm C_4} = \frac{\frac{5400}{5400} + \frac{6900}{56}}{\frac{5400}{56} + \frac{6900}{58}} = 57, 1$$

г. Мольный состав парогазовой смеси, поступающей в конденсатор-холодильник, рассчитан на основе данных, полученных выше (табл. 2.3).

Таблица 2,3

1 $H_2 \dots \dots \dots P_2$ 100 0,0013 50 0,0455 2 $CH_4 \dots \dots P_2$ 16 1560 0,0205 97,5 0,0887 3 $\sum C_2$ (этан) $\dots 29,4$ 1810 0,0235 61,6 0,0561 4 $\sum C_3$ (пропан) $\dots 42,6$ 4 970 0,0661 116,7 0,1062 5 $\sum C_4$ (бутан) $\dots 57,1$ 12 300 0,161 215,4 0,1960 6 Первая узкая фракция бензина \dots 79 14 000 0,183 177,2 0,1612 7 Вторая узкая фракция бензина \dots 90 14 000 0,183 155,6 0,1416 8 Третья узкая фракция бензина \dots 109 14 000 0,183 128,4 0,1168 9 Четвертая узкая фракция \dots 145 14000 0,183 128,4 0,1168 9 Четвертая узкая фракция \dots -76740 1,005 ≈ 1 1099,0 1,0 0 Латий \dots -76740 1,005 ≈ 1 1099,0 1,0	Номера компо- нентов	Компоненты	М	Массовое количе- ство, кг/ч	Массовая доля ^с і	Число молей, кмоль/ч	Мольная доля с _і
водяной пар 10 восо восо	1 2 3 4 5 6 7 8 9	H2	$\begin{array}{c} 2 \\ 16 \\ 29,4 \\ 42,6 \\ 57,1 \\ 79 \\ 90 \\ 109 \\ 145 \\ - \\ 18 \end{array}$	100 1 560 1 810 4 970 12 300 14 000 14 000 14 000 14 000 76 740 3 000	$\begin{array}{c} 0,0013\\ 0,0205\\ 0,0235\\ 0,0661\\ 0,161\\ 0,183\\ 0,183\\ 0,183\\ 0,183\\ 1,005\approx 1\\\end{array}$	50 97,5 61,6 116,7 215,4 177,2 155,6 128,4 96,6 1099,0 166,7	0,0455 0,0887 0,0561 0,1062 0,1960 0,1612 0,1612 0,1416 0,1168 0,0879 1,0

д. Температуру T₁ паров на входе в конденсатор-холодильник определяем методом постепенного приближения по уравнению изотермы паровой фазы [1, с. 113]:

$$\sum_{1}^{9} \frac{c_i'}{k_i} = N$$

Здесь c'_i — мольные доли компонентов в смеси (табл. 2.3); k_i — константы фазового равновесия компонентов при давлении $\pi = 157 \cdot 10^3$ Па (1,6 ат) и температуре T'_i , определяемые по формуле:

$$k_i = \frac{P_i}{\pi}$$

в которой P_i — давления насыщенных паров компонентов при температуре T'_i ; N — коэффициент, учитывающий влияние водяного пара на состояние системы [1, с. 112]:

$$N = 1 + \frac{Z'}{e'L'} = \frac{1}{1 - y'_Z} = \frac{\pi}{\pi - p_Z}$$

где $p_Z = \pi y'_Z$ — парциальное давление водяного пара в смеси с углеводородными парами; y'_Z — мольная доля водяных паров в их смеси с углеводородными парами, равная

$$y'_Z = \frac{Z'}{Z' + L'}$$

В последней формуле Z' — количество водяного пара (табл. 2.3), кмоль/ч; L' — количество молей углеводородной смеси, поступающей в конденсатор-холодильник (табл. 2.3), кмоль/ч.

Найдем величину N для нашего случая:

$$N = \frac{1}{1 - y'_Z} = \frac{1}{1 - \frac{166,7}{166,7 + 1099}} = 1,152$$

Примем $T'_1 = 393$ К и по диаграмме Кокса [55, с. 45; 56] найдем давления насыщенных паров всех компонентов (табл. 2.3), кроме водорода. Разделив давление пара каждого из них на л, найдем константы фазового равновесия компонентов: $k_2 = 246$, $k_3 = 82$, $k_4 = 35$, $k_5 = 14.7$, $k_6 = 4.32$, $k_7 = 1.64$, $k_8 = 0.67$, $k_9 = 0.102$. Для водорода константу фазового равновесия находим по номограмме [57]; $k_1 = 350$. Подставив в уравнение изотермы паровой фазы все известные величины, получим:

$$\sum_{1} \frac{c_{i}}{k_{i}} = \frac{0.0455}{350} + \frac{0.0887}{246} + \frac{0.0561}{82} + \frac{0.1062}{35} + \frac{0.1960}{14.7} + \frac{0.1612}{4.32} + \frac{0.1416}{1.64} + \frac{0.1168}{0.67} + \frac{0.0879}{0.102} = 1,177$$

Полученная сумма несколько больше величины N, определенной выше, однако расхождение составляет примерно 2,2%, поэтому пересчета не делаем.

a

Следовательно, температура $T'_1 = 393$ К.

Водяной пар был бы в насыщенном состоянии, если бы его парциальное давление p_Z при $T'_1 = 393$ К было равно давлению насыщенных паров воды P_Z при той же температуре. По таблицам насыщенного водяного пара [49, с. 589 или Приложение 4] находим, что при 393 К $P_Z = 200 \cdot 10^3$ Па (2,03 ат). Парциальное давление водяного пара в смеси с углеводородными парами при входе в конденсатор равно:

$$p_Z = \pi y'_Z = 157 \cdot 10^3 \frac{166,7}{166,7 + 1099} = 20,6 \cdot 10^3 \text{ Translation}$$

Следовательно, $p_Z \ll P_Z$, т. е. водяной пар, поступающий в конденсатор-холодильник вместе с углеводородными парами, находится в перегретом состоянии.

2. Температура в конце первой зоны конденсатора-холодильника

В первой зоне аппарата происходит частичная конденсация углеводородных паров в присутствии перегретого водяного пара, который в конце зоны переходит в насыщенное состояние. Это означает, что при температуре T_1 парциальное давление p_{Z1} водяного пара станет равным давлению насыщенного водяного пара P_{Z1} при той же температуре. Очевидно, что T_1 будет ниже той температуры, при которой $p_{Z1} = P_{Z1} = 157 \cdot 10^3$ Па (1,6 ат), так как углеводородные пары в первой зоне полностью не конденсируются. Предположив, однако, что $p_Z = P_Z = 157 \cdot 10^3$ Па, по таблицам насыщенного водяного пара находим, что температура, соответствующая этому давлению паров, ~ 386 К. Следовательно, T_1 должно быть ниже 386 К.

Howana		$T_1 =$	373 K	$T_1 =$	353 K	$T_1 =$	333 K
Компо- нентов	Компо- ненты	$P_{i \cdot 10}^{-6},$ ITa	$k_i = \frac{P_i}{\pi}$	$P_{i \cdot 10}^{-6}.$	$k_i = \frac{P_i}{\pi}$	$P_i \cdot 10^{-6}$, Πa	$k_i = \frac{P_i}{\pi}$
1 2 3 4	$\begin{array}{c} H_2\\ CH_4\\ \sum C_2\\ \sum C_2\\ \sum C_3\end{array}$	36,8 11 4,16	400 234 70 26,6	33,9 9 3,19	415 216 57.4 20,4	30,7 7,14 2,13	430 195 45,5 13,6
5 6 7 8 9	$\sum_{\substack{ \Delta {\rm E}_1 \\ \Delta {\rm E}_2 \\ \Delta {\rm E}_2 \\ \Delta {\rm E}_3 \\ \Delta {\rm E}_4 }$	1,67 0,392 0,161 0,057 0,0085	10,6 2,48 1,03 0,363 0,054	1,12 0,228 0,09 0,03 0,0036	7,1 1,44 0,57 0,188 0,023	0,71 0,132 0,045 0,013 0,0014	4,55 0,84 0,288 0,083 0,0087

Габлица 2	4
-----------	---

 ^{*} Сокращенное обозначение каждой из четырех узких фракций дебутанизированного бензина.

Задаемся несколькими значениями температуры T_1 : 373, 353 и 333 К. Для каждой температуры по диаграмме Кокса находим значения P_i — давлений насыщенных паров компонентов и рассчитываем k_i — константы фазового равновесия для них. Константы фазового равновесия для H_2 находим по номограмме [57]. Полученные данные сведены в табл. 2.4.

Для каждой из выбранных температур T_1 рассчитываем e'_1 — мольную долю паров в конце первой зоны конденсатора-холодильника аналитическим методом Трегубова по уравнению [1, с. 113]:

$$\sum_{1}^{9} x'_{1i} = \sum_{1}^{9} \frac{c_i}{1 + e'_1(k_i N - 1)} = 1$$

где x'_{1i} — мольные доли компонентов в конденсате в конце первой зоны; c'_i — мольные доли компонентов в углеводородных парах, поступающих в конденсатор-холодильник (табл. 2.3); N — поправочный коэффициент (см. п. 1 расчета).

Для примера рассчитаем e'_1 при $T_1 = 353$ К. После нескольких попыток принимаем $e'_1 = 0,785$.

Находим:

$$N = 1 + \frac{166,7}{0,785 \cdot 1099} = 1,194$$

Расчет приведен в табл. 2.5

Аналогичные расчеты сделаны для T₁, равной 373 К и 333 К. Расчет значений y'₁ — мольных долей компонентов в парах в конце первой зоны, ведется по уравнению равновесия [1, с. 112]:

 $y'_{1i} = k_i N x'_{1i}$

Результаты расчетов сведены в табл. 2.6.

По данным табл. 2.6 строим кривую (рис. 2.10) зависимости e'_1 от температуры. Чем больше точек (e'_1 , T_1), тем точнее кривая $e'_1 = f(T_1)$. Кроме трех рассчитанных (табл. 2.6) точек мы имеем еще одну, соответствующую температуре входа паров в аппарат (393 К). По этой кривой находим значения e'_1 при нескольких произвольных (в интервале 333 — 393 К) температурах, например:

$$T_1 = 333 \text{ K} \quad e_1' = 0,65$$

$$T_1 = 353 \text{ K} \quad e_1' = 0,785$$

$$T_1 = 373 \text{ K} \quad e_1' = 0,9$$

$$T_1 = 393 \text{ K} \quad e_1' = 1,0$$

Рассчитываем парциальные давления водяного пара при этих температурах по формуле:

$$p_Z = \pi \frac{Z'}{Z' + e_1'L'}$$

$N_{i1}x_{i}$	979 3 07	345	11	77 28 375	[02 }≈1		1,234	1	395 16	358 38	ų	33 175	29 265	* ≈	
$y'_{1i} = k_i$	0,05 0,11 0,07	0,13	0,24	0,17 0,06 0,06	10'0 3666'0		=0,65 , <i>N</i> ==	, ⁿ	0,06 0,13	0,05 0,15	0,27	0,16	000	1,0065	
$=\frac{x'_{ii}}{c'_{i}}$	0,000117 0,000438 0,00104	0,00551	0,0284	0,103 0,189 0,301	0,371 $0,9995 \approx 1$		$T_1 = 333 \text{ K}, e'_1 =$	x'1 _i	0,000131 0,000564	0,00153 0,00941	0,049	0,157 0.946	0,282 0,248	0,9936 ≈ 1 *	
$1+e_1'(k_iN-1)$	389 203 54	19,3	6,9	1,565 0,75 0,392	0,238		5, N=1,194	y_{1i}'	0,0579 0,113	0,0707 0,1345	0,241	0,177 0.128	0,0675 0,0102	0,9998 ≈ 1 *	
$e_1'(k_iN-1), e_1'=0.785$	388 202 53	18,3	5,9	0,565	-0,762		353 K, e'=0,78	x' ₁ i	00117 000438	0104	1284	03	101	05 ≈ 1 *	
k _i N-1	494 257 67,6	23,4	7,5	-0,72 -0,32 -0,775	-0,9725		$T_1 =$		0,0		0'0			366'0	aem.
ķ _i N	495 258 68,6	24,4	8,5	1,72 0,68 0,225	0,0275		N = 1,169	y'_{1i}	0,0509 0,098	0,062 0,118	0,215	0,174 0,144	0,103 0,0353	$0002 \approx 1^{*}$	і у _{іі} не дел
N	1,194 1,194 1,194 1,194	1,194	1,194	1,194 1,194 1,194	1,194 —		e' <mark>1</mark> =0.9.							_	ов х _{1;} в
k _i (табл. 2.4)	415 216 57,4	20,4	7,1	0,188 0,188	0,023		$T_1 = 373 \text{ K},$	x'!i	0,000108 0,000356	0,00076 0,00375	0,0172	0,0591 0.118	0,242 0,556	• 1 ≈ 6966° (ий пересчет
с', (табл. 2.3)	0,0455 0,0887 0,0561	0,1062	0,1960	0,1612 0,1416 0,1168	0,0879				· · · · · · · · · · · · · · · · · · ·	•••	•	•	· · ·		расхождені
Компоненты	$\sum_{cH_1}^{H_2}$	N C ₃	<u> </u>	ДБ ₁	ДБ4 Сумма	лица 2.6		VOMILOBEH	H ₃ CH ₄	: : ז ז אר	C' .	ДБ ₁	ДБ3 ДБ4	Сумма	виду небольших
Номе- ра компо- нентов	-0.6	4	5	\$ \$ \$ \$	` הכ	Ταδι	Номера	Hentob	- 61 0	т т	5	9	∞ တ		* Br

Таблица 2.5

Определим p_{Z1} для $T_1 = 373$ К:

$$p_{Z1} = 157 \cdot 10^3 \frac{166,7}{166,7 + 1099} = 22,6 \cdot 10^3 \Pi a (0,23 \text{ at})$$

Аналогичные расчеты сделаем для всех других ранее выбранных температур и результаты сведем в табл. 2.7. По этим данным

Таблица 2.7

Температура <i>Т</i> ₁ , К	333	353	373	393
	29,2	25,4	22,6	20,7

строим кривую $p_{Z1} = f(T_1)$ зависимости парциального давления водяного пара в смеси с углеводородными парами от температуры в конце первой зоны (рис. 2.11). Как и должно быть, с понижением температуры системы доля углеводородных паров уменьшается вследствие их конденсации, а доля водяных паров и их парциальное давление возрастают.

Рис. 2.10. График для определения е'.

Рис. 2.11. Кривые зависимости P_z и p_z от температуры.

На том же рис. 2.11 построена кривая зависимости давления насыщенного водяного пара от температуры. Данные для построения взяты из таблиц насыщенного водяного пара [49, с. 589]. Точка *A* пересечения кривых $p_Z = f(T_1)$ и $P_Z = f(T_1)$ имеет координаты: температуру $T_1 = 340,5$ К и парциальное давление водяного пара $p_{Z1} = P_Z = 27,5 \cdot 10^3$ Па. Найденная температура $T_1 =$ = 340,5 К есть температура в конце первой зоны аппарата, так как при ней парциальное давление водяных паров становится равным давлению насыщенного водяного пара (пар достигает состояния насыщения). По графику (рис. 2.10) при $T_1 = 342$ К находим мольную долю углеводородов, находящихся в паровой фазе, в конце первой зоны. Она равна $e'_1 = 0,7$.

Ta	ю́лица 2.8										
				π=157·1	(0 ³ Па, <i>T</i> 1=-	342 K, <i>N</i> =1	$1 + \frac{166.7}{0.7 \cdot 1099} = 1$,217	Количество	Количество	
Номе- ра компо- нентов	Компоненты	, W	Р ₁ і.10 ⁻⁶ , Па		x ¹ i	y'i	, 1,x ¹ W	il'u,	паров $V_{1i} = V_1 V_1 i = -76_{3,3}$ кмоль/ч	Kohlehcara $g'_{1i} = g'_{1i} x'_{1i} =$ g_{20}, r kmojb/4	$\begin{bmatrix} L_{1i}' = \\ = V_{1i}' + g_{1i}', \\ \text{KMOJB/Y} \end{bmatrix}$
-	H ₂	5		420	0,000126	0,065	0,000252	0,130	50	0,04	50,04
5	СН4	16	32,4	206	0,0005	0,1265	0,008	2,02	97,32	0,17	97,49
e	∑ C₂ :	29,4	8,16	52	0,00125	0,08	0,037	2,35	61,5	0,41	61,91
4	N C ₃ .	42,6	2,44	15,5	0,0079	0,149	0,336	6,35	114	2,6	116,6
ы	Σ c [,]	57,1	0,83	5,3	0.041	0,262	2,34	15,1	202	13,5	215,5
9	ДБ1	62	0,18	1,12	0,129	0,175	10,2	13,8	134,6	42,5	177,1
2	ДБ2	6	0,052	0,33	0,245	0,0984	22	8,84	75,5	80,6	156,1
8	ДБ3	109	0,019	0,12	0,291	0,0425	31,5	4,65	32,7	95,6	128,3
6	ДБ4	145	0,002	0,0121	0,285	0,0045	41,5	0,655	3,44	93,8	97,24
	Сумма	i	I]	1,0008≈1	1,003≈1	$M_{x1} \approx 108$	$M_{y1} \approx 54$	V1'≈771,06	g' ≈ 329,22	$L_1^{\prime}\approx 1100,28$

5 Зак. 100

-

129

3. Количества углеводородных компонентов в паровой и жидкой фазах в конце первой зоны конденсатора-холодильника

а. Зная долю углеводородных компонентов в парах, найдем количество паров в конце первой зоны:

$$V_1 = e_1'L' = 0,7 \cdot 1099 = 769,3$$
 кмоль/ч

Количество конденсата в конце первой зоны:

$$g'_1 = (1 - e'_1) L' = (1 - 0,7) \cdot 1099 = 329,7$$
 кмоль/ч

6. Чтобы определить количество каждого компонента в паровой и жидкой фазах в конце первой зопы, нужно по формулам [1, с. 112, 113] рассчитать составы фаз при $T_1 = 342$ К и $e'_1 = 0,7$ Для этого предварительно, как и ранее, найдем значения P_{1i} при 342 К по диаграмме Кокса и определим k_2, k_3, \ldots, k_9 . Константу фазового равновесия водорода найдем по номограмме [57]. Результаты расчетов состава фаз и количеств каждого компонента в парах и конденсате даны в табл. 2.8. Суммарные данные (последняя колонка таблицы) вполне удовлетворительно совпадают с исходными по количеству компонентов парогазовой смеси, поступающих в конденсатор-холодильник.

4. Количества и составы паровой и жидкой фаз на выходе из конденсатора-холодильника

а. Примем температуру T' парожидкой смеси на выходе из аппарата на 10 К выше начальной температуры охлаждающей воды:

$$T_1'' = T_2' + 10 = 298 + 10 = 308 \text{ K}$$

При $T'_{1} = 308$ К и $\pi = 157 \cdot 10^{3}$ Па рассчитаем мольную долю паров и составы жидкой и паровой фаз по уравнениям:

$$x'_{2l} = \sum_{1}^{3} \frac{c'_{l}}{1 + e'_{2}(k_{l}N - 1)} = 1$$

где x'_{2i} — мольные доли компонентов в конденсате на выходе из аппарата; e'_2 — мольная доля паров на выходе из аппарата; N поправочный коэффициент (см. п. 1 расчета); y'_{2i} — мольные доли компонентов в парах на выходе из аппарата.

Расчет ведется методом постепенного приближения. После нескольких попыток принимаем $e'_2 = 0,46$. Находим:

$$N = \frac{1}{1 - y'_Z} = \frac{1}{1 - \frac{P_Z}{\pi}} = \frac{1}{1 - \frac{5.61 \cdot 10^3}{157 \cdot 10^3}} = 1,037$$

130

Tai	блица 2.9							-	-	
Номе ра ком- понен- тов	Компоненты	с' (табл. 2.3	при 308 157-103 Па			k _i N-1	$e'_{2}(k_{i}N-1),$ $u_{1}p_{H}$ $e'_{2}=0.46$	$1+e_2'\left(k_iN-1\right)$	$\frac{x'_{ij}}{c'_{i}} = \frac{x'_{ij}}{1 + e'_{2}(k_{i}N - 1)}$	$y'_{2i} = k_i N x'_{2i}$
3 2-	$\sum_{cH_4}^{H_2} \cdots \cdots \cdots$	0,0455 0,0887 0,0561	455 164 31.2	1,037 1,037 1,037	470 170 32,2	469 169 31. 2	216 77,5 14,4	217 78,5 15,4	0,00021 0,00113 0,00366	0,0985 0,192 0,118
4	$\sum_{c_3} \dots$	0,1062	8,25	1,037	8,51	7,51	3,45	4,45	0,0239	0,204
w ⊲o n	Z L L L L L C C C C C C	0,1960 0,1612 0,1416 0,1168	2,22 0,33 0,025	1,037 1,037 1,037 1,037	2,31 0,34 0,134 0,026	1,31 2,66 0,974 0,974	0,601 -0,305 -0,397 -0,447	1,601 0,695 0,553 0,553	0,123 0,232 0,236 0,215 0,212 0,163	0,283 0,079 0,0315 0,0055 0,00028
o	ДБ4	6/00.0			100010		1	5 1	0,9949 ≈ 1	1,0115 ≈ 1
Ta	блица 2.10							-	+	
					Составы п	аров и жид	кости		Количество ф	83
HO- Mepa Komilo- HeH- TOB	Компоненты	1 ^W	L [/] , кмоль/ч	х', (табл. 2.9)	у2і (табл. (2.9)	Mx' _{2i}	M _i ⁹² i	паров $V'_{2i} = V'_{2y'_{2}}$ кмоль/ч	конденсата $g'_{2i} = g'_{2x'_{2i}},$ кмоль/ч	$L'_{2i} = V'_{2i} + g'_{2i}$, kmo.db/4
	H2	2 16	50 97,5	0,00021 0,00113	0,0985 0,192	0,00042 0,0181	0,1970	49,79 97	0,13	49,92 97,67
ن م	$\sum c_2$	29,4	61,6	0,00366	0.113	0,108	3,46	29,6	2,15	61,75
4	$\sum_{c_3} \dots$	42,6	116,7	0,0239	0,204	1,02	8,8	103,1	14,2	117,3
ŝ	S. C.	57,1	215,4	0,123	0,283	7,3	16,3	143	73	216
978	ПБ1 ДБ2 ДБ2 ДБ3	601 62	177,2 155,6 128,4	0,232 0,236 0,212	0,079 0,0315 0,0055	23,1 23,1 23,5		15,8 2,8 0,001	137 140 126 96.5	177 155,8 128,8 96.51
6	ДБ4	6 1 1	a*a6	$0.9949 \approx 1$	0,00040 1.0115 ≈ 1	$M_{X_g} \approx 94.2$	$My_2 \approx 41$	$V_2 \approx 511,1$	$g_2' \approx 589,65$	$L_2^{\prime} \approx 1100.75$

-5*

Здесь y'_{z} — мольная доля насыщенного водяного пара в смеси с углеводородными парами при $T''_{1} = 308$ К, по закону Дальтона:

$$y'_{z} = \frac{P_{z}}{\pi}$$

где Pz — давление насыщенного водяного пара при 308 К, Па.

Константы фазового равновесия компонентов при $T'_1 = 308$ К, $\pi = 157 \cdot 10^3$ Па определяются так же, как это делалось выше. Расчет приведен в табл. 2.9.

б. Зная величину е₂, найдем количество углеводородных паров на выходе из конденсатора-холодильника:

$$V_2' = e_2'L' = 0,46 \cdot 1099 = 505,54$$
 кмоль/ч

Количество углеводородных компонентов в конденсате на выходе из аппарата:

$$g'_2 = (1 - e'_2) L' = (1 - 0.46) \cdot 1099 = 593.46$$
 кмоль/ч

Количество несконденсировавшегося водяного пара на выходе из конденсатора-холодильника найдем из формулы:

$$N = 1 + \frac{Z_2'}{e_2' L'}$$

Получим:

 $Z'_2 = (N-1) e'_2 L' = (1,037-1) \cdot 0,46 \cdot 1099 = 18,7$ кмоль/ч

Следовательно, водяного конденсата на выходе из аппарата будет:

 $Z'_{\text{конд}} = Z' - Z'_2 = 166,7 - 18,7 = 148$ кмоль/ч

В табл. 2.10 дан расчет количеств каждого компонента в паровой и жидкой фазах на выходе из конденсатора-холодильника.

В двух предпоследних колонках табл. 2.10 определены количества каждого компонента в парах и конденсате.

Из табл. 2.10 следует, что значения L'_i и L'_{2i} по каждому компоненту мало отличаются друг от друга. Таким образом, расчеты произведены с достаточной точностью.

Полученные данные положены в основу теплового расчета аппарата.

5. Тепловые нагрузки по зонам конденсатора-холодильника

Первая зона. Чтобы не усложнять расчет определением энтальпий каждого компонента смеси, будем в дальнейшем смесь углеводородных компонентов в любой из фаз считать за один компонент с молекулярной массой, равной молекулярной массе смеси. Водяной пар учитывается отдельно. Общее выражение для тепловой нагрузки первой зоны конденсатора-холодильника запишем так:

$$Q_{1} = L' \left[q_{T_{1}}^{n} - e_{1}' q_{T_{1}}^{n} - (1 - e') q_{T_{1}}^{*} \right] + Z' \left(i_{T_{1}'}^{n} - i_{T_{1}}^{n} \right)$$

где L' = 1099 кмоль/ч — количество углеводородной смеси; $q_{T_1}^n = q_{393}^n =$ энтальпия углеводородных паров при входе в аппарат, кДж/кмоль; $q_{T_1}^n = q_{342}^n =$ то же в конце первой зоны, кДж/кмоль; $q_{T_1}^m = q_{342}^m =$ энтальпия конденсата углеводородов в конце первой зоны, кДж/кмоль; $e_1' = 0,7$ — мольная доля паров в конце первой зоны; Z' = 166,7 кмоль/ч — количество водяного пара, поступающего в аппарат; $i_{T_1}^n = i_{393}^n$, $i_{T_1}^n = i_{342}^n =$ энтальпия соответственно перегретого водяного пара при входе в аппарат и насыщенного пара в конце первой зоны, кДж/кмоль.

Пользуясь графиком [4, с. 10], находим энтальпии смесей легких углеводородов.

Молекулярные массы:

а) углеводородных паров на входе в аппарат (табл. 2.3)

$$M_L = \frac{76740}{1099} = 70$$

б) углеводородных паров в конце первой зоны (табл. 2.8)

$$M_{y_1} = 54$$

в) конденсата углеводородов в конце первой зоны (табл. 2.8) $M_{x_i} = 108$

Энтальпии:

 $q_{393}^{\pi} = 177,5 \cdot 70 = 54\,000 \ \kappa \mbox{Д}\mbox{ж/кмоль}$ $q_{342}^{\pi} = 639 \cdot 54 = 34\,500 \ \kappa \mbox{Д}\mbox{ж/кмоль}$ $q_{342}^{\pi} = 397 \cdot 108 = 42\,800 \ \kappa \mbox{Д}\mbox{ж/кмоль}$

По таблицам энтальпий водяного пара [58] находим:

i^п₃₉₃ = 2700 · 18 = 48 500 кДж/кмоль

i^п₃₄₂ = 2630 · 18 = 47 400 кДж/кмоль

Подставляя в уравнение найденные значения величин, получим:

Вторая зона. Уравнение для тепловой нагрузки второй зоны:

$$\begin{split} Q_2 &= L' \left[e'_1 q^{\mathbf{n}}_{T'_1} + \left(1 - e'_1 \right) q^{\mathbf{m}}_{T'_1} - e'_2 q^{\mathbf{n}}_{T''_1} - \left(1 - e'_2 \right) q^{\mathbf{m}}_{T''_1} \right] + \\ &+ Z' i^{\mathbf{n}}_{T_1} - Z'_2 i^{\mathbf{n}}_{T''_1} - Z'_{\mathrm{Kohr}} T''_1 c_{\mathbf{b}} \end{split}$$

где $e'_2 = 0,46$ — мольная доля углеводородных паров на выходе из аппарата; $q^{\pi}_{T_1} = q^{\pi}_{303}$ — энтальпия углеводородных паров на выходе из аппарата, кДж/кмоль; $q^{\pi}_{T_1} = q^{\pi}_{308}$ — энтальпия конденсата углеводородов на выходе из аппарата, кДж/кмоль; $Z'_2 =$ = 18,7 кмоль/ч — количество несконденсировавшегося водяного пара на выходе из аппарата; $Z'_{\text{конд}} = 148$ кмоль/ч — количество водяного конденсата на выходе из аппарата; $i^{\pi}_{T1} = i^{\pi}_{308}$ — энтальпия насыщенного водяного пара на выходе из аппарата, кДж/кмоль; $T''_1 = 308$ К — температура на выходе из конденсатора-холодильника; $c_{\text{в}} = 75$ кДж/(кмоль · К) — мольная теплоемкость воды. Молекулярные массы:

а) углеводородных паров на выходе из аппарата (табл. 2.11)

$$M_{y_2} = 41,4$$

б) конденсата углеводородов на выходе из аппарата (табл. 2.10)

$$M_{x_1} = 94,2$$

По графику [4, с. 10] получим:

$$q_{308}^{\pi} = 555 \cdot 41, 4 = 23\ 000 \ \kappa \mbox{Д}\ \mbox{ж/кмоль}$$

 $q_{308}^{\pi} = 305 \cdot 94, 2 = 28\ 800 \ \kappa \mbox{Д}\ \mbox{ж/кмоль}$

По таблицам энтальпий водяного пара [58] находим:

 $i_{308}^{\pi} = 2560 \cdot 18 = 46100 \text{ кДж/кмоль}$

Все остальные энтальпии были найдены при расчете тепловой нагрузки первой зоны.

Подставляя в уравнение значения всех величин, получим:

 $\begin{aligned} Q_2 &= 1099 \left[0,7 \cdot 34\,500 + (1-0,7)\,42\,800 - 0,46 \cdot 23\,000 - \right. \\ &- \left(1-0,46 \right) \cdot 28\,800 \right] + 166,7 \cdot 47\,400 - 18,7 \cdot 46\,100 - 148 \cdot 35 \cdot 75 = \\ &= 18,45 \cdot 10^6 \text{ KJ} \text{KJ} \text{K/} \text{H} = 5130 \text{ KBT} \end{aligned}$

Общая тепловая нагрузка конденсатора-холодильника: $Q = Q_1 + Q_2 = 18,9 \cdot 10^6 + 18,45 \cdot 10^6 = 37,35 \cdot 10^6$ кДж/ч = 10 360 кВт

Расход охлаждающей воды и ее температура в конце первой зоны

Не учитывая потерь тепла в окружающую среду и принимая температуру охлаждающей воды на выходе из аппарата $T''_2 = 328$ K, определим расход воды.

Уравнение теплового баланса конденсатора-холодильника:

$$Q = W c_{\scriptscriptstyle \mathsf{B}} \left(T_2'' - T_2' \right)$$

откуда

$$W = \frac{Q}{\boldsymbol{c}_{\scriptscriptstyle \mathrm{B}} \left(T_2'' - T_2' \right)}$$

где W — расход воды, кг/ч; Q — тепловая нагрузка аппарата, кВт; $T'_2 = 298 \text{ K}$ — начальная температура воды; $c_{\text{в}} = 4,187 \text{ кДж/(кг·K)}$ — теплоемкость воды.

Получим:

$$W = \frac{10\ 360\cdot 10^3\cdot 3,6}{4,187\ (328-298)} = 297\ 000 \ \text{Ke}/\text{M}$$

Пользуясь схемой распределения температур в конденсаторехолодильнике (рис. 2.12), легко определить температуру воды из уравнения теплового баланса любой из зон.

Рис. 2.12. Схема распределения температур в конденсаторе-холодильнике.

Тепловой баланс первой зоны:

$$Q_{\rm i} = W \left(T_2^{\prime\prime} - \tau_{\rm i} \right) c_{\rm b}$$

откуда

$$\tau_1 = T_2'' - \frac{Q_1}{Wc_{\rm B}} = 328 - \frac{5130 \cdot 10^6 \cdot 3.6}{297\,000 \cdot 4.187} = 313 \,\mathrm{K}$$

7. Выбор типа кожухотрубчатого конденсатора-холодильника

Согласно схеме температур в конденсаторе-холодильнике (рис. 2.12), средний температурный напор в аппарате определим по формуле Грасгофа:

$$\Delta T_{\rm cp} = \frac{\Delta T_{\rm Makc} - \Delta T_{\rm MHH}}{2.3 \lg \frac{\Delta T_{\rm Makc}}{\Delta T_{\rm MHH}}} = \frac{65 - 10}{2.3 \lg \frac{65}{10}} = 27 \text{ K}$$

где

$$\Delta T_{\text{MAKC}} = T'_1 - T''_2 = 393 - 328 = 65 \text{ K}$$

$$\Delta T_{\text{MAK}} = T''_1 - T'_2 = 308 - 298 = 10 \text{ K}$$

135

На основании практических данных [5, с. 557] для водяного конденсатора паров бензина в присутствии газа, примем коэффициент теплопередачи в конденсаторе-холодильнике $k = 235 \text{ Вт/(м}^2 \cdot \text{K})$. Тогда поверхность теплообмена будет равна:

$$F = \frac{Q}{k \,\Delta T_{\rm cp}} = \frac{10\,360 \cdot 10^3}{235 \cdot 27} = 1633 \,\,{\rm m}^2$$

Выбираем конденсатор-холодильник К-10-600 жесткого типа [59]. Конструктивная схема аппарата представлена на рис. 2.13. Необходимые данные по аппарату: наружный диаметр трубок $d_{\rm H} = 25$ мм, толщина стенок трубки $\delta_{\rm cr} = 2$ мм, длина трубки $l_{\rm T} = 6000$ мм, материал трубок — латунь ЛО70 — 1, поверхность теплообмена по наружному диаметру составляет 600 м², общее число трубок равно 1250, давление в корпусе 981·10³ Па (10 ат).

Рис. 2.13. Схема конденсатора-холодильника.

Горячий теплоагент (углеводородные газы, бензин, вода) движется в межтрубном пространстве, холодный теплоагент (вода) по трубкам. Устанавливается три аппарата выбранной конструкции. В последующих расчетах величина F и число необходимых аппаратов будут уточнены.

8. Определение средних температурных напоров по зонам аппарата

Из схемы выбранного для расчета аппарата (рис. 2.13) следует, что горячий и холодный теплоносители движутся в нем перекрестным током. Средние температурные напоры по зонам рассчитаем по формуле [49, с. 182]:

$$\Delta T_{\rm ep} = \varepsilon \, \Delta T_{\rm up}$$

где є — поправочный коэффициент к среднему температурному напору, вычисленному для противотока; ΔT_{np} — средний температурный напор при противотоке теплоносителей.

Поправочный коэффициент є определяется по графику [43, с. 20 или 60, с. 206] как функция вспомогательных величин *P* и *R*, значения которых для нашего случая даются ниже.

Первая зона (рис. 2.12): $\Delta T_{\text{пр. 1}} = \frac{(T_1' - T_2'') - (T_1 - \tau_1)}{2,3 \lg \frac{T_1' - T_2''}{T_1 - \tau_1}} = \frac{(393 - 328) - (342 - 313)}{2,3 \lg \frac{393 - 328}{342 - 313}} = 45 \text{ K}$ $P = \frac{T_2'' - \tau_1}{T_1' - \tau_1} = \frac{328 - 313}{393 - 313} = 0,188$ $R = \frac{T_1' - T_1}{T_2'' - \tau_1} = \frac{393 - 342}{328 - 313} = 3,4$

По графику [43, с.20, рис. 1-10] находим: $\varepsilon = 1,0$. Тогда $\Delta T_{\rm cp.\ l} = \varepsilon \Delta T_{\rm np.} = 1 \cdot 45 = 45 \ {\rm K}$

Вторая зона (рис. 2.12):

$$\Delta T_{\text{np. 2}} = \frac{(T_1 - \tau_1) - (T_1'' - T_2')}{2,3 \lg \frac{T_1 - \tau_1}{T_1'' - T_2'}} = \frac{(342 - 313) - (308 - 298)}{2,3 \lg \frac{342 - 313}{308 - 298}} = 18 \text{ K}$$

$$P = \frac{\tau_1 - T_2'}{T_1 - T_2'} = \frac{313 - 298}{342 - 298} = 0,34$$

$$R = \frac{T_1 - T_1''}{\tau_1 - T_2'} = \frac{342 - 308}{313 - 298} = 2,26$$

По графику [43, с. 20, рис. 1-10] находим: $\varepsilon = 0,95$. Тогда $\Delta T_{\text{ср. 2}} = \varepsilon \Delta T_{\text{ир. 2}} = 0,95 \cdot 18 = 17 \text{ K}$

Видимо, без заметной ошибки средние температурные напоры для первой и второй зон можно было рассчитывать по формуле Грасгофа для случая чистого противотока. Расчет $\Delta T_{cp.1}$ и $\Delta T_{cp.2}$ можно также провести по методу Белоконя [5, с. 561].

Коэффициенты теплопередачи по зонам конденсатора-холодильника

Первая зона. В этой зоне, как показывает расчет (см. табл. 2.8), происходит частичная конденсация углеводородных паров в присутствии перегретого водяного пара. Коэффициент теплоотдачи [в Вт/(м²·K)] от конденсирующих углеводородных паров к наружной поверхности горизонтальной трубки аппарата рассчитаем по формуле [49, с. 199]:

$$\alpha_1' = 1,28 \sqrt[4]{\frac{r\rho^2 \lambda^3}{\mu \, \Delta T \, d_{\rm H}}}$$

где r — теплота конденсации углеводородных паров, Дж/кг; ρ — плотность конденсата, кг/м³; λ — коэффициент теплопроводности конденсата, Вт/(м·К); μ — динамическая вязкость конденсата,

Па·с; ΔT — разность температур конденсирующегося пара и стенки, К; $d_{\rm H} = 0,025$ м — наружный диаметр трубок аппарата.

Значения ρ , λ и μ берутся при средней температуре пограничного слоя конденсата T_{m1} , r — при средней температуре конденсации T_{s1} .

Согласно рис. 2.12:

$$T_{s1} = \frac{T_1' + T_1}{2} = \frac{393 + 342}{2} \approx 368 \text{ K}$$

Принимаем, что температура стенки трубы $T_{w1} = 326$ К. Тогда средняя температура пограничного слоя конденсата:

$$T_{m1} = 0.5 (T_{s1} + T_{w1}) = 0.5 (368 + 326) = 347 \text{ K}$$

Зная молекулярную массу конденсата (табл. 2.8), относительную плотность его найдем по формуле Мамедова [55, с. 30]:

$$\rho_{277}^{293} = \frac{0,590M - 6,479}{0,693M + 7,581} = \frac{0,590 \cdot 108 - 6,479}{0,693 \cdot 108 + 7,581} = 0,85$$

Пересчитав по известным формулам [13, с. 21] ρ_{277}^{293} в ρ_{288}^{288} , получим $\rho_{288}^{288} = 0,855$. Аналогично найдем плотность конденсата при $T_{m1} = 347$ К. Она будет равна $\rho_{347} = 803$ кг/м³. Коэффициент теплопроводности находим по формуле:

$$\lambda_{347} = \frac{0.1346}{\rho_{288}^{288}} (1.0 - 0.00047T_{m1}) = \frac{0.1346}{0.855} (1 - 0.00047 \cdot 347) = 0.132 \text{ BT/(M \cdot K)}$$

Значение r находим как разность энтальпий конденсата в паровой и жидкой фазах при $T_{s1} = 368$ К и давлении $157 \cdot 10^3$ Па по графику [4, с. 10]:

$$r_{368} = q_{368}^{n} - q_{368}^{m} = 771 - 460 = 311$$
кДж/кг

Без заметного ущерба для точности расчета примем конденсат, образовавшийся в первой зоне, за *н*-октан. Интерполяцией найдем его динамическую вязкость по таблице [7, с. 225]: $\mu = 0,314 \times 10^{-3}$ Па·с.

Величина ΔT будет равна

$$\Delta T = T_{s1} - T_{w1} = 368 - 326 = 42 \text{ K}$$

Подставляя найденные величины в формулу для αί, получим:

$$\alpha'_{1} = 1,28 \sqrt[4]{\frac{311 \cdot 10^{3} \cdot 803^{2} \cdot 0,132^{3}}{0,314 \cdot 10^{-3} \cdot 42 \cdot 0,25}} = 1380 \text{ Bt/(m}^{2} \cdot \text{K})$$

В соответствии с конструкцией аппарата [59] среднее число трубок, расположенных в одном вертикальном ряду пучка, равно n = 15. Поэтому коэффициент теплоотдачи α_1'' от конденсирующегося пара к поверхности пучка горизонтальных трубок найдем по формуле:

$$\alpha_1'' = \epsilon_n \alpha_1'$$

где ε_п — усредненный поправочный коэффициент при различном размещении труб в пучке, — определяется по графику [39, с. 305]. В нашем случае при n == 15 получим:

 $\alpha_1'' = 0.6 \cdot 1380 = 828 \text{ BT/(M}^2 \cdot \text{K})$

Присутствие в первой зоне перегретого водяного пара, водорода и углеводородов, которые практически не конденсируются (СН₄, $\sum C_2$, $\sum C_3$ — см. табл. 2.8), будет значительно снижать коэффициент α_1'' . Надежных данных о снижении α_1'' для нашего случая в литературе нет. Согласно рекомендации Егиазарова [61, с. 220], примем, что α_1'' будет снижаться примерно пропорционально объемному (или мольному) содержанию пеконденсирующихся паров в общей смеси.

Вычислим среднее для первой зоны мольное содержание неконденсирующихся паров в общей смеси. На основе полученных выше данных (табл. 2.3 и 2.8) имеем:

$$y'_{\text{H. H}} = \frac{166,7+50+97,5+61,6+116,7}{166,7+1099} = 0,39$$

то же в конце первой зоны

$$y'_{\text{H. K}} = \frac{166.7 + 50 + 97.32 + 61.5 + 114}{166.7 + 769.3} = 0.52$$

Среднее значение:

$$y'_{\text{H. c}} = 0.5 (y'_{\text{H. H}} + y'_{\text{H. K}}) = 0.5 (0.39 + 0.52) = 0.455$$

Следовательно, полученное значение α_1'' нужно снизить на 45,5% получим:

$$\alpha'_{1} = \alpha''_{1} (1 - y'_{\text{H. c}}) = 828 (1 - 0.455) = 450 \text{ BT/(M}^{2} \cdot \text{K})$$

Средняя температура воды в первой зоне (рис. 2.12):

$$\tau_{\text{cp. 1}} = \frac{\tau_1 + T_2''}{2} = \frac{313 + 328}{2} = 321 \text{ K}$$

Физические параметры воды при $\tau_{cp. 1} = 321$ К берем из таблицы (Приложение 4): $\nu_{321} = 0.577 \cdot 10^{-6} \text{ м}^2/\text{c}; \rho_{321} = 989 \text{ кг/м}^3;$ $\lambda_{321} = 63.0 \cdot 10^{-2} \text{ Вт/(м · K)}; \text{ Pr}_{321} = 3.68.$

Критерий Рейнольдса:

$$\operatorname{Re} = \frac{wd_{\mathrm{B}}}{v_{321}}$$

где *w* — скорость воды в трубках, м/с; $d_{\scriptscriptstyle B} = 0,021$ м — внутренний диаметр трубки.

Скорость воды в трубках:

$$w = \frac{W \cdot 4}{3600\rho_{321}\pi d_B^2 N_1}$$

где $W = 297\,000$ кг/ч — расход воды; $N_1 = \frac{1250}{4} = 312$ — количество трубок в одном ходу аппарата.

Получим:

$$w = \frac{297\,000 \cdot 4}{3600 \cdot 989 \cdot 3, |4 \cdot 0, 02|^2 \cdot 3|2} = 0,77 \text{ M/c}$$

Тогда

$$\operatorname{Re}_{321} = \frac{0.77 \cdot 0.021}{0.577 \cdot 10^{-6}} = 28\,000$$

Режим движения турбулентный, поэтому α_2 определяем по формуле:

$$\alpha_2 = 0,021 \frac{\lambda_{321}}{d_{\rm B}} \operatorname{Re}_{321}^{0.6} \operatorname{Pr}_{321}^{0.43} \left(\frac{\operatorname{Pr}_{321}}{\operatorname{Pr}_{326}} \right)^{0}$$

где $Pr_{326} = 3,37$ — критерий Прандтля при температуре стенки $T_{w1} = 326$ К (см. Приложение 4).

Таким образом

$$\alpha_2 = 0,021 \frac{0.63}{0.021} \cdot 28\ 000^{0.8} \cdot 3,68^{0.43} \cdot \left(\frac{3.68}{3.37}\right)^{0.25} = 4080 \ \text{Bt}/(\text{m}^2 \cdot \text{K})$$

Коэффициент теплопередачи в первой зоне:

$$k_1 = \frac{1}{\frac{1}{\alpha_1''} + \frac{\delta_{\text{cr}}}{\lambda_{\text{cr}}} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{450} + \frac{0,002}{85} + \frac{1}{4080}} = 400 \text{ Bt/(M}^2 \cdot \text{K})$$

где λ_{ст} = 85 Вт/(м·К) — коэффициент теплопроводности латуни.

Проверка ранее принятой температуры стенки (наружная поверхность):

$$T_{w1} = T_{s1} - \frac{k_1 \Delta T_{cp.1}}{\alpha_1''} = 368 - \frac{400 \cdot 45}{450} = 328 \text{ K}$$

Расхождение с ранее принятым значением $T_{w1} = 326$ К допустимое, поэтому пересчета не делаем.

Вторая зона. Во второй зоне происходит совместная, но не полная, конденсация углеводородных и водяных паров. Практически неконденсирующимися остаются три компонента: H₂, CH₄ и $\sum C_2$ (табл. 2.10). Среднее значение α' — коэффициента теплоотдачи при совместной конденсации углеводородных и водяных паров определяем по приближенной формуле:

$$\alpha_{1}' = \frac{\alpha_{1y}Q_{2y} + \alpha_{1B}Q_{2B}}{Q_{2y} + Q_{2B}}$$

где α_{1y} — коэффициент теплоотдачи от конденсирующихся углеводородных паров к стенкам трубок, $Bt/(M^2 \cdot K)$; α_{1B} — то же для водяных паров, $Bt/(M^2 \cdot K)$; Q_{2y} — тепло конденсации углеводородных паров во второй зоне, BT; Q_{2B} — то же для водяных паров, Bt.

Коэффициенты теплоотдачи α_{1y} и α_{1B} от конденсирующихся углеводородных и водяных паров к наружной поверхности стенок трубок будем определять так же, как делали это при расчете первой зоны.

Предварительно подготовим необходимые данные. Средняя температура конденсации во второй зоне:

$$T_{s2} = \frac{T_1' + T_1''}{2} = \frac{342 + 308}{2} = 325 \text{ K}$$

Примем температуру стенки трубы $T_{w2} = 313$ К. Тогда средняя температура пограничного слоя конденсата будет равна:

$$T_{m2} = 0.5 (T_{s2} + T_{w2}) = 0.5 (325 + 313) = 319 \text{ K}$$

Средняя молекулярная масса конденсата, образовавшегося во второй зоне, определяется по следующей формуле:

$$M_{\kappa 2} = \frac{V_1' M_{y1} - V_2' M_{y2}}{V_1' - V_2'} = \frac{769.3 \cdot 54 - 505.54 \cdot 41.4}{769.3 - 505.54} = 78$$

где все величины известны из предыдущих расчетов.

Следует обратить внимание на то, что молекулярная масса конденсата в конце второй зоны ($M_{x2} = 94,2$) будет больше $M_{K2} = 78$, так как конденсат в конце второй зоны представляет смесь из конденсата первой зоны и конденсата, образовавшегося во второй зоне.

Величину Мк2 можно определить также по формуле:

$$M_{\kappa 2} = \frac{g_2' M_{\kappa 2} - g_1' M_{\kappa 1}}{g_2' - g_1'}$$

где все величины известны из предыдущих расчетов.

Плотность углеводородного конденсата, образовавшегося во второй зоне, находим по молекулярной массе, как при расчете первой зоны. Получим: $\rho_{288}^{288} = 0,846$, $\rho_{319} = 824$ кг/м³. Коэффициент теплопроводности рассчитывается так же, как в первой зоне. Он равен $\lambda_{319} = 0,133$ Вт/(м·К). Теплоту конденсации углеводородных паров находим, как и в первой зоне, по средней молекулярной массе образовавшегося конденсата $M_{12} = 78$, пользуясь графиком [4, с. 10]. Получим:

$$r_{325} = q_{325}^{n} - q_{325}^{m} = 652 - 313 = 339$$
 кДж/кг

Примем конденсат, образовавшийся во второй зоне, за *н*-гексан. Тогда его динамическую вязкость найдем по таблице [7, с. 212]: $\mu_{319} = 0.255 \cdot 10^{-3} \text{ Па·с.}$

Величина ΔT будет равна:

$$\Delta T = T_{s2} - T_{w2} = 325 - 313 = 12 \text{ K}$$

Подставляя полученные величины в формулу для α'_{1y} , найдем:

$$\alpha'_{1y} = 1,28 \sqrt[4]{\frac{339 \cdot 10^3 \cdot 824^2 \cdot 0,133^3}{0,255 \cdot 10^{-3} \cdot 12 \cdot 0,025}} = 2100 \text{ Bt/(m}^2 \cdot \text{K})$$

По таблице (Приложение 4) находим физические параметры воды при $T_{m2} = 319$ К; $\mu_{319} = 0.595 \cdot 10^{-3}$ Па·с; $\lambda_{319} = 64 \times 10^{-2}$ Вт (м · К), $\rho_{319} = 989.7$ кг/м³, $r_s = r_{325} = 2380$ кДж/кг [7, с. 57].

Определяем коэффициент теплоотдачи от конденсирующихся водяных паров к стенке:

$$\alpha_{2B}' = 1,28 \sqrt[4]{\frac{2380 \cdot 10^3 \cdot 989,7^2 \cdot 0,64^3}{0,595 \cdot 10^{-3} \cdot 12 \cdot 0,025}} = 5650 \text{ BT/(M}^2 \cdot \text{K})$$

Тепло, выделяющееся при конденсации углеводородных и водяных паров во второй зоне, подсчитываем по формулам:

$$Q_{2y} = (V'_1 - V'_2) M_{\kappa 2} r_{325}$$
$$Q_{2B} = Z_{\kappa 0 H, \pi} \cdot 18 r_s$$

где все величины известны из предыдущих расчетов.

Подставив численные значения этих величин, получим:

$$Q_{2y} = (769, 3 - 505, 54) \cdot 78 \cdot 339 = 6,98 \cdot 10^6 \text{ кДж/ч} = 1940 \text{ кВт}$$

$$Q_{2B} = 148 \cdot 18 \cdot 2380 = 6,35 \cdot 10^6$$
 кДж/ч = 1770 кВт

Таким образом

$$\alpha'_{1} = \frac{2100 \cdot 1940 \cdot 10^{3} + 5650 \cdot 1770 \cdot 10^{3}}{1940 \cdot 10^{3} + 1770 \cdot 10^{3}} = 3800 \text{ Br/(m}^{2} \cdot \text{K})$$

В соответствии с конструкцией аппарата [59] среднее число трубок, расположенных в одном вертикальном ряду пучка, равно n = 15. Поэтому коэффициент теплоотдачи α_1'' от конденсирующихся паров к поверхности пучка горизонтальных трубок найдем по формуле:

$$\alpha_1'' = \varepsilon_n \alpha_1'$$

где ε_п — поправочный коэффициент, определяемый по графику [39, с. 305].

В нашем случае при n = 15 получим:

$$\alpha_1'' = 0.6 \cdot 3800 = 2280 \text{ Bt/(m^2 \cdot K)}$$

Присутствие во второй зоне практически неконденсирующихся компонентов H_2 , CH_4 и $\sum C_2$ (табл. 2.10) будет сильно снижать коэффициент α''_1 . Так же как при расчете α_1 в первой зоне, примем снижение α''_1 пропорциональным мольному содержанию неконденсирующихся компонентов в их смеси с конденсирующимися парами. На основе полученных выше данных (табл. 2.8 и 2.10) имеем:

в начале второй зоны мольная доля неконденсирующихся компонентов

$$y'_{\text{H.H}} = \frac{50 + 97,32 + 61,5}{769,3} = 0,27$$

то же в конце второй зоны

$$y'_{\text{H. K}} = \frac{49,79 + 97 + 59,6}{505,54} = 0,41$$

Среднее значение:

$$y'_{\text{H-c}} = 0.5(y'_{\text{H-H}} + y'_{\text{H-K}}) = 0.5(0.27 + 0.41) = 0.34$$

Следовательно, найденное значение α_1'' нужно снизить на 34%. Получим:

$$\alpha_1 = \alpha_1'' (1 - y'_{\text{H. c}}) = 2280 (1 - 0.34) = 1500 \text{ Bt/(M}^2 \cdot \text{K})$$

Подсчет коэффициента теплоотдачи α_2 со стороны воды во второй зоне подобен подсчету α_2 в первой зоне.

Средняя температура воды (рис. 2.12):

$$\tau_{\text{cp. 2}} = \frac{\tau_1 + T_2'}{2} = \frac{313 + 298}{2} = 306 \text{ K}$$

Физические параметры воды при $\tau_{cp.2} = 306$ К (Приложение 4): $v_{306} = 0,761 \cdot 10^{-6} \text{ m}^2/\text{c}; \ \rho_{306} = 994,2 \text{ кг/м}^3; \ \lambda_{306} = 62 \cdot 10^{-2} \text{ Br/(M} \cdot \text{K});$ $Pr_{306} = 5,1; Pr_{313} = 4,31.$

Критерий Рейнольдса:

$$\operatorname{Re}_{306} = \frac{wd_{B}}{v_{306}}$$

Скорость воды в трубках:

$$w = \frac{297\ 000 \cdot 4}{3600 \cdot 994, 2 \cdot 3, 14 \cdot 0, 021^2 \cdot 312} = 0,76 \text{ m/c}$$
$$Re_{306} = \frac{0,76 \cdot 0,021}{0,761 \cdot 10^{-6}} = 21\ 000$$

Коэффициент теплоотдачи определяем по формуле:

$$\alpha_{2} = 0,021 \frac{\lambda_{306}}{d_{B}} \operatorname{Re}_{306}^{0,8} \operatorname{Pr}_{306}^{0,43} \left(\frac{\operatorname{Pr}_{306}}{\operatorname{Pr}_{313}}\right)^{0,25} =$$

= 0,021 $\frac{0,62}{0,021} \cdot 21\,000^{0,8} \cdot 5, 1^{0,43} \left(\frac{5,1}{4,31}\right)^{0,25} = 3800 \operatorname{Br}/(\mathrm{M}^{2} \cdot \mathrm{K})$

Коэффициент теплопередачи во второй зоне:

$$k_2 = \frac{1}{\frac{1}{1500} + \frac{0.002}{85} + \frac{1}{3800}} = 1030 \text{ Bt/(M}^2 \cdot \text{K)}$$

Проверка ранее принятой температуры стенки трубки:

$$T_{w2} = T_{s2} - \frac{k_2 \,\Delta T_{\text{cp.2}}}{\alpha_1} = 325 - \frac{1030 \cdot 17}{1500} = 313,3 \text{ K}$$

Ввиду совсем незначительного расхождения между принятым и полученным значениями пересчета не делаем. Легко проверить, что перепад температуры по толщине стенки невелик, поэтому при расчете α_2 в первой и второй зонах им можно пренебречь.

10. Поверхность теплообмена аппарата

Первая зона:

$$F_1 = \frac{Q_1}{k_1 \Delta T_{\text{cp. 1}}} = \frac{5230 \cdot 10^3}{400 \cdot 45} = 292 \text{ m}^2$$

Вторая зона:

$$F_2 = \frac{Q_2}{k_2 \,\Delta T_{\rm cp.\ 2}} = \frac{5130 \cdot 10^3}{1030 \cdot 17} = 294 \,\,{\rm m}^2$$

Общая поверхность теплообмена:

$$F = F_1 + F_2 = 292 + 294 = 586 \text{ m}^2$$

Средний коэффициент теплопередачи для конденсатора-холодильника:

$$k = \frac{Q}{F \,\Delta T_{\rm cp}}$$

где $\Delta T_{cp} = 27$ К — средний температурный напор для всего аппарата, найденный раньше (см. п. 7).

Имеем:

$$k = \frac{10\,360 \cdot 10^3}{586 \cdot 27} = 655 \text{ Br/(m}^2 \cdot \text{K})$$

٠

Найденная поверхность теплообмена является минимальной, так как определялась без учета загрязнения ее.

Принимая на основе практических данных [62, с. 153] тепловые сопротивления: накипи внутри трубок δ_н/λ_н == 0,00043 (м²·K)/Вт и наружных загрязнений δ_π/λ_n == 0,00007 (м²·K)/Вт, определим коэффициенты теплопередачи в первой и второй зонах аппарата.

Для первой зоны:

$$k'_{1} = \frac{1}{\frac{1}{k_{1}} + \frac{\delta_{H}}{\lambda_{H}} + \frac{\delta_{\pi}}{\lambda_{\pi}}} = \frac{1}{\frac{1}{400} + 0,00043 + 0,00007} = 334 \text{ Br/(M}^{2} \cdot \text{K})$$

Для второй зоны:

$$k_{2}' = \frac{1}{\frac{1}{k_{2}} + \frac{\delta_{H}}{\lambda_{H}} + \frac{\delta_{n}}{\lambda_{n}}} = \frac{1}{\frac{1}{1030} + 0.00043 + 0.00007}} = 680 \text{ Br/(M}^{2} \cdot \text{K})$$

Поверхности теплообмена по зонам:

$$F'_{1} = \frac{5230 \cdot 10^{3}}{334 \cdot 45} = 350 \text{ m}^{2}$$
$$F'_{2} = \frac{5130 \cdot 10^{3}}{680 \cdot 17} = 445 \text{ m}^{2}$$

Общая поверхность теплообмена:

$$F' = F'_1 + F'_2 = 350 + 445 = 795 \text{ M}^2$$
Средний коэффициент теплопередачи для конденсатора-холодильника:

$$k' = \frac{10\ 360\cdot 10^3}{795\cdot 27} = 480\ \text{Bt}/(\text{m}^2\cdot\text{K})$$

Необходимое количество аппаратов:

$$N_{\rm a} = \frac{795}{600} = 1,33$$

где $F_1 = 600 \text{ м}^2$ — поверхность теплообмена одного аппарата (см. п. 7).

Из расчета следует, что для заданных условий необходимо установить последовательно два конденсатора-холодильника типа К-10-600, обеспечивая резерв поверхности теплообмена.

ИСПАРИТЕЛЬ

Рассчитать испаритель пропановой колонны газофракционирующей установки при следующих исходных данных: производительность колонны по сырью $G = 20\,000$ кг/ч; молекулярная масса сырья 55; давление в низу колонны (абсолютное) 1,47.106 Па.

Количества, составы и температуры потоков, поступающих в испаритель и уходящих из него (см. рис. 1.3), приведены в табл. 2.11.

	Обозна	Co	став	Число молей	-	
Ποτοκ	чение на рис. 1.3	компо ненты	мольная доля	на 100 кмоль сырья	<i>т</i> , қ	
Флегма из колонны в испари- тель	$R + V_R$	C_3H_8 C_4H_{12}	0,078 0,719 0 203	158,4	378	
Нижний продукт колопны (остаток из испарителя)	R	$C_{3}H_{8}$ $C_{4}H_{10}$ $C_{7}H_{10}$	0,040 0,665 0,295	63,4	383	
Пары из испарителя в колонну	V _R	$C_{3}H_{8}$ $C_{4}H_{10}$ $C_{5}H_{12}$	0,105 0,758 0,137	95,0	383	

Таблица 2.11

Горячим теплоносителем в испарителе, как правило, является водяной пар.

В результате расчета испарителя необходимо определить его поверхность теплообмена и количество греющего пара. Исходные данные к расчету испарителя получаются в результате расчета ректификационной колонны, которую он обслуживает.

Параметры греющего пара должны быть выбраны так, чтобы обеспечить в испарителе достаточно высокий температурный напор.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА ИСПАРИТЕЛЯ

1. Определяют тепловую нагрузку испарителя.

2. Определяют расход греющего пара, причем предварительно принимают его параметры и коэффициент удержания тепла в испарителе.

3. Определяют средний температурный напор в испарителе.

4. Рассчитывают коэффициент теплоотдачи со стороны кипящей флегмы. В результате расчета этот коэффициент выражают как функцию теплонапряжения поверхности нагрева испарителя.

5. Рассчитывают коэффициент теплоотдачи со стороны конденсирующего водяного пара. В результате расчета этот коэффициент выражают как функцию теплонапряжения поверхности нагрева.

6. Определяют коэффициент теплопередачи в испарителе с учетом теплового сопротивления стенки трубы и загрязнения обеих ее поверхностей.

Так как коэффициенты теплоотдачи со стороны обоих теплоносителей являются функциями теплонапряжения поверхности нагрева, которая пока неизвестна, расчет ведется далее методом постепенного приближения по следующей схеме:

a) задаются тремя-четырьмя различными значениями теплонапряжения поверхности нагрева и для каждого из них находят коэффициенты теплоотдачи и коэффициент теплопередачи;

б) по соответствующим значениям теплонапряжения и коэффициента теплопередачи определяют величину температурного напора;

в) строят график зависимости теплонапряжение — температурный напор, называемый нагрузочной характеристикой испарителя;

г) зная для данного аппарата средний температурный напор (см. п. 3), по графику находят теплонапряжение его поверхности нагрева;

д) делением полученного значения теплонапряжения на средний температурный напор определяют для данного аппарата коэффициент теплопередачи.

7. Рассчитывают поверхность теплообмена и по существующим нормалям выбирают типовой испаритель.

8. Определяют скорости технологических потоков в штуцерах типового испарителя.

РАСЧЕТ

1. Тепловая нагрузка испарителя

Эта величина определяется из уравнения теплового баланса испарителя (см. рис. 1.3):

$$(R + V_R) q_{T_1}^{*} + Q_p' = R q_{T_2}^{*} + V_R q_{T_2}^{*}$$

где Q_p' — расход тепла в испарителе (тепловая нагрузка), кДж на 100 кмоль сырья; R и V_R — количества потоков, кмоль на

100 кмоль сырья (см. табл. 2.11); $q_{T_1}^{*}$, $q_{T_2}^{*}$, $q_{T_2}^{n}$ — энтальпии потоков при соответствующих температурах, кДж/кмоль.

Предварительно найдем средние молекулярные массы потоков, пользуясь данными табл. 2.7:

$$M_{R+V_{R}} = 44 \cdot 0.078 + 58 \cdot 0.719 + 72 \cdot 0.203 = 59.7$$

$$M_{R} = 44 \cdot 0.040 + 58 \cdot 0.665 + 72 \cdot 0.295 = 61.6$$

$$M_{V_{R}} = 44 \cdot 0.105 + 58 \cdot 0.758 + 72 \cdot 0.137 = 58.5$$

По графику [4, с. 10] или по таблицам (Приложение 2 и 3) находим энтальпию потоков:

$$q_{T_1}^{\texttt{m}'} = q_{378}^{\texttt{m}'} = 410, 3 \cdot 59, 7 = 24\,495 \ \texttt{к} \texttt{Д} \texttt{ж}/\texttt{к} \texttt{моль}$$

 $q_{T_2}^{\texttt{m}'} = q_{383}^{\texttt{m}'} = 422, 9 \cdot 61, 6 = 26\,051 \ \texttt{к} \texttt{Д} \texttt{ж}/\texttt{к} \texttt{моль}$
 $q_{T_2}^{\texttt{n}'} = q_{383}^{\texttt{m}'} = 690, 8 \cdot 58, 5 = 40\,412 \ \texttt{к} \texttt{Д} \texttt{ж}/\texttt{к} \texttt{моль}$

Тогда

 $Q'_{p} = 63,4 \cdot 26\ 051 + 95 \cdot 40\ 412 - (63,4 + 95)\ 24\ 495 =$

Число молей сырья, подаваемого в колонну:

$$G_1 = \frac{20\ 000}{55} = 364$$
 кмоль/ч

Часовой расход тепла в испарителе:

$$Q_{\rm p} = Q'_{\rm p} \frac{G_1}{100} = 1,61 \cdot 10^6 \frac{364}{100} = 5,86 \cdot 10^6 \text{ кДж/ч} = 1630 \text{ кВт}$$

2. Расход греющего пара

В качестве горячего теплоносителя в испарителе используется водяной пар.

Флегма, поступающая в испаритель, нагревается от $T_1 = 378$ К до $T_2 = 383$ К и частично испаряется за счет тепла конденсации водяного пара. На основе данных промышленной эксплуатации аналогичных испарителей и с целью обеспечения достаточного температурного напора при теплопередаче от конденсирующегося водяного пара к кипящей флегме принимаем следующие параметры греющего пара [58, с. 93]: давление $P = 785 \cdot 10^3$ Па; температура $T'_s = 443$ К; теплота конденсации r = 2049,5 кДж/кг.

Расход пара определим из следующего равенства:

$$Z = \frac{Q_{\rm p}}{r\eta_{\rm T}}$$

где Z — расход греющего пара, кг/ч; η_т — коэффициент удержания тепла.

С учетом коэффициента удержания тепла (в среднем для теплообменников $\eta_T = 0.95$) получим:

$$Z = \frac{1630 \cdot 10^3 \cdot 3,6}{2049,5 \cdot 0,95} = 3010 \text{ kr/y}$$

Температурный напор по поверхности нагрева испарителя

Температура горячего теплоносителя — конденсирующегося водяного пара — остается неизменной и равной $T'_s = 443$ К. Следовательно, температурный напор в испарителе будет одинаковым по всей его поверхности и равным

 $\Delta T = T'_s - T_2 = 433 - 383 = 60 \text{ K}$

4. Коэффициент теплоотдачи α₂ со стороны кипящей флегмы

Для пузырькового режима кипения жидкости в большом объеме аг [в Вт/(м²·K)] можно определить по следующей зависимости, предложенной Кружилиным [49, с. 206]:

$$\alpha_2 = 7,77 \cdot 10^{-2} \left(\frac{\cdot \rho_{\pi} r}{\rho_{\pi} - \rho_{\pi}}\right)^{0,033} \left(\frac{\rho_{\pi}}{\sigma}\right)^{0,33} \frac{\lambda_{\pi}^{0,75}}{\mu_{\pi}^{0,45} c_{\rho_{\pi}}^{0,12} T_s^{0,37}} \cdot q^{0,7}$$

Все физические параметры в формуле определяются при температуре кипения флегмы $T_s = T_2 = 383$ К.

Плотность паровой фазы определим по уравнению Менделеева — Клапейрона:

$$\rho_{\rm m} = \rho_0 \frac{T_0}{T_s} \cdot \frac{\pi}{\pi_0}$$

где ρ_0 — плотность пара при нормальных условиях, кг/м³; $T_0 = 273$ K; $\pi = 1,47 \cdot 10^6$ Па — давление в испарителе; $\pi_0 = 98,1 \cdot 10^3$ Па;

Имеем:

$$\rho_0 = \frac{M_{V_R}}{22,4} = \frac{58,5}{22,4} = 2,6 \text{ Kr/m}^3$$

После подстановки всех величин в формулу получим:

$$\rho_{\pi} = 2,6 \frac{273}{383} \cdot \frac{1,47 \cdot 10^{6}}{98,1 \cdot 10^{3}} = 28 \text{ Kr/M}^{3}$$

Относительную плотность жидкости (остатка) можно определить по формуле Мамедова [44, с. 37]:

$$\rho_{277}^{293} = \frac{0.590M_R - 6,479}{0,693M_R + 7,581}$$

где M_R = 61,6 (определена выше). Получим:

$$\rho_{277}^{293} = \frac{0,590 \cdot 61,6 - 6,479}{0,693 \cdot 61,6 + 7,581} = 0,6$$

После этого по известным формулам или графикам нетрудно найти плотность остатка при температурах:

$$T_2 = 383 \text{ K}$$
 $\rho_{\pi} = 528 \text{ kr/M}^3$
 $T = 288 \text{ K}$ $\rho_{\pi} = 602 \text{ kr/M}^3$

Теплоту парообразования найдем как разность энтальпий паровой и жидкой фаз (см. п. 1 расчета):

Поверхностное натяжение (в Н/м) на границе раздела пар — жидкость определим по формуле Этвиша:

$$\sigma = \frac{21.2 \cdot 10^{-6}}{\left(\frac{M}{\rho_{\mathrm{w}}}\right)^{2/s}} \left(T_{\mathrm{kp}} - T_{s} - \delta\right)$$

где $M = M_R = 61,6$ — средняя молекулярная масса остатка; $\rho_{\pi} = 528 \text{ кг/м}^3$ — плотность остатка при температуре $T_2 = 383 \text{ K}$; $T_{\text{кр}}$ — критическая температура остатка, K; $T_s = T_2 = 383 \text{ K}$; δ — постоянная, равная 7 K.

Найдем псевдокритическую температуру остатка по критическим температурам компонентов и их мольным долям в остатке:

$$T_{\rm Kp} = x_1' T_{\rm Kp, 1} + x_2' T_{\rm Kp, 2} + x_3' T_{\rm Kp, 3}$$

где $T_{\text{кр. 1}}$ =368,6 K (C₃H₄); $T_{\text{кр. 2}}$ =426 K (C₄H₁₀); $T_{\text{кр. 3}}$ =470,2 K (C₅H₁₂). Значения x'_1 , x'_2 , x'_3 — мольных долей компонентов в остатке

приведены в табл. 2.11.

Получим:

 $T_{\rm KD} = 0.04 \ 368.6 + 0.665 \ 426 + 0.295 \ 470.2 = 436.8 \ {\rm K}$

Подставляя найденные величины в формулу Этвиша, получим:

$$\sigma = \frac{21.2 \cdot 10^{-6}}{\left(\frac{61.6}{528}\right)^{2/s}} (436.8 - 383 - 7) = 4.15 \cdot 10^{-3} \text{ H/m}$$

Коэффициент теплопроводности жидкости (остатка) вычислим по формуле:

$$\lambda_{\rm m} = \frac{0.1346}{\rho_{288}^{288}} (1 - 0.00047 T_2) =$$

= $\frac{0.1346}{0.602} (1 - 0.00047 \cdot 383) = 0.182 \text{ Bt/(M} \cdot \text{K})$

Коэффициент динамической вязкости жидкости (остатка) как для смеси неассоциированных жидкостей можно определить по формуле [46, стр. 42]:

$$\lg \mu_s = x'_1 \lg \mu_1 + x'_2 \lg \mu_2 + x'_3 \lg \mu_3$$

где µ1, µ2, µ3 — коэффициенты динамической вязкости компонентов жидкости (остатка).

Предварительно найдем для каждого из компонентов остатка значение µ при 383 К.

По графику [63, с. 482] имеем для пропана (C₃H₈) при двух произвольно взятых температурах:

$$T' = 320 \text{ K}$$
 $\mu' = 8 \cdot 10^{-6} \cdot 9,81 = 78,5 \cdot 10^{-6} \text{ }\Pi a \cdot c$
 $T'' = 340 \text{ K}$ $\mu'' = 7 \cdot 10^{-6} \cdot 9,81 = 68,6 \cdot 10^{-6} \text{ }\Pi a \cdot c$

Для дальнейших расчетов воспользуемся формулой [46, с. 40]

$$\lg \frac{\mu'}{\mu''} = C \left(\frac{1}{T'} - \frac{1}{T''} \right)$$

Здесь С— некоторая постоянная величина, которую легко найти из этой зависимости:

$$C = \frac{T'T'' \lg \frac{\mu'}{\mu''}}{T'' - T'} = \frac{320 \cdot 340 \lg \frac{78.5 \cdot 10^{-6}}{68.6 \cdot 10^{-6}}}{340 - 320} = 315$$

Пользуясь той же формулой, определим μ_1 при $T_2 = 383$ К:

$$\lg \frac{78,5 \cdot 10^{-6}}{\mu_1} = 315 \left(\frac{1}{320} - \frac{1}{383}\right) = 0,162$$

откуда $\mu_1 = 54 \cdot 10^{-6} \ \Pi a \cdot c.$

По тому же графику [63, с. 482] имеем для бутана (C₄H₁₀): при 290 К $\mu' = 18 \cdot 10^{-6} \cdot 9,81 = 176,5 \cdot 10^{-6}$ Па · с при 310 К $\mu'' = 15 \cdot 10^{-6} \cdot 9,81 = 147 \cdot 10^{-6}$ Па · с

Расчеты, аналогичные сделанным для пропана, дают:

C = 366; $\mu_2 = 8,1 \cdot 10^{-6} \cdot 9,81 = 89,3 \cdot 10^{-6}$ Па · с Для пентана (C₅H₁₂) получим:

при 290 К
$$\mu' = 24 \cdot 10^{-6} \cdot 9,81 = 235 \cdot 10^{-6}$$
 Па · с
при 308 К $\mu'' = 20 \cdot 10^{-6} \cdot 9,81 = 196 \cdot 10^{-6}$ Па · с
 $C = 390;$ $\mu_3 = 11,3 \cdot 10^{-6} \cdot 9,81 = 111 \cdot 10^{-6}$ Па · с

Теперь по формуле, приведенной выше, найдем коэффициент динамической вязкости для жидкого остатка в испарителе при $T_2 = 383$ К:

lg $\mu_s = 0,04$ lg 54 · 10⁻⁶ + 0,665 lg 89,3 · 10⁻⁶ + 0,295 lg 111 · 10⁻⁶ откуда

$$\mu_s = 92,7 \cdot 10^{-6} \, \Pi a \cdot c.$$

Теплоемкость жидкой фазы найдем по формуле:

$$c_{\rho_{\mathfrak{R}}} = \frac{1}{\sqrt{\rho_{288}^{288}}} \left(0,762 + 0,0034T_2\right) =$$

 $=\frac{1}{\sqrt{0,602}}$ (0,762 + 0,0034 · 383) = 2,68 κДж/(кг · K) = 2680 Дж/(кг · K)

Подставляя все найденные выше значения в формулу для α_2 , получим:

$$\alpha_{2} = 7,77 \cdot 10^{-2} \left(\frac{28 \cdot 267 \cdot 9 \cdot 10^{3}}{528 - 28} \right)^{0,033} \left(\frac{528}{4,15 \cdot 10^{-3}} \right)^{0,33} \times \frac{0,182^{0,75}}{(92,7 \cdot 10^{-6})^{0.45} \cdot 2680^{0,12} \cdot 383^{0,37}} \cdot q^{0,7} = 4,24q^{0,7} \text{ Bt/}(\text{M}^{2} \cdot \text{K})$$

Таким образом, в зависимости от теплонапряжения поверхности нагрева испарителя коэффициент теплоотдачи [в Вт/(м²·K)] со стороны флегмы будет выражаться формулой:

$$\alpha_2 = 4,24q^{0,7}$$

Выше, при определении значения коэффициента теплоотдачи за жидкую фазу везде принимается остаток R, а не флегма ($V_R + R$), так как при температуре в испарителе

 $T_2 = 383$ К именно остаток R находится в равновесии с паром V_R .

5. Коэффициент теплоотдачи а, со стороны конденсирующегося водяного пара

Для случая конденсации водяного пара внутри горизонтальных труб предложено уравнение [8, с. 202]

$$Nu = c \operatorname{Re}_{\kappa}^{0,5} \Pi_{\sigma}^{0,3} \Pi_{\gamma}^{0,3} \left(\frac{l}{d_{\rm B}}\right)^{0,33}$$

которое в рабочем виде записывается так:

$$\alpha_1 = 1,36 A q^{0.5} l^{0.35} d_{\rm B}^{-0.25}$$

где $A = \varphi(T_{cp})$ — коэффициент, зависящий от средней температуры конденсата и определяемый по графику (рис. 2.14); q — теплонапряжение поверхности нагрева испарителя, BT/M^2 ; l — длина трубы, м; d_B — внутренний диаметр трубы, м.

Средняя температура конденсата равна:

$$T_{\rm cp} = 0,5 \left(T'_s + T_{w1}\right)$$

где T'_s — температура насыщенного пара, К; T_{w1} — температура стенки со стороны конденсирующегося пара, К.

Температура $T_{\omega 1}$, как правило, мало отличается от T'_s , поэтому без большой погрешности можно принимать $T_{\rm cp} \approx T'_s \approx T_{\omega 1}$.

По графику (рис. 2.14) при $T_{\rm cp} = 443$ К A = 6,2. Тогда $\alpha_1 = 1,36 \cdot 6,2 \cdot 6^{0,35} \cdot 0,02^{-0,25} \cdot q^{0,5} = 42q^{0,5}$ Вт/(м² · К).

Рис. 2.14. Зависимость величины A от T_{ср}.

6. Коэффициент теплопередачи

С учетом тепловых сопротивлений стенки и загрязнений ее обеих поверхностей коэффициент теплопередачи определим из уравнения:

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_{CT}}{\lambda_{CT}} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_2}}$$

где δ_{cT} = 0,0025 м — толщина стенки трубы; λ_{cT} = 33,53 Вт/(м·К) — коэффициент теплопроводности материала стенки трубы; $\frac{\delta_1}{\lambda_1}$ = 0,000215 (м² · K)/Вт — тепловое сопротивление загрязнения внут-

Таблица 2.12

_	Результаты расчетов				
Величины	1	2	3		
$q, BT/M^2$ (принимается)	30 000	50 000	70 000		
	7 266	9 408	11 088		
	5 766	8 226	10 473		
$k \operatorname{Br}/(M^2 \cdot K) \dots \dots$	83 3	895	930		
	36	56	75		

ренней поверхности труб, — принимается как среднее значение для водяного пара и мягкой воды [5, с. 558]; $\frac{\delta_2}{\lambda_2} = 0,0006$ (м² · K)/Вт —

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{0,0025}{33,53} + 0,000215 + 0,0006 + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{\frac{1}{\alpha_1} + \frac{1}{\alpha_2} + 0,00089}}$$

Так как α₁ и α₂ являются функциями теплонапряжения *q*, величина

которого неизвестна, то вычисление k ведем методом постепенного приближения. Задаемся различными значениями q и для каждого из них находим α_1 , α_2 , k и $\Delta T_{\rm cp}$. Результаты расчетов сведены в табл. 2.12.

По данным этой таблицы строим график зависимости $q - \Delta T_{cp}$ (рис. 2.15), называемый нагрузочной характеристикой испарителя.

Зная, что в рассчитываемом испарителе средний температурный напор $\Delta T_{\rm cp} = 60$ К, находим по графику (рис. 2.15) соответствующее теплонапряжение поверхности нагрева $q = 54\,500$ Вт/м².

Коэффициент теплопередачи в испарителе:

$$k = \frac{q}{\Delta T_{\rm cp}} = \frac{54\,500}{60} = 908 \, \text{Br/(M}^2 \cdot \text{K)}$$

7. Поверхность теплообмена испарителя

Расчетная поверхность теплообмена:

$$F_{\rm p} = \frac{Q_{\rm p}}{a} = \frac{1\,630\,000}{54\,500} = 30$$
 M²

По нормали ВНИИНефтемаша ОН26-02-6—66 принимаем испаритель с паровым пространством типа 800 ПП $\frac{16}{16}$. Шифр аппарата означает: испаритель с паровым пространством, диаметр корпуса 800 мм, условное давление в корпусе и в трубках $P_y =$ = 1.57 · 10⁶ Па (16 ат).

Этот аппарат имеет поверхность теплообмена $F = 40 \text{ м}^2$, один трубный пучок из 86 трубок диаметром $25 \times 2,5$ и длиной 6 м, трубки из стали 10.

8. Температура на внутренней поверхности трубы

Эту температуру можно определить из уравнения:

$$T_{w1} = T'_s - q\left(\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1}\right)$$

Здесь *T's* = 443 К

$$\alpha_1 = 42q^{0.5} = 42 (54,5 \cdot 10^3)^{0.5} = 9828 \text{ Bt/(M}^2 \cdot \text{K})$$

 $\frac{\delta_1}{\lambda_1} = 0,000215 \text{ (M}^2 \cdot \text{K})/\text{Bt}$

Тогда

$$T_{\omega 1} = 443 - 54.5 \cdot 10^3 \left(\frac{1}{9825} + 0.000215\right) \approx 427 \text{ K}$$

Следовательно, средняя температура конденсата:

$$T_{\rm cn} = 0.5 (443 + 427) = 435 \, {\rm K}$$

При определении коэффициента теплоотдачи α_1 значение параметра A нами было взято при $T'_s = 443$ К. Как видно, T_{cp} меньше T'_s примерно на 2%, что находится в пределах точности технического расчета.

ТРУБЧАТАЯ ПЕЧЬ с излучающими стенками топки

Рассчитать трубчатую печь с излучающими стенами топки для нагрева и частичного испарения отбензиненной нефти при следующих исходных данных: производительность печи по сырью (отбензиненной нефти) G = 1900 т/сут; начальная и конечная температура сырья соответственно $T_1 = 453$ К и $T_2 = 623$ К; плотность отбензиненной нефти при 293 К $\rho_{293} = 900$ кг/м³; массовая доля отгона сырья при температуре 623 К и давлении $\pi = 196 \cdot 10^3$ Па на выходе из печи e = 0,6 (расчет доли отгона в примере опущен); плотность отгона при 293 К $\rho_{293} = 875$ кг/м³; плотность остатка однократного испарения при 293 К $\rho_{293} = 950$ кг/м³; топливо газ состава (в объемн.%) СН₄ — 98, С₂H₆ — 0,3, С₃H₈ — 0,2, μ -C₄H₁₀ — 0,1, СО₂ — 0,3, N₂ — 1,1; плотность газа 0,730 кг/м³ (при нормальных условиях).

Теоретические основы работы трубчатых печей, их конструкция и расчет широко освещены в литературе [5, 40---42, 64].

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА ПЕЧИ

1. Рассчитывают процесс горения топлива.

2. Определяют к.п.д. печи, ее полезную и полную тепловую мощность, расход топлива.

3. Определяют поверхность нагрева радиантных (экранных) труб и основные размеры камеры радиации (топки). Расчет ведут по схеме:

 а) задаются температурой дымовых газов на выходе из топки и находят количество радиантного тепла (прямую отдачу топки);

б) принимают теплонапряжение радиантных труб и определяют их поверхность нагрева;

в) находят температуру сырья на входе в радиантные трубы;

г) выбирают диаметр и полезную длину труб и находят их число;

д) выбирают тип печи, проводят компоновку радиантной поверхности и определяют основные (внутренние) размеры топки;

е) принимают тип газовой горелки и, зная ее теплопроизводительность и полную тепловую мощность печи, определяют количество горелок и площадь излучающих стен печи.

4. Проверяют, находится ли в допустимых пределах скорость сырья на входе в змеевик печи.

5. Рассчитывают лучистый теплообмен в топке. Этот расчет проводится с целью подтверждения (проверки) взаимного соответствия ранее выбранных температуры дымовых газов на выходе из топки и теплонапряжения поверхности радиантных труб. Если в результате расчета окажется, что при выбранном теплонапряжении радиантных труб температура газов на выходе из топки будет значительно отличаться от ранее принятой, то необходимо принять новое значение этой температуры и повторить расчет, начиная с п. 3.

Расчет ведут по схеме:

а) находят коэффициент теплоотдачи свободной конвекцией от дымовых газов к радиантным трубам;

б) рассчитывают максимальную температуру горения, среднюю температуру поглощающей среды (газа в топке), температуру излучающей стены; в) рассчитывают эквивалентную абсолютно черную поверхность излучения;

г) находят действительную температуру дымовых газов на выходе из топки.

6. Определяют величину конвективной поверхности нагрева печи, число конвекционных труб и размеры камеры конвекции.

7. Проводят гидравлический расчет змеевика печи и определяют давление на входе в него.

8. Определяют потери напора в газовом тракте печи и рассчитывают основные размеры (диаметр и высоту) дымовой трубы.

РАСЧЕТ

1. РАСЧЕТ ПРОЦЕССА ГОРЕНИЯ

Определим низшую теплоту сгорания топлива (в кДж/м³) по формуле:

 $\begin{aligned} Q_{p}^{"} &= 360, 33 \cdot CH_{4} + 590, 4 \cdot C_{2}H_{4} + 631, 8 \cdot C_{2}H_{6} + 868, 8 \cdot C_{3}H_{6} + \\ &+ 913, 8 \cdot C_{3}H_{8} + 1092, 81 \cdot u30 \cdot C_{4}H_{10} + 1195 \cdot \kappa \cdot C_{4}H_{10} + 1146 \cdot C_{4}H_{8} + \\ &+ 1460, 22 \cdot C_{5}H_{12} + 251, 2H_{2} \end{aligned}$

где CH_4 , C_2H_4 и т. д. — содержание соответствующих компонентов в топливе, объемн. %.

Получим:

$$Q_p^{\text{H}} = (360, 33 \cdot 98 + 631, 8 \cdot 0, 3 + 913, 8 \cdot 0, 2 + 1195 \cdot 0, 1) =$$

= 35 800 кДж/м³

или

Пересчитаем состав топлива в массовые проценты. Результаты пересчета сведены в табл. 2.13.

Таблица 2,13

Қомпоненты	Молекуляр- ная масса <i>М_і</i>	Мольная (объемная) доля ^r i	M _i r _i	$g_i = \frac{\frac{M_{accobbR}}{M_i r_i} \times 100}{\sum_{i} \frac{M_i r_i}{M_i r_i}}$	
$\begin{array}{c} CH_4 & & \\ C_2H_6 & & \\ C_3H_8 & & \\ H^-C_4H_{10} & & \\ CO_2 & & \\ N_2 & & \\ \end{array}$	16 30 44 58 44 28	0,980 0,003 0,002 0,001 0,003 0,011	15,680 0,090 0,088 0,058 0,132 0,308	95,84 0,55 0,54 0,35 0,84 1,88	
Сумма	-	1,000	$M_r \approx 16,36$	109,0	

Определим элементарный состав топлива в массовых процентах. Содержание углерода в любом *i*-м компоненте топлива находим по соотношению:

$$C_i = \frac{g_i \cdot 12n_i}{M_i}$$

где *n_i* — число атомов углерода в данном компоненте топлива. Содержание углерода:

$$C = \sum_{CH_4}^{CO_1} C_i = \sum_{CH_4}^{CO_2} \frac{g_i \cdot 12n_i}{M_i} = \frac{95,84 \cdot 12 \cdot 1}{16} + \frac{0,55 \cdot 12 \cdot 2}{30} + \frac{0,55 \cdot 12 \cdot 3}{44} + \frac{0,35 \cdot 12 \cdot 4}{58} + \frac{0,84 \cdot 12 \cdot 1}{44} = 73,3 \text{ macc. }\%$$

Содержание водорода:

$$H = \sum_{CH_{4}}^{H-C_{4}H_{10}} H_{i} = \sum_{CH_{4}}^{H-C_{4}H_{1}} \frac{g_{i}m_{i}}{M_{i}} =$$
$$= \frac{95,84\cdot4}{16} + \frac{0,55\cdot6}{30} + \frac{0,54\cdot8}{44} + \frac{0,35\cdot10}{58} = 24,23 \text{ macc. \%}$$

где m_i — число атомов водорода в данном компоненте топлива. Содержание кислорода:

$$O = \frac{g_{CO_2} \cdot 16P}{M_{CO_2}} = \frac{0.84 \cdot 16 \cdot 2}{44} = 0.61 \text{ macc. }\%$$

где *Р* — число атомов кислорода в молекуле CO₂.

Содержание азота:

$$N = \frac{g_{N_2} \cdot 14n}{M_{N_1}} = \frac{1,88 \cdot 14 \cdot 2}{28} = 1,88 \text{ macc. }\%$$

где *п* — число атомов азота в молекуле.

Проверка:

$$C + H + O + N = 73,3 + 24,23 + 0,61 + 1,88 = 100$$
 macc. %

Определим теоретическое количество воздуха, необходимого для сжигания 1 кг газа, по формуле:

$$L_0 = \frac{0,0267C + 0,08H + 0,01 (S - O)}{0,23} =$$

= $\frac{0,0267 \cdot 73,3 + 0,08 \cdot 24,23 + 0,01 (0 - 0,61)}{0,23} = 16,94 \text{ kr/kr}$

Для печей с излучающими стенками коэффициент избытка воздуха $\alpha = 1,03 \div 1,07$. Принимаем $\alpha = 1,06$. Тогда действительное количество воздуха:

 $L_{1} = \alpha L_{0} = 1,06 \cdot 16,94 = 17,96 \text{ kr/kr}$

или

$$\frac{L_{\rm A}}{\rho_{\rm B}} = \frac{17,96}{1,293} = 13,89 {\rm M}^3/{\rm Kr}$$

где $\rho_{\rm B} = 1,293$ кг/м³ — плотность воздуха при нормальных условиях (273 К и 0,1 · 10⁶ Па).

Определим количество продуктов сгорания, образующихся при сжигании 1 кг топлива:

$$m_{\rm CO_2} = 0.0367 \text{C} = 0.0367 \cdot 73.3 = 2.69 \text{ кг/кг}$$

 $m_{\rm H_2O} = 0.09 \text{H} = 0.09 \cdot 24.23 = 2.18 \text{ кг/кг}$
 $m_{\rm O_2} = 0.23 L_0 (\alpha - 1) = 0.23 \cdot 16.94 (1.06 - 1) = 0.23 \text{ кг/кг}$

 $m_{N_2} = 0.77L_0 \alpha + 0.01 N = 0.77 \cdot 16.94 \cdot 1.06 + 0.01 \cdot 1.88 = 13.84 \text{ km/km}$

Суммарное количество продуктов сгорания:

$$\sum m_i = 2,69 + 2,18 + 0,23 + 13,84 = 18,94$$
 кг/кг

Проверка:

$$\sum m_i = 1 + \alpha L_0 = 1 + 1,06 \cdot 16,94 = 18,95$$
 Kr/Kr

Содержанием влаги в воздухе пренебрегаем.

Найдем объемное количество продуктов сгорания (в м³) на 1 кг топлива (при нормальных условиях):

$$V_{\rm CO_2} = \frac{m_{\rm CO_2} \cdot 22,4}{M_{\rm CO_2}} = \frac{2,69 \cdot 22,4}{44} = 1,37 \text{ M}^3/\text{Kr}$$

$$V_{\rm H_2O} = \frac{m_{\rm H_2O} \cdot 22,4}{M_{\rm H_2O}} = \frac{2,18 \cdot 22,4}{18} = 2,71 \text{ M}^3/\text{Kr}$$

$$V_{\rm O_2} = \frac{m_{\rm O_2} \cdot 22,4}{M_{\rm O_2}} = \frac{0,23 \cdot 22,4}{32} = 0,16 \text{ M}^3/\text{Kr}$$

$$V_{\rm N_2} = \frac{m_{\rm N_2} \cdot 22,4}{M_{\rm N_2}} = \frac{13,84 \cdot 22,4}{28} = 11,07 \text{ M}^3/\text{Kr}$$

Суммарный объем продуктов сгорания:

$$\sum V_i = 1,37 + 2,71 + 0,16 + 11,07 = 15,31 \text{ m}^3/\text{kg}$$

Плотность продуктов сгорания при 273 К и 0,1 · 106 Па:

$$\rho_0 = \frac{\sum m_i}{\sum V_i} = \frac{18,95}{15,31} = 1,24 \text{ KG/M}^3$$

Определим энтальпию продуктов сгорания на 1 кг топлива при различных температурах по уравнению:

$$q_T = (T - 273) (m_{\rm CO_1} c_{\rm CO_2} + m_{\rm H_2O} c_{\rm H_2O} + m_{\rm O_2} c_{\rm O_2} + m_{\rm N_2} c_{\rm N_2})$$

где T — температура продуктов сгорания, K; c_{CO_2} , c_{H_1O} , c_{O_2} , c_{N_2} — средние массовые теплоемкости продуктов сгорания, определяемые из таблицы (см. Приложение 7), кДж/(кг · K).

Найдем для примера величину q₅₀₀:

$$q_{500} = (500 - 273)(2,69 \cdot 0,9207 + 2,18 \cdot 1,9004 + 0,23 \cdot 0,9391 + 13,84 \cdot 1,0362) = 4807$$
 кДж/кг

Результаты расчетов сведены в табл. 2.14.

Таблица 2.14

Т,Қ	273	300	500	700	1 100	1 500	1 900
q _T .кДж/кг	0	561	4 807	9 260	18 837	29 070	40 048

Рис. 2.16. График зависимости температура — энтальпия.

По данным этой таблицы строим график q — T (энтальпия продуктов сгорания — температура), — рис. 2.16.

2. К. п. д. печи, ее тепловая нагрузка и расход топлива

К.п.д. печи найдем по формуле:

$$\eta = 1 - \left(\frac{q_{\text{fot}}}{Q_{\text{p}}^{\text{H}}} + \frac{q_{\text{yx}}}{Q_{\text{p}}^{\text{H}}}\right)$$

где $\frac{q_{\text{пот}}}{Q_p^{\text{H}}}$ — потери тепла в окружающую среду, в долях от низшей теплоты сгорания топлива; $\frac{q_{yx}}{Q_p^{\text{H}}}$ — потери тепла с уходящими дымовыми газами, в долях от низшей теплоты сгорания топлива. Примем, что $\frac{q_{\text{пот}}}{Q_p^{\text{H}}}$ = 0,06 и температура дымовых газов, покидающих конвекционную камеру печи, на 120 К выше температуры T_1 сырья, поступающего в печь:

$$T_{\rm vx} = T_1 + \Delta T = 453 + 120 = 573 \,\rm K$$

При T_{ух} == 573 К найдем по графику q — T (рис. 2.16) потерю тепла с уходящими дымовыми газами

или в долях от низшей теплоты сгорания топлива:

$$\frac{q_{\rm yx}}{Q_{\rm p}^{\rm H}} = \frac{7000}{49\,040} = 0,143$$

Подставив численные значения величин получим, что к.п.д. печи

$$\eta = 1 - (0,06 + 0,143) = 0,797$$

Полная тепловая нагрузка печи Q_т

$$Q_{\mathrm{T}} = \frac{Q_{\mathrm{полезн}}}{\eta}$$

где $Q_{\text{полезн}}$ — полезное тепло печи, кДж/ч.

Полезное тепло печи (в кДж/ч) рассчитываем по формуле:

$$Q_{\text{полезн}} = G \left[e q_{T_2}^{n} + (1 - e) q_{T_2}^{*} - q_{T_1}^{*} \right]$$

где G — производительность печи по сырью, кг/ч; e = 0.6 — массовая доля отгона сырья на выходе из печи при $T_2 = 623$ К (е можно определить по кривой однократного испарения сырья или аналитическим методом Трегубова [5, с. 174]; в данном расчете величина е задана); $q_{T_2}^n$, $q_{T_2}^*$ — энтальпия соответственно паровой и жидкой фаз сырья на выходе из печи при $T_2 = 623$ К, кДж/кг; q_T^* — энтальпия сырья на выходе в печь при $T_1 = 453$ К, кДж/кг;

По таблицам энтальпий жидких нефтепродуктов и нефтяных паров (см. Приложение 2 и 3), зная плотности отбензиненной нефти, отгона и остатка однократного испарения, найдем:

$$q_{T_1}^{\pi} = q_{453}^{\pi} = 378 \text{ кДж/кг}$$

 $q_{T_2}^{\pi} = q_{623}^{\pi} = 819 \text{ кДж/кг}$
 $q_{T_2}^{\pi} = q_{623}^{\pi} = 1070 \text{ кДж/кг}$

Тогда

$$Q_{\text{полезн}} = \frac{1900 \cdot 1000}{24} [0,6 \cdot 1070 + (1 - 0,6) \cdot 819 - 378] = 46,87 \cdot 10^6 \text{ кДж/ч} = 13\ 020 \text{ кBt}$$

Подставляя в формулу соответствующие величины, получим

$$Q_{\rm T} = \frac{46,87 \cdot 10^6}{0,797} = 58,6 \cdot 10^6 \text{ K} \text{Д} \text{ж}/\text{Ч} = 16300 \text{ K} \text{B} \text{T}$$

Часовой расход топлива:

$$B = \frac{Q_{\text{полезн}}}{Q_{\text{р}}^{\text{H}} \eta} = \frac{46,87 \cdot 10^6}{49\,040 \cdot 0,797} = 1200 \text{ кг/ч}$$

или

$$B' = \frac{B}{\rho_{\rm r}} = \frac{1200}{0,730} = 1644 \text{ M}^3/\text{H}$$

3. Поверхность нагрева радиантных труб и размеры камеры радиации (топка)

Поверхность нагрева радиантных труб (в м²) определяется по формуле:

$$H_{\rm p} = \frac{Q_{\rm p}}{q_{\rm p}}$$

где $Q_{\rm p}$ — количество тепла, переданного сырью в камере радиации, кВт; $q_{\rm p}$ — теплонапряжение радиантных труб, кВт/м².

Количество тепла, переданного сырью в камере радиации (прямая отдача топки), найдем из уравнения теплового баланса топки:

$$Q_{\mathbf{p}} = \left(Q_{\mathbf{p}}^{\mathbf{H}} \boldsymbol{\eta}_{\mathbf{T}} - \boldsymbol{q}_{\mathbf{T}_{\mathbf{T}}} \right) \boldsymbol{B}$$

где $\eta_{\rm T}$ — коэффициент эффективности (к.п.д.) топки; $q_{T_{\rm R}}$ — энтальпия дымовых газов на выходе из камеры радиации при температуре $T_{\rm R}$, кДж/кг топлива.

Примем $T_{\rm m} = 1023$ К и определим по графику q - T (рис. 2.16)

$$q_{T_{\pi}} = q_{1023} = 17\ 000\ кДж/кг$$
топлива

Ранее было принято, что потери тепла в окружающую среду равны 6%. Пусть 4% в том числе составляют потери тепла в топке. Тогда

$$\eta_{\rm T} = 1 - 0.04 = 0.96$$

И

$$Q_{\rm p} = (49\ 040 \cdot 0.96 - 17\ 000) \cdot 1200 = 36.1 \cdot 10^6 \ {\rm KДж/ч} = 10\ 030 \ {\rm KBt}$$

Примем теплонапряжение радиантных труб $q_{\rm p} = 67 \, {\rm \kappa Br/m^2}$ (дальнейшим расчетом подтвердим эту величину).

Таким образом, поверхность нагрева радиантных труб будет равна:

$$H_{\rm p} = \frac{10\ 030}{67} = 150\ {\rm m}^2$$

Определим температуру Т_к сырья на входе в радиантные трубы.

Полагая на основе опытных и расчетных данных, что нефть в конвекционных трубах не испаряется, найдем ее энтальпию $q_{T_{\kappa}}^{*}$ на входе в радиантные трубы из уравнения:

$$Q_{\mathbf{p}} = G\left[eq_{T_2}^{\mathbf{n}} + (1-e)q_{T_2}^{\mathbf{m}} - q_{T_{\mathbf{K}}}^{\mathbf{m}}\right]$$

Следовательно

$$\begin{aligned} q_{T_{\kappa}}^{*} &= eq_{T_{2}}^{\pi} + (1-e) q_{T_{2}}^{*} - \frac{Q_{p}}{G} = 0,6 \cdot 1070 + \\ &+ (1-0,6) \cdot 819 - \frac{36.1 \cdot 10^{6}}{79\,166} = 514 \text{ кДж/кг} \end{aligned}$$

По таблице энтальпий нефтепродуктов (см. Приложение 2) искомая температура $T_{\kappa} = 507$ K.

Выбираем трубы диаметром 127×8 мм с полезной длиной $l_{\rm Tp} = 9,5$ м (полная длина трубы с учетом заделки концов в трубные двойники равна 10 м).

Число радиантных труб:

$$N_{\rm p} = \frac{H_{\rm p}}{\pi d_{\rm H} l_{\rm Tp}} = \frac{150}{3.14 \cdot 0.127 \cdot 9.5} = 40$$

Учитывая опыт промышленности, принимаем печь беспламенного горения с двухрядным экраном двухстороннего облучения, с горизонтальным шахматным расположением труб и двумя нижними конвекционными секциями (рис. 2.17).

Рис. 2.17. Схема печи с излучающими стенами топки.

По существующим нормам принимаем шаг размещения экранных труб S = 0,25 м. Тогда расстояние между вертикальными рядами радиантных труб:

$$S_1 = \frac{S\sqrt{3}}{2} = \frac{0.25 \cdot 1.73}{2} = 0.215$$
 M

По данным ВНИИНефтемаша [40, с. 14] расстояние от излучающих стен до трубного экрана должно быть от 0,6 до 1,0 м. Принимаем это расстояние $a_{\rm T} = 1$ м. В каждом вертикальном ряду

6 Зак. 100

экрана разместим по 17 труб. Тогда высота радиантной камеры (топки) составит (см. рис. 2.17):

$$h_{\rm T} = (N'_{\rm p} - 1) S + 0.5S + 2l_{\rm T}$$

где $N'_{\rm p}$ — число труб в одном вертикальном ряду; $l_{\rm T} = 0.25$ м — расстояние от нижней и верхней труб вертикального ряда соответственно до пода и потолка печи.

Подставив числовые значения величин, получим:

$$h_{\rm T} = (17 - 1) \cdot 0.25 + 0.5 \cdot 0.25 + 2 \cdot 0.25 = 4.63$$
 M

Ширина радиантной камеры печи:

$$b_{\rm t} = 2a_1 + S_1 = 2 \cdot 1 + 0,215 = 2,215$$
 M

На потолке левой и правой частей радиантной камеры размещаем по три трубы с шагом 0,25 м.

Объем камеры радиации:

$$V_{\rm T} = b_{\rm T} h_{\rm T} l_{\rm T} = 2,215 \cdot 4,63 \cdot 9,5 = 97,4 {\rm M}^3$$

Теплонапряжение топочного объема печи:

$$q_V = \frac{Q_T}{V_T} = \frac{16\ 300}{97.4} = 167.4\ \text{kBt/m}^3$$

Для обеспечения равномерного обогрева каждой трубы экрана по окружности и по длине принимаем для проектируемой печи газовые горелки ВНИИНефтемаша типа ГБП2а теплопроизводительностью $q_r = 69,78$ кВт (60 000 ккал/ч) [40, с. 43].

Количество горелок:

$$q_{\rm V} = \frac{Q_{\rm T}}{V_{\rm T}} = \frac{16\,300}{69,78} = 233$$

Принимаем для каждой из двух излучающих стен топки по 114 горелок: 19 горелок по длине излучающей стены и 6 горелок по высоте.

Так как размер горелки 0,5 imes 0,5 м, то площадь каждой излучающей стены печи:

$$R = (19 \cdot 0,5) (6 \cdot 0,5) = 28,5 \text{ M}^2$$

а двух стен

$$H_{SR} = 2R = 2 \cdot 28,5 = 57 \text{ m}^2$$

4. Проверка скорости сырья на входе в змеевик печи

Оптимальное значение скорости сырья на входе в змеевик печи с учетом эффективного теплообмена и минимальных энергетических затрат на прокачивание сырья составляет 0,5—2,5 м/с.

Проверим, соответствует ли скорость подачи сырья для проектируемой печи установленным пределам.

При двухпоточном движении сырья в змеевике печи его линейная скорость (в м/с) определится по формуле:

$$w = \frac{4G}{3600\rho_{453}\pi d_{\rm B}^2/m}$$

где $d_{\rm B} = 0,09$ м — внутренний диаметр конвекционных труб; m = 2 — число потоков сырья; $\rho_{453} = 800$ кг/м³ — плотность сырья (нефти) при 453 К.

Подставив числовые значения величин, получим:

$$w = \frac{4 \cdot 79\ 166}{3800 \cdot 800 \cdot 3,14 \cdot 0,09^2 \cdot 2} = 2,16 \text{ M/c}$$

Как видно, начальная скорость сырья в змеевике печи находится в допустимых пределах.

5. Расчет лучистого теплообмена в топке

Целью этого расчета является определение действительной температуры дымовых газов на выходе из топки при принятом теплонапряжении радиантных труб или проверка ранее выбранной температуры дымовых газов, покидающих топку.

Расчетная формула имеет вид [42, с. 11]:

$$T_{\rm n} = \sqrt[4]{\frac{1}{\psi} \left[\frac{100^{4}}{C_{\rm S}H_{\rm S}} (Q_{\rm p} - Q_{\rm p, \kappa}) + \theta^{4} \right]}$$

где T_n — температура газов в конце топки, К; C_s — постоянная излучения абсолютно черного тела, равная 5,73 Вт/(м²·K); H_s эквивалентная абсолютная черная поверхность, м²; $Q_{p. B}$ — количество тепла, передаваемое продукту в камере радиации конвекцией, кВт; θ — средняя температура наружной стенки экрана, К; ψ коэффициент, зависящий от отношения H_{SR}/H_s , — определяется по графику [42, рис. 11]; H_{SR} — поверхность излучающих стен топки, м².

Определим коэффициент теплоотдачи [в Вт/(м²·К)] свободной конвекцией от дымовых газов к радиантным трубам по формуле:

$$\alpha_{\kappa} = 2, 1 \sqrt[4]{T_{\pi} - \theta}$$

Средняя температура наружной поверхности стенки радиантных труб в определяется из уравнения:

$$\theta = \tau + q_{\rm p} \left(\frac{1}{\alpha_2} + \frac{\delta}{\lambda} \right)$$

где т — средняя температура сырья в радиантных трубах, К; α_2 — коэффициент теплоотдачи от стенки труб к нефти, Вт/($M^2 \cdot K$); δ — толщина стенки трубы, м; λ — коэффициент теплопроводности материала стенки труб, Вт/($M \cdot K$).

Средняя температура сырья в радиантных трубах:

$$\mathbf{r} = \frac{T_{\kappa} + T_2}{2} = \frac{507 + 623}{2} = 565 \,\mathrm{K}$$

Принимая $\alpha_2 = 940 \text{ Bt/}(\text{м}^2 \cdot \text{K})$, а $\lambda = 45.4 \text{ Bt/}(\text{м} \cdot \text{K})$, получим:

$$\theta = 507 + 66\ 850\left(\frac{1}{940} + \frac{0,008}{45,4}\right) = 647\text{K}$$

Тогда

$$\alpha_{\kappa} = 2,1 \sqrt[4]{1023 - 647} = 9,3 \text{ BT/(M}^2 \cdot \text{K)}$$

Определим среднюю температуру поглощающей среды (газов в топке), используя рекомендуемую Бахшияном [40, с. 93] формулу:

$$T_V = T_{\pi} + \frac{Q_{\mathrm{p.\,\kappa}} + Q_{\mathrm{p.\,\pi}}}{B \sum mc_p}$$

где $Q_{p. \kappa}$ — тепло, переданное в радиантной камере конвекцией, кВт; $Q_{p. \pi}$ — потери тепла радиантной камерой в окружающую среду, кВт; $\sum mc_p$ — средняя суммарная теплоемкость продуктов сгорания 1 кг топлива в интервале температур от T_{π} до T_{v} .

Для определения c_p предварительно зададимся $T_V = 1173$ К и по [42, рис. 18] определим $c_p = 1,21$ кДж/(кг · К).

Определяем количество тепла, переданное в радиантной камере конвекцией:

$$Q_{\mathrm{p.\kappa}} = \alpha_{\kappa} H_{\mathrm{p}} \left(\varphi_{\kappa} T_{\mathrm{n}} - \theta \right)$$

где φ_{κ} — коэффициент, учитывающий снижение температуры газов в области труб по сравнению с температурой газов, покидающих топку. При расчетах этот коэффициент может быть принят равным 0,9 [42, с. 85].

Получим:

$$Q_{p,\kappa} = 9.3 \cdot 150 (0.9 \cdot 1023 - 647) = 415380 \text{ Bt} \approx 415.4 \text{ kBt}$$

Количество тепла, потерянное радиантной камерой в окружающую среду:

$$Q_{\rm p, \pi} = Q_{\rm T} (1 - \eta_{\rm T}) = 16\,300\,(1 - 0.96) = 652\,\,{\rm kBT}$$

Таким образом

$$T_V = 1023 + \frac{(415.4 + 652) \cdot 3600}{1200 \cdot 18.94 \cdot 1.21} = 1163 \text{K}$$

Расхождение с принятой ранее величиной T_v незначительно. Температуру излучающей стенки, согласно опытным данным ВНИИНефтемаша [40, с. 93], можно найти по формуле:

$$T_R = 1,2T_{\pi} = 1,2 \cdot 1023 = 1228 \text{K}$$

Рассчитаем эквивалентную абсолютно черную поверхность *H_s*. Предварительно определим все необходимые для этого величины.

Найдем угловой коэффициент для случая лучистого теплообмена между поверхностью экранных труб и излучающей стенкой, или коэффициент облученности ρ_{HR} . Этот коэффициент показывает, во сколько раз эффективная (расчетная) поверхность Π_{HR} взаимного излучения экрана и излучающей стенки больше поверхности радиантных труб, т. е.

$$\rho_{HR} = \frac{\Pi_{HR}}{H_{\rm p}}$$

Основы расчета П_{нк} достаточно подробно изложены в ряде руководств [40, 42, 65, 66 и др.].

Ниже излагается схема расчета П_{НR} для нашего случая.

В любом масштабе (лучше 1:20 или 1:10) вычерчиваем схему топки печи с разме-

щенными в ней трубами.

Ввиду симметричности топки на схеме (рис. 2.18) дана только левая половина ее.

Для упрощения в левом вертикальном ряду ^В показаны верхние девять труб из семнадцати, а в правом вертикальном ряду — нижние семь труб из семнадцати.

Расчетная поверхность взаимного излучения П_{НR, R} определяется для каждой трубы отдельно. Ввиду симметричного размещения труб относительно излучающей стенки, очевидно, достаточно найти П_{нв}, для половины трублевого ряда, половины труб правого ряда и труб левой А половины потолочного экрана. Для получения средней расчетной поверхно-

сти Π_{HR}^{cp} одной трубы достаточно для нашего случая подсчитать Π_{HR_i} для части вычерченных труб. Эти трубы на схеме (рис. 2.18) пронумерованы (1, 3, 5, 7, 9; 1', 3', 5', 7', 9' и 10, 11, 12).

Из точек A и B, ограничивающих высоту излучающей стенки, к каждой из пронумерованных труб проводим касательные (например, к трубе 1 — касательные BB_1 , BB'_1 , AA_1 , AA'_1 ; к трубе 5' — касательные $AA_{5'}$, $AA'_{3'}$, $BB_{5'}$, $B'_{5'}$).

Четыре касательные образуют у каждой трубы две воображаемые упругие нити, как бы натянутые на трубу, — внутреннюю и внешнюю (например, для трубы 1 — нить BB_1A_1A — внешняя и нить $BB_1A_1B_1A_1A$ — внутренняя; аналогично для трубы 5' нить $AA_5'B_5'B$ — внешняя и нить $AA_5'B_5'B_5'B$ — внутренняя). По методу «натянутых нитей» расчетная поверхность взаимного излучения для трубы 1 определится следующим образом:

$$\Pi_{HR_{1}} = 0.5 [(\overline{BB'_{1}} + \bigcup B'_{1}A'_{1} + \bigcup A'_{1}B_{1} + \bigcup B_{1}A_{1} + A_{1}A] - (\overline{BB_{1}} + \bigcup B_{1}A'_{1} + \overline{A'_{1}A})]$$

но $\overline{BB'_1} = \overline{BB_1}$, а $\overline{A'_1A} = \overline{A_1A}$, поэтому

 $\Pi_{HR_1} = 0.5 (\cup A_1'B_1' + \cup B_1A_1)$

Аналогично для трубы 5':

$$\Pi_{HR_{5'}} = 0,5 \left(\bigcup A_{5'}'B_{5'}' + \bigcup A_{5'}B_{5'} \right)$$

Следовательно, для любой *i*-й трубы нашей схемы расчетная поверхность взаимного излучения определяется по формуле:

$$\Pi_{HR_i} = 0,5 \left(\bigcup A_i' B_i' + \bigcup A_i B_i \right)$$

Для определения размеров $\bigcirc A'_iB'_i$ и $\bigcirc A_iB_i$ при расчете Π_{HR_i} любой трубы необходимо рядом со схемой топки вычертить в масштабе 1:1 окружность диаметром, равным наружному диаметру трубы, т. е. $d_{\rm H} = 127$ мм. Проводя к этой окружности касательные, параллельные касательным к соответствующей трубе на схеме, отметим на ней четыре точки, которые ограничат две искомые дуги.

Например, на окружности с $d_{\rm H} = 127$ мм таким способом для трубы 1 найдены точки A_1 , A'_1 , B_1 , B'_1 ; для трубы 5' — точки $A_{5'}$, $A'_{5'}$, $B_{5'}$, которые ограничили нужные нам дуги: $\bigcirc A_{5'}B_{5'}$, и $\bigcirc A'_{5'}B'_{5'}$. Такие построения на этой окружности сделаны для всех пронумерованных труб (на рис. 2.18 не показаны).

Длина любой дуги (в мм) легко найдется геометрически:

$$\cup A_i B_i = \frac{\pi d_{\scriptscriptstyle \rm H}}{360} \angle A_i \partial B_i^\circ$$

где d_н == 127 мм — наружный диаметр трубы; ∠ A_iOB_i — центральный угол, соответствующей дуге A_iB_i.

При таком способе вычисления длины дуг окружность на рис. 2.18 не обязательно чертить в масштабе 1 : 1.

Результаты вычислений длин дуг и расчетных поверхностей взаимного излучения для всех пронумерованных труб представлены в табл. 2.15. Все расчетные поверхности Π_{HR_i} отнесены к 1 мм длины труб.

Средняя расчетная поверхность взаимного излучения для одной трубы экрана:

$$\Pi_{HR}^{cp} = \frac{\sum \Pi_{HR_{I}}}{12} = \frac{866.5}{12} = 72.2 \text{ mm}^{2}$$

Поверхность взаимного излучения для всего экрана печи:

$$\Pi_{HR} = N_{\mathbf{p}} \Pi_{HR}^{cp} = 40 \cdot 72, 2 = 2888$$
 мм² на 1 мм длины трубы

Номер і трубы (по рис. 2.18)	∠ А _і 0В° (рис. 2.18)	∠ A' _l 0B' [°] (рнс. 2.18)	$ \begin{array}{c} \bigcirc A_i B_i = \\ = \frac{3.14 \cdot 127}{360} \times \\ \times \angle A_i \partial B_i^{\circ}, \\ \end{array} $	$ \begin{array}{c} \bigcirc A_i'B_i' = \\ = \frac{3,14\cdot127}{360} \times \\ \times \angle A_i'0B_i'^\circ, \\ & \qquad MM \end{array} $	$\pi_{HR_i} =$ $= 0.5 \left(\bigcirc A'_i B'_i + \\ + \bigcirc A_i B_i \right),$ MM ²
1	42	53	46	59	$\begin{array}{c} 52,5\\79,5\\104,0\\81,5\\86,0\\56,0\\93,0\\96,5\\89,5\\27,5\\37,0\\63,5\\\end{array}$
3	67	77	74	85	
5	95	93	105	103	
7	65	82	72	91	
9	75	80	83	89	
1'	52	50	57	55	
3'	76	92	84	102	
5'	91	83	101	92	
7'	85	77	94	85	
10	30	20	33	22	
11	30	37	33	41	
12	62	52	68	57	

Таблица 2.15

Находим величину коэффициента облученности, или углового коэффициента:

$$\rho_{HR} = \frac{\Pi_{HR}}{H_{\rm p}'}$$

где $H'_p = \pi d_n N_p$ — поверхность экрана печи, приходящаяся на 1 мм длины трубы.

Тогда

$$\rho_{HR} = \frac{2888}{3,14 \cdot 127 \cdot 40} = 0,181$$

Определим угловой коэффициент для случая лучистого теплообмена между газовым слоем и трубным экраном.

Величину этого углового коэффициента ρ_{VH} найдем по графику [40, с. 98], имея в виду, что отношение шага труб к их диаметру

$$\frac{S}{d_{\rm H}} = \frac{250}{127} \approx 2$$

Для двухрядного экрана получим:

$$\rho_{VH} = 0,43 + 0,20 = 0,63$$

Найдем поверхность неэкранированных стен топки.

Из принятой схемы компоновки экранных труб (см. рис. 2.17) видно, что неэкранированными поверхностями топки являются ее торцевые стены и часть фронтовых стен, не занятых газовыми горелками. Площадь этих поверхностей равна:

$$F = 4a_{\rm r}h_{\rm r} + 2(h_{\rm r}l_{\rm rp} - R) = 4 \cdot 1 \cdot 4{,}63 + 2(4{,}63 \cdot 9{,}5 - 28{,}5) = 49{,}5 \text{ m}^2$$

Определим приведенную степень черноты трубного экрана по формуле [40, с. 89]:

$$\varepsilon_{\pi p} = \frac{A_1}{\psi(T_V)} + \frac{A_2}{\psi(T_R)}$$

$$A_1 = \varepsilon_V \varepsilon_H (\rho_{VH} + \beta_1)$$

$$\psi(T_V) = \frac{T_\pi^4 - \theta^4}{T_V^4 - \theta^4}$$

$$A_2 = (1 - \varepsilon_V) \varepsilon_H \varepsilon_R (\rho_{HR} + \beta_2)$$

$$\psi(T_R) = \frac{T_\pi^4 - \theta^4}{T_R^4 - \theta^4}$$

Здесь

где
$$\varepsilon_V$$
 — степень черноты газового слоя; $\varepsilon_H = \varepsilon_R = 0.9$ — степень черноты экрана и излучающей стенки [40, с. 118]; β_1 , β_2 — расчетные величины, зависящие от отношения $\frac{H_p}{F}$ — поверхности нагрева радиантных труб к поверхности неэкранированных стен топки.

Найдем степень черноты газового слоя.

Для печей с излучающими стенками топки [40, с. 94]:

$$\epsilon_V = 1 - \lambda$$

где λ — коэффициент прозрачности газовой среды, определяемый по таблице [40, с. 94] в зависимости от температуры T_V . При $T_V = 1173$ К коэффициент $\lambda = 0,72$, а $\varepsilon_V = 1 - 0,72 =$

= 0.28.

Определим β_1 и β_2 , $\psi(T_V)$ и $\psi(T_R)$. Так как $\frac{H_p}{F} = \frac{150}{49,5} = 3,03$, то по таблице [40, с. 91] найдем:

$$\beta_1 = 0,193; \quad \beta_2 = 0,079$$

$$\psi(T_V) = \frac{1023^4 - 647^4}{1163^1 - 647^4} = 0,556$$

$$\psi(T_R) = \frac{1023^4 - 647^4}{1228^4 - 647^4} = 0,438$$

Вычислим значения A1 и A2 по формулам, приведенным выше:

$$A_1 = 0,28 \cdot 0,9 (0,63 + 0,193) = 0,20$$

$$A_2 = (1 - 0,28) \cdot 0,9 \cdot 0,9 (0,181 + 0,079) = 0,15$$

Тогда

$$\varepsilon_{\rm np} = \frac{0,20}{0,556} + \frac{0,15}{0,438} = 0,7$$

а эквивалентная абсолютно черная поверхность

 $H_{\rm S} = H_{\rm p} {\bf e}_{\rm mp} = 150 \cdot 0.7 = 105 \ {\rm M}^2$

Коэффициент у определим по отношению

 $\frac{H_{SR}}{H_S} = \frac{57}{105} = 0,542.$

Из графика [42, рис. 11] имеем: $\psi = 1,75$.

Определим действительную температуру дымовых газов, покидающих топку:

$$T_{\rm n} = \sqrt[4]{\frac{1}{1,75} \left[\frac{100^4}{105 \cdot 5,73} \left(10\,030\,000 - 415\,400\right) + 647^4\right]} = 1030 \,\,{\rm K}$$

Расхождение с принятой температурой находится в допустимых пределах.

Таким образом, подтверждается ранее назначенная теплонапряженность радиантных труб $q_{\rm p} = 67~{\rm kBr/m^2}$ и рассчитанная поверхность нагрева экрана $H_{\rm p} = 150~{\rm m^2}$.

Если полученная расчетом температура T_{π} будет значительно отличаться от принятой, то следует повторить расчет, задавшись другим значением T_{π} .

6. Расчет конвективной поверхности нагрева печи

Поверхность нагрева конвекционных труб определяется по формуле:

$$H_{\kappa} = \frac{Q_{\kappa}}{k_1 \, \Delta T_{\rm cp}}$$

где Q_к — количество тепла, передаваемого сырью в конвекционных трубах, Вт; k₁ — коэффициент теплопередачи в конвекционной камере печи, Вт/(м²·K); ΔT_{ср} — средний температурный напор, K.

Количество тепла, передаваемого сырью в конвекционных трубах:

$$Q_{\kappa} = Q_{\text{полезн}} - Q_{p} = 13\,020 - 10\,030 = 2990 \text{ kBt} = 2,99 \cdot 10^{6} \text{ Bt}$$

Коэффициент теплопередачи в конвекционной камере вычисляется по формуле:

$$k_1 \approx 1, 1 (\alpha_1 + \alpha_n)$$

где α_1 — коэффициент теплоотдачи конвекцией от дымовых газов к трубам, $Bt/(M^2 \cdot K)$; α_{π} — коэффициент теплоотдачи излучением от трехатомных газов к трубам, $Bt/(M^2 \cdot K)$.

Коэффициент α₁, определим по формуле [8, с. 133], из которой:

$$\alpha_{\rm l} = C\beta \frac{\lambda_{\rm r}}{d_{\rm H}} \, {\rm Re}^{0.6} \, {\rm Pr}^{1/3}$$

где С — постоянная, для шахматного пучка труб, равная 0,33; β — коэффициент, зависящий от числа рядов труб в пучке (полагая, что число рядов будет более 10, примем $\beta = 1$) [8, с. 133]; $\lambda_{\rm T}$ — коэффициент теплопроводности дымовых газов, BT/(м·K).

Критерии Re и Pr в формуле вычисляются при средней температуре дымовых газов в камере конвекции (определяющий размер — наружный диаметр труб). Скорость газов рассчитывается для самого узкого сечения пучка. В камере конвекции устанавливаются трубы с полезной длиной $l_{\rm Tp} = 9,5$ м, наружным диаметром $d_{\rm H} = 102$ мм и толщиной стенки 6 мм. В каждой камере размещается змеевик для одного потока сырья. В одном горизонтальном ряду его установлено в шахматном порядке по четыре трубы (рис. 2.17) с шагом S = 172 мм.

Найдем наименьшую площадь свободного сечения для прохода дымовых газов. Согласно приведенной схеме, она будет равна:

$$f_{\rm r} = (b_{\rm \kappa} - n_{\rm l} d_{\rm H}) l_{\rm Tp} = [(n_{\rm l} - 1) S + 3d_{\rm H} - n_{\rm l} d_{\rm H}] l_{\rm Tp} = [(4 - 1) \cdot 0, 172 + 3 \cdot 0, 102 - 4 \cdot 0, 102] \cdot 9,5 = 3,93 \text{ M}^2$$

где $n_1 = 4$ — число труб в одном горизонтальном ряду.

Определим линейную скорость дымовых газов в самом узком сечении пучка по формуле:

$$w = \frac{B \sum V_i T_{\rm cp}}{m \cdot 3600 t_{\rm F} \cdot 273}$$

где $T_{\rm cp} = 0.5 (T_{\rm n} + T_{\rm yx}) = 0.5 (1023 + 573) = 798 \ {\rm K} - {\rm средняя}$ температура дымовых газов в камере; m = 2 - число параллельно работающих камер или, в нашем случае, число потоков сырья.

Тогда

$$w = \frac{1200 \cdot 15,31 \cdot 798}{2 \cdot 3600 \cdot 3,93 \cdot 273} = 1,8 \text{ M/c}$$

Для определения критериев Re и Pr нужно вычислить для дымовых газов при $T_{cp} = 525$ K кинематическую вязкость, плотность, теплоемкость и коэффициент теплопроводности.

Коэффициент динамической вязкости найдем по формуле:

$$\frac{M_{\rm r}}{\mu_{\rm r}} = \sum \frac{x_i' M_i}{\mu_i}$$

где $M_{\rm r}$, $\mu_{\rm r}$ — молекулярная масса и динамическая вязкость дымовых газов; M_i — молекулярные массы компонентов дымовых газов; μ_i — динамические вязкости компонентов дымовых газов, — определяются по номограмме [49, с. 597]; x'_i — объемные доли компонентов дымовых газов в смеси.

Таблица	2.16
---------	------

Компоненты дымовых газов	M _i	т, кг/кг топлива	х _і , масс. доля	V _i (при нор- мальных условиях), м ³ /кг топлива	х'і. объемн доля
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44 18 32 28	2,69 2,18 0,23 13,84	0,142 0,115 0,012 0,731	1,37 1,71 0,16 11,07	0,0896 0,177 0,0104 0,723
Сумма	-	$\sum m_i = 18,94$	1,0	$\sum V_i = 15,31$	1,0

Все необходимые расчеты сделаны в табл. 2.16. Поэтому

$$\mu_{\rm r} = \frac{M_{\rm r}}{\sum \frac{x'_i M_i}{\mu_i}} = \frac{27,7}{771,4 \cdot 10^3} = 3,58 \cdot 10^{-5} \text{ IIa} \cdot \text{c}$$

Плотность дымовых газов:

$$\rho_{\rm r} = \frac{M_{\rm r}}{22,4} \cdot \frac{T_{\rm 0}}{T_{\rm cp}} = \frac{27,7}{22,4} \cdot \frac{273}{798} = 0,422 \text{ kr/m}^3$$

Кинематическая вязкость газов:

$$v_r = \frac{\mu_r}{\rho_r} = \frac{3,58 \cdot 10^{-5}}{0,422} = 8,5 \cdot 10^{-5} \text{ m}^2/\text{c}$$

Коэффициент теплопроводности дымовых газов найдем по формуле [8, с. 125]:

$$\lambda_{\rm r} = \sum x_i' \lambda_i$$

где λ_i — коэффициент теплопроводности компонентов дымовых газов, определяемый по таблице [8, с. 430].

Необходимые расчеты сделаны в табл. 2.16, где $\lambda_r = 0.067 \text{ Br}/(\text{M}\cdot\text{K})$.

Теплоемкость дымовых газов:

$$c_{\rm r} = \sum c_i x_i$$

где c_i — теплоемкости компонентов дымовых газов [8, с. 130]; x_i — массовые доли компонентов в дымовых газах.

Результаты расчетов приведены в табл. 2.16, из которой и берем значение $c_{\rm r} = 1,23$ кДж/(кг·К).

Находим значения критериев:

$$\operatorname{Re} = \frac{wd_{\text{H}}}{v_{\text{r}}} = \frac{1.8 \cdot 0.102}{8.5 \cdot 10^{-5}} = 2150$$
$$\operatorname{Pr} = \frac{v_{\text{r}}c_{\text{r}}\rho_{\text{r}}}{\lambda_{\text{r}}} = \frac{8.5 \cdot 10^{-5} \cdot 1.23 \cdot 0.422 \cdot 10^{3}}{0.067} = 0.666$$

M _i x' _i	μ _ί .103, Π a .c	$\frac{M_{l}x_{l}'}{\mu_{l}} \cdot 10^{-3}$	λ _і . Вт/(м·К)	λ _i x' _i , Βτ/(м·К)	^с і. кДж/(кг·К)	^с і ^х і• кДж/(кг·К)
 $3,953,170,3320,2M_{r}=27,7$	0,041 0,027 0,045 0,037 —	96 118 7,4 550 771,4	0,057 0,072 0,063 0,057 —	$ \begin{array}{c} 0,0051 \\ 0,0127 \\ 0,00066 \\ 0,0412 \\ \lambda_{\Gamma} = 0,067 \end{array} $	1,16 2,15 1,05 1,12	$0,1652,2470,0130,821c_{\Gamma} = 1,23$

После подстановки всех величин в формулу для вычисления α₁ получим:

$$\alpha_1 = 0.33 \cdot 1 \frac{0.067}{0.102} \cdot 2150^{0.6} \cdot 0.66^{1/3} = 18 \text{ Bt/}(\text{M}^2 \cdot \text{K})$$

Коэффициент теплоотдачи излучением от трехатомных газов:

$$\alpha_{_{\mathcal{A}}} = \alpha_{_{\mathcal{CO}_2}} + \alpha_{_{\mathcal{H}_2\mathcal{O}}}$$

где a_{CO_2} , a_{H_2O} — коэффициенты теплоотдачи излучением от CO₂ и H₂O, определяемые по номограммам [5, с. 478] в зависимости от средней температуры дымовых газов в конвекционной камере, силы поглощения трехатомных газов и температуры стенки.

Предварительно найдем величины, необходимые для пользования номограммами.

Среднелогарифмическая температура дымовых газов в конвекционной камере:

$$T'_{\rm cp} = \frac{T_{\rm n} - T_{\rm yx}}{2.3 \, \lg \frac{T_{\rm n}}{T_{\rm yx}}} = \frac{1023 - 573}{2.3 \, \lg \frac{1023}{573}} = 773 \, \text{K}$$

Эффективная толщина газового слоя рассчитывается по формуле [5, с. 479]:

$$l = 1,87 (S + S_1) - 4,1d_{\rm fr}$$

где S₁ — расстояние между рядами труб или шаг труб по глубине пучка.

Так как трубы расположены в шахматном порядке (см. рис. 2.17), то

$$S_1 = \frac{S\sqrt{3}}{2} = \frac{172\sqrt{3}}{2} = 148$$
 MM
 $l = 1,87 (0,172 + 0,148) - 4,1 \cdot 0,102 = 0,192$ M

Парциальное давление углекислого газа при давлении внутри печи $\pi = 0.1 \cdot 10^6$ Па:

$$p_{\rm CO_2} = \frac{V_{\rm CO_2}}{\sum V_i} \pi = \frac{1.37}{15.31} \cdot 0.1 \cdot 10^6 = 8.95 \cdot 10^3 \,\,\Pi a$$

То же для водяных паров:

$$p_{\rm H_{2}O} = \frac{V_{\rm H_{2}O}}{\sum V_{i}} \pi = \frac{2.71}{15.31} \cdot 0.1 \cdot 10^{6} = 17.8 \cdot 10^{3} \,\,\mathrm{Ta}$$

Сила поглощения СО₂ и H₂O в газовом слое:

$$(pl)_{CO_2} = \rho_{CO_2} l = 8,95 \cdot 10^3 \cdot 0,192 = 1,72 \cdot 10^3 \Pi a \cdot m$$

 $(pl)_{H_2O} = \rho_{H_2O} l = 17,8 \cdot 10^3 \cdot 0,192 = 3,41 \cdot 10^3 \Pi a \cdot m$

Температуру стенок конвекционных труб примем на 35 К выше средней температуры сырья в них [5, с. 483]:

$$\theta_{\rm cr} = \frac{T_1 + T_{\rm K}}{2} + 35 = \frac{453 + 507}{2} + 35 = 515 \text{ K}$$

По номограммам [5, с. 478] находим:

$$a_{CO_2} = 4,65 \text{ BT/(M}^2 \cdot \text{K})$$

 $a_{H_2O} = 6,98 \text{ BT/(M}^2 \cdot \text{K})$

Тогда

$$\alpha_n = 4,65 + 6,98 = 11,63 \text{ Bt/(M}^2 \cdot \text{K})$$

Коэффициент теплоотдачи излучением газов можно определить также по формуле Нельсона [5, с. 479].

Суммарный коэффициент теплопередачи будет равен:

$$k_1 = 1,1 (18 + 11,63) = 32,6 \text{ Bt}/(\text{m}^2 \cdot \text{K})$$

В конвекционной камере проектируемой печи теплопередача от дымовых газов к сырью в трубах осуществляется при смешанноперекрестном токе с индексом противоточности, равным единице [41, с. 116]. Поэтому средний температурный напор рассчитывается по уравнению Грасгофа:

$$\Delta T_{\rm cp} = \frac{\Delta T_{\rm Makc} - \Delta T_{\rm MHH}}{2.3 \, \lg \frac{\Delta T_{\rm Makc}}{\Delta T_{\rm MHH}}}$$

где

$$\Delta T_{\text{Make}} = T_{\text{I}} - T_{\text{K}}; \quad \Delta T_{\text{Make}} = T_{\text{yx}} - T_2$$

Из исходных данных и предыдущих расчетов необходимые температуры известны, поэтому

$$\Delta T_{\text{Make}} = 1023 - 507 = 516 \text{ K}$$

$$\Delta T_{\text{MHH}} = 573 - 453 = 120 \text{ K}$$

$$\Delta T_{\text{cp}} = \frac{516 - 120}{2,3 \log \frac{516}{120}} = 272 \text{ K}$$

Таким образом, поверхность нагрева конвекционных труб

$$H_{\rm k} = \frac{2,99 \cdot 10^6}{32,6 \cdot 272} = 335 \,\,{\rm m}^2$$

Определим число труб в конвекционной камере

$$N_{\rm K} = \frac{H_{\rm K}}{\pi d_{\rm H} l_{\rm Tp}} = \frac{335}{3,14 \cdot 0,102 \cdot 9,5} = 110$$

или в одной камере:

$$N'_{\kappa} = \frac{N_{\kappa}}{2} = \frac{110}{2} = 55$$

Принимаем $N'_{\kappa} = 56$, тогда число труб по вертикали в одной камере:

$$m = \frac{N'_{\kappa}}{n_1} = \frac{56}{4} = 14$$

Высота, занимаемая трубами в конвекционной камере, при шаге труб по глубине конвекционного пучка S₁ = 0,148 м:

$$h_{\rm K} = (m-1) S_1 = (14-1) \cdot 0,148 = 1,925 \text{ M}$$

7. Гидравлический расчет змеевика печи

Целью гидравлического расчета является определение гидравлического сопротивления змеевика печи. Давление на выходе из змеевика печи в нашем случае известно: $\pi_{\kappa} = 196 \cdot 10^3 \, \Pi a$. В проектируемой печи происходит частично испарение сырья, поэтому гидравлический расчет змеевика ведем по методу Бакланова [41].

Давление сырья на входе в змеевик печи рассчитываем по формуле:

$$\pi_{\rm BX} = \pi_{\rm K} + \Delta P_{\rm H} + \Delta P_{\rm H} + \Delta P_{\rm K} + \Delta P_{\rm ct}$$

где $\Delta P_{\rm H}$ — потери напора на участке испарения, Па; $\Delta P_{\rm H}$ — потери напора на участке нагрева радиантных труб, Па; $\Delta P_{\rm K}$ — потери напора в конвекционном змеевике печи (по одному потоку), Па; $\Delta P_{\rm cr}$ — статический напор, необходимый для подъема нефти в змеевике от уровня ее ввода в конвекционный змеевик до уровня вывода из радиантных труб, Па.

Расчет необходимо начинать с определения потерь напора на участке испарения:

$$\Delta P_{\rm H} = \pi_{\rm H} - \pi_{\rm K}$$

где пн — давление в начале участка испарения, Па.

Началу участка испарения соответствует сечение змеевика, в котором сырье нагревается до температуры начала однократного испарения (ОИ). При этой температуре давление насыщенных паров сырья становится равным давлению в начале участка испарения, которое определяется методом постепенного приближения.

Для облегчения расчетов предварительно строят вспомогательную кривую зависимости температуры начала однократного испарения сырья $T_{\rm H. o.\,u}$ от давления (или, что то же самое, кривую зависимости давления насыщенных паров сырья от температуры начала однократного испарения). Фракционный состав отбензиненной нефти (сырья) приведен в табл. 2.17.

Таблица 2	2,1	7
-----------	-----	---

Пределы ки- пения фрак- ций, К Выход фрак- ций, масс. %	453-523	523—573	573—618	618—710	710—735	735—773	> 773
	20,0	16,0	14,0	20,0	10,0	10,0	10,0

Порядок построения кривой $P = \phi(T_{\rm H. o. u})$ следующий:

а) для каждой фракции отбензиненной нефти (табл. 2.17) находим среднюю температуру кипения (как среднеарифметическую температуру начала и конца кипения);

 б) рассчитываем молекулярные массы фракций по формуле Воинова:

$$M = 52,63 - 0,246T_{\rm cp} + 0,001T_{\rm cp}^2$$

в) зная массовую долю x_i каждой фракции в сырье и ее молекулярную массу M_i , находим ее мольную долю x'_i в сырье;

г) каждую узкую фракцию в соответствии с ее молекулярной массой приравниваем (условно) к индивидуальному углеводороду (алкану). Находим при нескольких температурах (в нашем случае при 533, 573 и 613 К) по диаграмме Кокса для каждой фракции давление ее насыщенных паров P_i . По уравнению изотермы жидкой фазы

$$P = \sum_{1}^{n} P_{i} x_{i}^{\prime}$$

Рис. 2.19. График для определения давления паров.

находим для каждой из выбранных температур давление паров сырья.

Все эти определения и расчеты сведены в табл. 2.18. По данным этой таблицы построена кривая $P = \varphi(T_{\text{H. o. u}})$ давления паров сырья (рис. 2.19).

						533	з қ	57	3 K	61	3 K
Пределы кипения фракции, К	т _{ер} , К	м _i	^х і, масс. %	$\frac{x_i}{M_i}$	x' _i	Р _і .10 ^{—3} , Па	$P_{ix_{i}^{\prime}\cdot10^{-3}},$ Π_{a}	Р ₁ .10 ⁻³ , Па	$P_{i}x'_{i}$.10 ⁻³ , Π_{a}	Р _i .10 ⁻³ , Па	$P_{ix_{i}}^{P_{i}x_{i}^{\prime}} \cdot 10^{-3}$, IIa
453—523 523—573 573—618 618—710 710—735 735—773 773	488 548 320 663 723 753 823	171 218 258 329 398 434 528	20,0 16,0 14,0 20,0 10,0 10,0 10,0	0,117 0,093 0,069 0,061 0,025 0,023 0,019	0,285 0,228 0,171 0,151 0,062 0,057 0.046	266,6 73,32 26,7 4,0 0,6 0 0	76 16,8 4,5 0,67 0,04 0	666,5 200 86,6 16,7 2,7 0,93 0	190 45,3 1,5 2,5 0,16 0,053 0	1 199,7 499,9 226,6 106,6 23,3 8 0,93	341,9 114,6 38,7 16 2,6 0,453 0,04
Сумма	-		100,0	0,407	1,000	_	98,01	—	239,2	-	514,3

Таблица 2.18

Предварительно задаемся давлением в начале участка испарения $\pi_{\rm H} = 0,5\cdot 10^6$ Па и по кривой (рис. 2.19) находим температуру начала однократного испарения (закипания) отбензиненной нефти, соответствующую этому давлению, $T_{\rm H} = 613$ К. Если эта температура выше той, с которой сырье входит в радиантные трубы, то значит испарение сырья начинается в радиантной секции. В нашем случае $T_{\rm H} > T_{\rm K}$ (см. стр. 160).

Найдем эквивалентную (расчетную) длину радиантных труб для одного потока сырья:

$$l_{3} = l'_{\rm Tp} N_{\rm p1} + \psi d_{\rm B} (N_{\rm p1} - 1)$$

где $l'_{\rm rp} = 10$ м — полная длина трубы; $N_{\rm pl} = 20$ — число радиантных труб в одном потоке; $\psi = 50$ — коэффициент, зависящий от вида соединения труб [40, с. 131]; $d_{\rm B} = 0,111$ м — внутренний диаметр радиантных труб.

Тогда

$$l_{9} = 10 \cdot 20 + 50 \cdot 0,111(20 - 1) = 306$$
 M

Рассчитаем эквивалентную длину участка испарения:

$$l_{\mathrm{H}} = \frac{q_{T_2} - q_{T_{\mathrm{H}}}^{\mathrm{M}}}{q_{T_2} - q_{T_{\mathrm{K}}}^{\mathrm{M}}} \cdot l_{\mathrm{s}}$$

где $q_{T_{\rm H}}^{\rm m} = 780 \ {\rm k} \mbox{Д} {\rm k} / {\rm k} \mbox{г} - {\rm энтальпия}$ сырья в начале участка испарения при $T_{\rm H} = 613 \ {\rm K}; \ q_{T_{\rm K}}^{\rm m} = 514 \ {\rm k} \mbox{Д} {\rm k} / {\rm k} \mbox{г} - {\rm энтальпия}$ сырья на входе в радиантные трубы; $q_{T_{\rm r}} - {\rm энтальпия}$ сырья на выходе из печи, равная (см. стр. 160):

$$q_{T_2} = eq_{T_2}^n + (1 - e) q_{T_2}^m =$$

= 0,6 · 1070 + (1 - 0,6) · 819 = 970 кДж/кг

Таким образом

$$l_{\rm H} = \frac{970 - 780}{970 - 514} \cdot 306 = 128 \,\,{\rm m}$$

Определим давление в начале участка испарения по формуле Бакланова:

$$\pi_{\rm H} = \sqrt{\pi_{\rm K}^2 + A l_{\rm H} \pi_{\rm K} + B l_{\rm H}^2}$$

где $\pi_{\kappa} \rightleftharpoons 196 \cdot 10^3 \Pi a$ — давление сырья на выходе из змеевика печи или, что то же самое, в конце участка испарения; A и B — расчетные коэффициенты.

Коэффициент А находим по формуле [40, с. 132]:

$$A = \frac{0.815\lambda L_1^2}{\rho_{\rm w} d_{\rm B}^5}$$

где λ — коэффициент гидравлического сопротивления, равный для атмосферных печей 0,020—0,024 (принимаем $\lambda = 0,024$); L_1 — секундный расход сырья по одному потоку, кг/с; $\rho_{\pi} = 690$ кг/м³ плотность сырья при средней температуре на участке испарения $T_{\rm cp} = 0,5$ (613 + 623) = 618 K Имеем:

$$L_1 = \frac{1900 \cdot 1000}{2 \cdot 24 \cdot 3600} = 11 \text{ kg/c}$$

Следовательно

$$A = \frac{0.815 \cdot 0.024 \cdot 11^2}{690 \cdot 0.111^5} = 201$$

Коэффициент В находим по формуле [40, с. 132]:

$$B = 9,81A \frac{e\rho_{\rm K}}{l_{\rm H}\rho_{\rm H}}$$

где e = 0,6 массовая доля отгона сырья на выходе из печи; $\rho_{\pi} = \frac{1}{2000} = 0,0005$ средняя плотность паров сырья при давлении 9,81 Па (принимается) [40, с. 133].

Получим:

$$B = 9,81 \frac{201 \cdot 0,6 \cdot 690}{128 \cdot 0,0005} = 1280 \cdot 10^4$$

Давление в начале участка испарения:

$$\pi_{\rm H} = \sqrt{(196 \cdot 10^3)^2 + 201 \cdot 128 \cdot 196 \cdot 10^3 + 1280 \cdot 10^4 \cdot 128^2} = 0.5 \cdot 10^6 \,\,\Pi{\rm a} = 500 \cdot 10^3 \,\,\Pi{\rm a}$$

Полученное значение $\pi_{\rm H}$ совпадает с ранее принятым значением, поэтому пересчет не требуется.

Вычисляем потерю напора на участке испарения:

 $\Delta P_{\rm H} = 500 \cdot 10^3 - 196 \cdot 10^3 = 304 \cdot 10^3 \, \Pi a$

Потери напора $\Delta P_{\rm H}$ на участке нагрева радиантных труб:

$$\Delta P_{\rm H} = \lambda \, \frac{l_{\rm H}}{d_{\rm B}} \cdot \frac{u^2}{2\rho_{\rm K}}$$

где $\lambda = 0,031$ — коэффициент гидравлического сопротивления, выбираем по таблице [5, с. 502]; $l_{\rm H}$ — эквивалентная длина участка нагрева радиантных труб по одному потоку, равная $l_{\rm H} = l_{\rm 0} - l_{\rm H} =$ = 306 - 128 = 178 м; $d_{\rm B} = 0,111$ м — внутренний диаметр радиантных труб; u — массовая скорость сырья в трубах, кг/(м²·c); $\rho_{\rm H} =$ = 735 кг/м³ — плотность отбензиненной нефти при средней температуре на участке нагрева радиантных труб $T_{\rm cp} = 0,5(521+613) =$ = 567 K.

Массовая скорость сырья в трубах (одного потока):

$$u = \frac{1900 \cdot 1000 \cdot 4}{2 \cdot 24 \cdot 3600 \cdot 3, |4 \cdot 0, |1|^2} = 1130 \text{ kg/(m^2 \cdot c)}$$

Подставляя в формулу для $\Delta P_{\rm H}$ числовые значения величин, получим:

$$\Delta P_{\rm H} = 0,031 \ \frac{178}{0,111} \cdot \frac{1130^2}{2 \cdot 735} = 43.2 \cdot 10^3 \ \Pi a$$

Потери напора в конвекционном змеевике (для одного потока) найдем по формуле:

$$\Delta P_{\rm K} = \lambda \frac{l_{\rm K}}{d_{\rm B}} \cdot \frac{u_{\rm K}^2}{2\rho_{\rm K}}$$

где $\lambda = 0,031$ (см. выше); $l_{\rm K}$ — эквивалентная (расчетная) длина конвекционного змеевика по одному потоку, м; $d_{\rm B} = 0,09$ м — внутренний диаметр конвекционных труб; $u_{\rm K}$ — массовая скорость сырья в конвекционных трубах, кг/(м²·с); $\rho_{\rm K} = 780$ кг/м³ — плотность сырья при средней температуре в конвекционных трубах $T_{\rm cp} = 0,5(453 + 521) = 487$ K.

Эквивалентная длина конвекционного змеевика для одного потока:

$$l_{\kappa} = N_{\kappa}' l_{\tau p}' + \psi d_{B} \left(N_{\kappa}' - 1 \right)$$

где N'_{κ} — число труб в одном потоке; $l'_{rp} = 10$ м — полная длина трубы; $\psi = 50$ [40, с. 131].

Тогда

$$l_{\kappa} = 56 \cdot 10 + 50 \cdot 0,09(56 - 1) = 807 \text{ M}$$

Массовая скорость

$$u_{\kappa} = \frac{1900 \cdot 1000 \cdot 4}{2 \cdot 24 \cdot 3600 \cdot 3, 14 \cdot 0, 09^2} = 1720 \text{ kr/(m^2 \cdot c)}$$

Подставляя в формулу для ΔP_{κ} числовые значения величин, получим:

$$\Delta P_{\kappa} = 0.031 \frac{807}{0.09} \cdot \frac{1720^2}{2 \cdot 807} = 514 \cdot 10^3 \ \Pi a$$

Определим статический напор в змеевике печи:

$$\Delta P_{\rm ct} = (h_{\rm t} + h_{\kappa}) \rho_{\kappa} g$$

где $\rho_{\rm R}$ — плотность сырья при $T_{\rm cp} = 487$ К.

Получим:

$$\Delta P_{\rm cr} = (4,63 + 1,925) \cdot 807 \cdot 9,81 = 51,9 \cdot 10^3 \,\,\Pi a$$

Таким образом, давление сырья на входе в змеевик печи будет: $\pi_{\text{вx}} = 196 \cdot 10^3 + 304 \cdot 10^3 + 43, 2 \cdot 10^3 + 514 \cdot 10^3 + 51, 9 \cdot 10^3 =$ $= 1109 \cdot 10^3 = 1, 11 \cdot 10^6 \text{ Па}$

8. Расчет потерь напора в газовом тракте печи

Общие потери напора по газовому тракту печи, или величина • тяги дымовой трубы, рассчитывается по формуле:

$$\Delta P_{\rm ofm} = \Delta P_{\rm p} + \Delta P_{\kappa} + \Delta P_{\rm f} + \Delta P_{\rm Tp}$$

где $\Delta P_{\rm p}$ — величина разряжения в камере радиации (принимается $\Delta P_{\rm p} = 19,62$ Па); $\Delta P_{\rm K}$ — потери напора в камере конвекции, Па; ΔP_6 — потери напора в борове, Па; $\Delta P_{\rm Tp}$ — потери напора в дымовой трубе, Па.

Потери напора в камере конвекции ΔP_{κ} :

$$\Delta P_{\kappa} = \Delta P_{n} + \Delta P_{cr}$$

где ΔP_{π} — потери напора в конвекционном пучке труб, Па; $\Delta P_{c\tau}$ — статический напор в камере конвекции при нисходящем потоке газов, Па.

Потери напора в конвекционном пучке труб [49, с. 35]:

$$Eu = b(2,7 + 1,7m) \operatorname{Re}^{-0,28}$$

где Ец = $\frac{\Delta P_n}{\rho_r \omega^2}$ — критерий Эйлера; $\rho_r = 0,422$ кг/м³ — плотность дымовых газов при средней температуре газов в конвекционной камере $T_{cp} = 798$ К (найдена ранее); $\omega = 1,8$ м/с — линейная скорость дымовых газов в наиболее узком сечении пучка (найдена ранее); b — коэффициент, зависящий от угла атаки (угол между осью трубы и направлением потока газов, в нашем случае равен 90°), — принимается по таблице [49, с. 35] равным единице; m = 14 — число рядов труб в пучке в направлении потока газов; Re = 2150 — критерий Рейнольдса (найден ранее).

Из приведенной выше формулы получим:

Статический напор в камере при нисходящем потоке газов:

$$\Delta P_{\rm ct} = h_{\kappa}' \left(\rho_{\rm bogg} - \rho_{\rm r} \right) g$$

где $h'_{\kappa} = h_{\kappa} + h_1$ — высота столба газа в конвекционной камере (рис. 2.17), равная $h'_{\kappa} = 1,925 + 0,5 = 2,425$ м; $\rho_{\text{возд}}$ — плотность воздуха при температуре окружающей среды, равной 303 К

$$\rho_{\text{bogg}} = \frac{1,293 \cdot 273}{30 + 303} = 1,165 \text{ Kr/m}^3$$

Тогда

$$\Delta P_{\rm cr} = 2,425 \,(1,165 - 0,422) \,9,81 = 17,7 \,\Pi a$$

а

 $\Delta P_{\kappa} = 4,8 + 17,7 = 22,5 \ \Pi a$

Потери напора в борове ΔP_6 :

$$\Delta P_6 = \Delta P_6' + \Delta P_6''$$

где $\Delta P'_6$ — потери напора на преодоление местных сопротивлений, Па; $\Delta P'_6$ — потери напора на прямолинейном участке борова, Па.

Предварительно проведем расчет газохода.

Схема устройства газохода печи приведена на рис. 2.20. Площадь поперечного сечения борова:

$$S_6 = \frac{G_{\Gamma}}{u}$$

где G_{Γ} — секундное количество продуктов сгорания, кг/с; u — массовая скорость газов в борове, кг/($M^2 \cdot c$).

Секундное количество продуктов сгорания:

$$G_{\rm r} = \frac{B \sum m_i}{3600} = \frac{1200 \cdot 18,95}{3600} = 6,3 \text{ kr/s}$$

Массовая скорость газов в борове:

$$u_6 = w_6 \rho_{T_{\text{vx}}}$$

где w_6 — линейная скорость газов в борове, м/с; $\rho_{T_{vx}}$ — плотность

Рис. 2.20. Схема устройства газоходов печи.

продуктов сгорания при температуре $T_{yx} = 573$ K

$$ρ_{T_{yx}} = ρ_0 \frac{273}{T_{yx}} = 1,24 \frac{273}{573} = 0,59 \text{ kg/m}^3$$

Примем линейную скорость газов в борове $w_6 = 8$ м/с. Тогда $u_6 = 8 \cdot 0,59 = 4,72$ кг/(м² · с)

Площадь поперечного сечения борова:

$$S_6 = \frac{6,3}{4,72} = 1,36 \text{ m}^2$$

Принимаем высоту борова $h_6 = 1,36$ м, ширину b = 1 м, длину $l_6 = 10$ м.

Потери напора от местных сопротивлений рассчитываем по формуле:

$$\Delta P_6' = \sum \xi \frac{u_6^2}{2\rho_{T_{yx}}}$$

где Σξ— сумма коэффициентов местных сопротивлений. 180
Дымовые газы делают в борове два поворота по 90° (один при входе в боров, другой, не показанный на рис. 2.20, — при входе в дымовую трубу), проходят шибер, открытый наполовину, а затем три входных канала в общий коллектор.

Коэффициент местного сопротивления при повороте на 90°:

 $\xi = 1, 1C$

Здесь $C = f\left(\frac{h_6}{b}\right)$ берется по таблице [40, с. 143]. В нашем случае при $\frac{h_6}{b} = 1,36$ величина C = 0,9.

Для двух поворотов:

$$2\xi_1 = 2 \cdot 1, 1 \cdot 0, 9 = 1,98$$

По той же таблице коэффициент местного сопротивления при входе газа в коллектор $\xi_2 = 0,04$, для наполовину открытого шибера $\xi_3 = 4$.

По написанной выше формуле получим:

$$\Delta P_6' = (1,98 + 4 + 0,04) \frac{4,72^2}{2 \cdot 0,59} = 113,7 \ \text{Ta}$$

Потери на прямолинейном участке борова:

$$\Delta P_6'' = \lambda \frac{l_6}{d_9} \cdot \frac{u_6^2}{2\rho_{T_{\rm yx}}}$$

где λ— коэффициент гидравлического сопротивления; d_э— эквивалентный диаметр борова, м.

Коэффициент гидравлического сопротивления, зависящий от величины критерия Рейнольдса, находим по формуле:

$$\lambda = \frac{0.857}{(\lg \operatorname{Re})^{2.4}} = \frac{0.857}{\left(\lg \frac{w_6 d_9}{v}\right)^{2.4}}$$

где v — кинематическая вязкость дымовых газов при температуре в борове $T_6 = T_{yx} = 573$ К.

В нашем случае:

$$d_{\mathfrak{s}} = \frac{2h_{6}b}{h_{6}+b} = \frac{2 \cdot 1,36 \cdot 1}{1,36+1} = 1,15 \text{ m}$$

Кинематическую вязкость дымовых газов можно рассчитать, как было показано выше. В целях некоторого сокращения подсчетов, примем ее по таблице [67, с. 135]:

$$v = 45,81 \cdot 10^{-6} \text{ m}^2/\text{c}$$

Тогда

И

$$\lambda = \frac{0,857}{\left(\log \frac{8 \cdot 1,15}{45,81 \cdot 10^{-6}} \right)^{2,4}} = 0,015$$

$$\Delta P_6'' = 0,015 \frac{10}{1,15} \cdot \frac{4,72^2}{2 \cdot 0,59} = 2,46 \ \Pi a$$

181

Таким образом

$$\Delta P_6 = 113,7 + 2,46 = 116,2 \ \Pi a$$

Потери напора в дымовой трубе:

 $\Delta P_{\tau p} = \Delta P'_{\tau p} + \Delta P''_{\tau p}$

где $\Delta P'_{\tau p}$ — потери напора при входе газов в трубу и выходе из нее, Па; $\Delta P''_{\tau p}$ — потери напора на трение при движении газов в трубе, Па.

Предварительно рассчитаем диаметр дымовой трубы:

$$D = \sqrt{\frac{4G}{\pi u_{\rm TP}}}$$

где $u_{\rm TP}$ — массовая скорость газов на входе в дымовую трубу, кг/(м²·с).

Величину итр найдем по формуле:

$$u_{\rm Tp} = w_{\rm Tp} \rho_{\rm BX}$$

где $w_{\rm Tp}$ — линейная скорость газов на входе в дымовую трубу (принимается равной 8 м/с); $\rho_{\rm Bx}$ — плотность газов при их температуре входа в дымовую трубу $T'_{\rm Bx}$, кг/м³.

Примем температуру Т'вх = 568 К. Тогда

$$\rho_{\rm BX} = \rho_0 \frac{T_0}{T_{\rm BX}'} = \frac{1,24 \cdot 273}{568} = 0,6 \text{ KG/M}^3$$

И

$$u_{\rm tp} = 8 \cdot 0.6 = 4.8 \text{ kg/(m^2 \cdot c)}$$

Подставив в формулу найденные выше числовые значения, получим:

$$D = \sqrt{\frac{4 \cdot 6,3}{3,14 \cdot 4,8}} = 1,3$$
 M

Примем D = 1,4 м.

Потери напора при входе газов в трубу и выходе из нее определим по формуле:

$$\Delta P'_{\tau p} = \left(\xi_{\rm bx} + \xi_{\rm binx}\right) \frac{u_{\rm cp}^2}{2\rho_{\rm cp}}$$

где ξ_{Bx} , ξ_{Bbix} — коэффициенты местных сопротивлений; u_{cp} — массовая скорость газов при их средней температуре в трубе, кг/(M² · c); ρ_{cp} — плотность газов при их средней температуре в трубе, кг/м³.

Из таблицы [40, с. 142] найдем: $\xi_{BX} = 0,3, \xi_{BMX} = 1,0.$

Примем температуру газов на выходе из дымовой трубы $T_{\text{вых}} = 543$ К, имея в виду потери тепла поверхностью трубы в окружающую среду.

Тогда средняя температура газов в трубе будет равна:

$$T'_{\rm cp} = \frac{T_{\rm BX} + T_{\rm BIAX}}{2} = \frac{568 + 543}{2} = 556 \text{ K}$$

Плотность газов при этой температуре:

$$\rho_{\rm cp} = \rho_0 \frac{T_0}{T_{\rm cp}'} = \frac{1.24 \cdot 273}{556} = 0.61 \text{ kg/m}^3$$

Массовая скорость газов при их средней температуре в трубе:

$$u_{\rm cp} = \frac{4G}{\pi D^2} = \frac{4 \cdot 6.3}{3.14 \cdot 1.4^2} = 4.1 \text{ Kr/(M}^2 \cdot \text{c})$$

Тогда

$$\Delta P'_{\rm tp} = (0,3+1,0) \frac{4,1^2}{2 \cdot 0,61} = 17,8 \ \Pi a$$

Потери напора на трение при движении газов в дымовой трубе:

$$\Delta P_{\tau p}^{\prime\prime} = \lambda \frac{H}{D} \cdot \frac{u_{cp}^2}{2\rho_{cp}}$$

где λ — коэффициент гидравлического сопротивления; *Η* — высота дымовой трубы, м.

Определим λ по формуле Якимова:

$$\lambda = \frac{a}{\sqrt[3]{\overline{D}}}$$

где а — коэффициент, принимаемый по таблице [40, с. 131].

В нашем случае:

$$\lambda = \frac{0,025}{\sqrt[3]{1,4}} = 0,023$$

Предварительно приняв высоту трубы H = 36 м, получим:

$$\Delta P_{\rm Tp}^{\prime\prime} = 0,023 \,\frac{36}{1,4} \cdot \frac{4,1^2}{2 \cdot 0,61} = 8,2 \,\,\Pi a$$

Таким образом

$$\Delta P_{\rm Tp} = 17,8 + 8,2 = 26 \ \Pi a$$

Общая потеря напора по газовому тракту печи, или величина тяги дымовой трубы:

$$\Delta P_{o6u} = 19,62 + 22,5 + 116,2 + 26 = 184,32 \ \Pi a$$

Проверим высоту дымовой трубы:

$$H = \frac{\Delta P_{\text{o}6\text{i}\text{i}\text{i}}}{1,293 \cdot 273 \left(\frac{1}{T_{\text{B}}} - \frac{1}{T_{\text{c}\text{p}}}\right)g}$$

где T_в — температура окружающего воздуха К; T_{ср} — средняя температура дымовых газов в трубе, равная 556 К.

Тогда

$$H = \frac{184,32}{1,293 \cdot 273 \left(\frac{1}{303} - \frac{1}{556}\right) \cdot 9,81} = 36,6 \text{ M}$$

Полученное значение Н мало отличается от ранее принятого, ' поэтому пересчета делать не следует.

ВЕРТИКАЛЬНАЯ ЦИЛИНДРИЧЕСКАЯ ТРУБЧАТАЯ ПЕЧЬ

Рассчитать вертикальную цилиндрическую трубчатую печь для нагрева и частичного испарения экстрактного раствора, получаемого на установке очистки масел фурфуролом при следующих исходных данных: количество экстрактного раствора $G_c = 480$ т/сут (в том числе, экстракта 110 т/сут, фурфурола 370 т/сут); относительная плотность экстракта $\rho_{277}^{293} = 0.975$; молекулярная масса экстракта $M_2 = 500$; температура экстрактного раствора на входе в печь $T_1 = 438$ K, на выходе из печи $T_2 = 503$ K; давление продукта на выходе из змеевика печи $\pi_{\rm B} = 0.25 \cdot 10^6$ Па.

В печи следует установить пароперегреватель производительностью Z = 1850 кг/ч водяного пара. Температура пара на входе в печь $T_s = 393$ К, на выходе из печи $T_{\text{пар}} = 513$ К.

Топливо — газ следующего состава (объемн. %): CH₄ — 95,86; C₂H₆ — 0,67; C₃H₈ — 1,0; μ -C₄H₁₀ — 1,83; CO₂ — 0,64. Плотность газа при нормальных условиях $\rho_r = 0,760$ кг/м³.

Общая характеристика и конструктивные особенности цилиндрических печей (в частности, вертикальных) даны в литературе [5, 40, 41, 64].

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА ЦИЛИНДРИЧЕСКОЙ ПЕЧИ

1. Рассчитывают процесс горения.

2. Определяют к.п.д. печи, ее полезную тепловую нагрузку и расход топлива.

Расчету количества тепла, сообщаемому сырью (экстрактному раствору), предшествует определение доли отгона на выходе из печи. При этом сырье рассматривается как бинарная система, в которой низкокипящим компонентом является растворитель (фурфурол), а высококипящим, практически нелетучим компонентом, — экстракт.

3. Рассчитывают камеру радиации. Цель расчета — определение поверхности нагрева радиантных труб и основных размеров камеры радиации, т. е. цилиндрической (основной) части печи. Расчет ведется по схеме:

а) определяют температуру дымовых газов на выходе из топки;

б) принимают теплонапряженность радиантных труб и определяют их поверхность нагрева и число;

в) рассчитывают внутренний диаметр печи;

r) определяют площадь поверхностей, ограничивающих топку.

4. Рассчитывают линейную скорость сырья на входе в змеевик печи.

5. Проводят расчет лучистого теплообмена в топке с целью подтверждения правильности выбора теплонапряженности радиантных труб при ранее найденной температуре газов в конце топки.

Расчет ведут по методу Белоконя. Если в результате расчета температура газов на выходе из топки будет значительно отличаться от ранее найденной (см. п. 3), то необходимо задаться другим значением теплонапряженности поверхности радиантных труб и повторить расчет, начиная с п. 3, б.

6. Рассчитывают конвекционную камеру печи, в которой размещается пароперегреватель. Этот расчет ведется по обычной схеме [41, с. 197]. Цель его — определение поверхности нагрева и числа труб пароперегревателя, а также основных размеров камеры.

7. Проводят гидравлический расчет сырьевого змеевика печи и расчет газового сопротивления и тяги. Эти расчеты принципиально не отличаются от тех, которые подробно даны в предыдущем примере.

PACHET

1. Расчет процесса горения

Расчет процесса горения для случая использования газообразного топлива сделан в предыдущем примере, поэтому ниже приводим только результаты такого расчета.

Молекулярная масса топливного газа $M_{\Gamma} = 17,32$. Состав топливного газа (в масс. %): CH₄ — 88,51; C₂H₆ — 1,18; C₃H₈ — 2,54; μ -C₄H₁₀ — 6,14; CO₂ — 1,63.

Элементарный состав топливного газа (в масс.%): C = 74,9; H - 23,92; O - 1,18.

Низшая объемная теплота сгорания $Q_p^{\mu'} = 37\,976 \, \kappa \, \mathrm{Д} \, \mathrm{ж} / \mathrm{M}^3$. Низшая массовая теплота сгорания:

$$Q_{\rm p}^{\rm H} = \frac{Q_{\rm p}^{\rm H'}}{\rho_{\rm r}} = \frac{37\,976}{0,760} = 49\,970$$
 кДж/кг

Теоретическое количество воздуха, необходимого для сжигания кг топлива:

$$L_0 = \frac{2.67 \cdot 0.749 + 8 \cdot 0.2392 - 1 \cdot 0.0118}{0.23} = 17 \text{ kr/kr}$$

Принимаем коэффициент избытка воздуха при сжигании газа $\alpha = 1,1$. Тогда действительное количество воздуха, требующегося для сжигания 1 кг топлива, будет равно:

$$L_n = L_0 \alpha = 17 \cdot 1, 1 = 18,7 \text{ Kr/Kr}$$

Количество продуктов сгорания на 1 кг топлива:

$$\begin{split} m_{\rm CO_2} &= 3,67 \cdot 0,749 = 2,75 \ {\rm kr/kr} \\ m_{\rm H_2O} &= 9 \cdot 0,2392 = 2,15 \ {\rm kr/kr} \\ m_{\rm O_2} &= 0,23 \cdot 17 \, (1,1-1) = 0,39 \ {\rm kr/kr} \\ m_{\rm N_2} &= 0,77 \cdot 17 \cdot 1,1 = 14,4 \ {\rm kr/kr} \end{split}$$

Суммарное количество продуктов сгорания на 1 кг топлива: $\sum m_i \approx 19.7$ кг/кг

Таблица 2.19

Температура, К	273	500	700	900	1100	1500	1900
Энтальпия дымовых газов, кДж/кг топлива	0	6286	9576	14 426	19 480	30 190	41 390

Объемные количества продуктов сгорания (при нормальных условиях) на 1 кг топлива:

$$v_{\rm CO_2} = \frac{2,75 \cdot 22,4}{44} = 1,4 \text{ m}^3/\text{Kr}$$

$$v_{\rm H_2O} = \frac{2,15 \cdot 22,4}{18} = 2,68 \text{ m}^3/\text{Kr}$$

$$v_{\rm O_2} = \frac{0,39 \cdot 22,4}{32} = 0,27 \text{ m}^3/\text{Kr}$$

$$v_{\rm N_2} = \frac{14,4 \cdot 22,4}{28} = 11,6 \text{ m}^3/\text{Kr}$$

Суммарный объем продуктов сгорания (при нормальных условиях) на 1 кг топлива:

Рис. 2.21. График зависимости энтальпии дымовых газов от температуры.

 $\sum v_i = 15,95$ м³/кг

Плотность продуктов сгорания при $\alpha = 1,1$ и нормальных условиях:

$$\rho_0 = \frac{\sum m_i}{\sum v_i} = \frac{19.7}{15.95} = 1.24 \text{ kr/m}^3$$

Молекулярная масса продуктов сгорания:

$$M_0 = \rho_0 \cdot 22, 4 = 1, 24 \cdot 22, 4 = 27, 8$$

Построим график *q* — *T* (энтальпия продуктов сгорания 1 кг топлива — температу-

ра). Все расчеты, необходимые для построения графика q - T, сделаны так же, как и в предыдущем примере. Результаты расчетов приведены в табл. 2.19 и на рис. 2.21.

2. К. п. д. и полезное тепло печи. Расход топлива

К.п.д. печи вычисляется по формуле:

$$\eta = 1 - \left(\frac{q_1}{Q_p^{\rm H}} + \frac{q_2}{Q_p^{\rm H}}\right)$$

где q₁ — потери тепла печью в окружающую среду, кДж на 1 кг

топлива; q₂ — потери тепла с уходящими из печи дымовыми газами, кДж на 1 кг топлива.

Потери тепла печью в окружающую среду q₁ примем равными 4% от низшей теплоты сгорания топлива:

 $q_1 = 0.04 Q_p^{\text{H}} = 0.04 \cdot 49\,970 = 2000 \text{ кДж}$ на 1 кг топлива

Принимая температуру уходящих из печи дымовых газов $T_{yx} = 673$ К, по графику (рис. 2.21) найдем:

q2 = 9500 кДж на 1 кг топлива

Тогда

$$\eta = 1 - \left(\frac{2000}{49\,970} + \frac{9500}{49\,970}\right) = 0,77$$

Полезное тепло печи:

$$Q_{\text{полезн}} = Q_{\text{c}} + Q_{\text{п}}$$

где Q_c — количество тепла, передаваемого сырью (экстрактному раствору), кДж/ч; Q_{π} — количество тепла, необходимого для перегрева водяного пара, кДж/ч.

Количество тепла, сообщаемого экстрактному раствору в печи, найдем по формуле (здесь и далее индекс «1» относятся к фурфуролу, индекс «2» — к экстракту):

$$Q_{c} = G \left[eq_{T_{2}}^{\pi_{1}} + (1-e) \left(x_{1}q_{T_{2}}^{\pi_{1}} + x_{2}q_{T_{2}}^{\pi_{2}} \right) - \left(c_{1}q_{T_{1}}^{\pi_{1}} + c_{2}q_{T_{1}}^{\pi_{2}} \right) \right]$$

где G — количество экстрактного раствора, кг/ч; e — массовая доля отгона; $q_{T_2}^{n_1}$ — энтальпия пара фурфурола (отгона) при $T_2 = 503$ К, определяемая по таблице [11, с. 155], кДж/кг; x_1 и x_2 — содержание соответственно фурфурола и экстракта в жидкой фазе экстрактного раствора, масс. доли; $q_{T_2}^{m_1}$ и $q_{T_1}^{m_1}$ — энтальпии жидкого фурфурола соответственно при $T_2 = 503$ К и $T_1 = 438$ К, определяемые по таблице [11, с. 155], кДж/кг; $q_{T_1}^{m_2}$ — энтальпии жидкого экстракта соответственно при $T_2 = 503$ К и $T_1 = 438$ К, определяемые по таблице [13, с. 395], кДж/кг; c_1 и c_2 — состав исходного экстрактного раствора, масс. доли.

На основании расчетов массовая доля отгона *е* == 0,729. Из таблиц [11, с. 155] найдем:

Тогда

$$Q_{c} = \frac{480 \cdot 1000}{24} [0,729 \cdot 817,3 + (1 - 0,729) (0,16 \cdot 438,4 + 0,84 \cdot 483,6) - (0,771 \cdot 296,4 + 0,229 \cdot 328,7)] = 8,40 \cdot 10^{6} \text{ K} \square \text{K}/\text{H} = 2340 \text{ K} \square \text{K}$$

Количество тепла, необходимое для перегрева водяного пара:

$$Q_{\rm n} = Z \left[c_{\rho} \left(T_{\rm n} - T_{s} \right) + rx \right]$$

где Z—количество перегреваемого пара, кг/ч; c_p — 2,01 кДж/(кг·К)— теплоемкость перегретого пара; T_n — температура водяного пара на выходе из пароперегревателя, К; T_s — начальная температура пара, К; r— теплота парообразования воды при $T_s = 393$ К и $P = 0,2 \cdot 10^6$ Па, равная 2203 кДж/кг; x— влажность пара при $T_s = 393$ К (принимается равной 0,05 кг/кг).

Получим:

$$Q_{\pi} = 1850 [2,01 (513 - 393) + 2203 \cdot 0,05] = 0,65 \cdot 10^{6}$$
кДж/ч = 181 кВт

Следовательно

$$Q_{\text{полезн}} = 8,40 \cdot 10^6 + 0,65 \cdot 10^6 = 9,05 \cdot 10^6 \text{ кДж/ч} = 2340 + 181 = 2521 \text{ кВт}$$

Часовой расход топлива найдем по формуле:

$$B = \frac{Q_{\text{полезн}}}{Q_{\text{р}}^{\text{н}} \eta} = \frac{9,05 \cdot 10^{6}}{49\,970 \cdot 0,77} = 236 \text{ кг/ч}$$

3. Расчет камеры радиации

Поверхность нагрева радиантных труб

$$H_{\rm p} = \frac{Q_{\rm p}}{q_{\rm p}}$$

где Q_p — количество тепла, передаваемого сырью в радиантных трубах, кВт; q_p — теплонапряженность радиантных (экранных) труб, кВт/м².

Сырье (экстрактный раствор) нагревается и частично испаряется только в экранных трубах печи. Конвекционный змеевик печи служит пароперегревателем (рис. 2.22). Поэтому тепло, сообщаемое в печи сырью, будет равно прямой отдаче топки:

$$Q_{\rm p} = Q_{\rm c} = 8,40 \cdot 10^6 \,\, \mathrm{кДж/ч} = 2340 \,\, \mathrm{кBt}$$

Тогда из уравнения теплового баланса топки

$$Q_{\rm p} = B \left(Q_{\rm p}^{\rm H} \eta_{\rm r} - q_{T_{\rm fl}} \right)$$

определим энтальпию дымовых газов, покидающих топку:

$$q_{T_{\rm n}} = Q_{\rm p}^{\rm H} \eta_{\rm r} - \frac{Q_{\rm p}}{B}$$

где ηт — к.п.д. топки, без ущерба для точности расчета определяемый по формуле:

$$\eta_{\rm r} \approx 1 - \frac{q_1}{Q_{\rm p}^{\rm H}} = 1 - 0.04 \approx 0.96$$

Тогда в расчете на 1 кг топлива:

$$q_{T_{\rm II}} = 49\,970 \cdot 0,96 - \frac{8,40 \cdot 10^6}{236} = 12\,600$$
 кДж/кг

По графику (см. рис. 2.21) найдем, что этой энтальпии соответствует температура газов на выходе из топки $T_{\rm m} = 820$ K.

Имея в виду, что печь предназначена для нагрева экстрактного раствора, склонного к разложению, примем среднюю теплонапряженность поверхности экранных труб $q_{\rm p} = 14~{\rm kBt/m^2}$. При этом,

согласно графику [64, с. 73], максимальная теплонапряженность поверхности определенного участка труб будет равна $q_{\text{макс}} = 1.8q_{\text{p}} = 1.8 \cdot 14 = 25.2 \text{ кВт/м}^2$. Следовательно, принимать более высокие значения средней теплонапряженности поверхности экранных труб печи нецелесообразно.

Поверхность экранных труб:

$$H_{\rm p} = \frac{2340}{14} = 168 {\rm M}^2$$

Принимаем для проектируемой печи трубы из углеродистой стали диаметром $d_{\rm H}{=}102\times 6$ мм с полезной (рабочей) длиной $l_{\rm Tp}=9$ м. С учетом особенностей крепления труб в цилиндрических печах полная длина трубы принимается равной 10 м.

Тогда число труб будет равно:

$$N_{\rm p} = \frac{H_{\rm p}}{\pi d_{\rm H} l_{\rm TD}} = \frac{168}{3,14 \cdot 0,102 \cdot 9} = 60$$

Найдем диаметр печи по осям труб (рис. 2.22), принимая шаг труб S = 203 мм:

$$D_{\rm o} = \frac{N_{\rm p}S}{\pi} = \frac{60 \cdot 0,203}{3,14} = 3,88 \text{ M}$$

Рис. 2.22. Схема потоков в цилиндрической трубчатой печи.

Принимая расстояние от оси трубы до стенки печи $a = 1,5d_{\rm H} = 1,5\cdot0,102 = 0,153$ м, определим внутренний диаметр печи:

$$D_{\pi} = D_{0} + 2a = 3,88 + 2 \cdot 0,153 = 4,19$$
 M

Рассчитаем площадь поверхностей, ограничивающих топку (камеру радиации).

Площадь пода печи:

$$F_{\rm fi} = 0,785 D_{\rm fi}^2 = 0,785 \cdot 4,19^2 = 14 {\rm m}^2$$

Площадь боковой (цилиндрической) поверхности печи:

$$F_6 = \pi D_{\rm n} l_{\rm Tp} = 3,14 \cdot 4,19 \cdot 9 = 119 \,{\rm M}^4$$

Общая внутренняя поверхность камеры радиации:

 $\sum F_i = F_{\rm m} + F_{\rm 6} = 14 + 119 = 133 \,\,{\rm M}^2$

4. Проверка скорости сырья на входе в змеевик печи

Допустимое значение скорости движения сырья на входе в змеевик печи с учетом достаточного теплообмена и минимальных энергетических затрат на прокачивание сырья находится в пределах 0,5-2,5 м/с.

Линейная скорость сырья:

$$w = \frac{4V_{\rm cek}}{\pi d_{\rm B}^2}$$

где $V_{\text{сек}}$ — секундный объем сырья, м³/с; $d_{\text{в}} = 0,09$ м — внутренний диаметр трубы.

Секундный объем сырья при температуре входа в змеевик печи *T*₁ == 438 К найдем как сумму соответствующих объемов экстракта и фурфурола:

$$V_{\rm cek} = \frac{G_1 \cdot 1000}{24 \cdot 3600 \rho_1} + \frac{G_2 \cdot 1000}{24 \cdot 3600 \rho_2}$$

где $G_1 = 370$ т/сут — количество фурфурола; $G_2 = 110$ т/сут — количество экстракта; $\rho_1 = 870$ кг/м³ — плотность фурфурола при $T_1 = 438$ K; $\rho_2 = 900$ кг/м³ — плотность экстракта при $T_1 = 438$ K.

Получим:

$$V_{\rm cek} = \frac{370 \cdot 1000}{24 \cdot 3600 \cdot 870} + \frac{110 \cdot 1000}{24 \cdot 3600 \cdot 900} = 0,0064 \text{ m}^3/\text{c}$$

Тогда линейная скорость сырья на входе в змеевик печи будет равна:

$$w = \frac{4 \cdot 0,0064}{3,14 \cdot 0,09^2} \approx 1 \text{ m/c}$$

Как видно, скорость сырья на входе в змеевик печи находится в допустимых пределах.

5. Расчет лучистого теплообмена в топке

Целью этого расчета является подтверждение правильности выбора теплонапряженности радиантных труб при ранее найденной температуре дымовых газов в конце топки.

Расчет проводим по методу Белоконя. Определим эффективную лучевоспринимающую поверхность экрана:

$$H_{\pi} = \kappa H_{\pi\pi}$$

где κ — фактор формы, равный 0,88 для однорядного экрана одностороннего облучения при $S/d_{\rm H} = 2$; $H_{\rm пл}$ — цилиндрическая поверхность, на которой расположены трубы

$$H_{\pi\pi} = \pi (D_0 + d_{\rm H}) l_{\pi\pi} = 3,14(3,88 + 0,102) \cdot 9 = 113 \,{\rm M}^2$$

Тогда

$$H_{\pi} = 0,88 \cdot 113 = 99,44 \text{ m}^2$$

190

Найдем площадь неэкранированной поверхности камеры радиации:

$$F = \sum F_i - H_n = 133 - 99,44 = 33,56 \text{ m}^2$$

Определим эквивалентную абсолютно черную поверхность:

$$H_{s} = \frac{\varepsilon_{V}}{\psi(T)} \left(\varepsilon_{H} H_{\pi} + \gamma \varepsilon_{F} F \right)$$

Здесь ε_V — степень черноты поглощающей среды (факел, продукты сгорания); $\psi(T)$ — функция распределения температур в топке; ε_H — степень черноты поверхности экрана (принимается равной 0,9); ε_F — степень черноты обмуровки камеры радиации (принимается равной 0,9); γ — коэффициент, определяемый по формуле:

$$\gamma = \frac{1}{1 + \frac{\varepsilon_V}{1 - \varepsilon_V} \cdot \frac{1}{\varepsilon_H \rho}}$$

в которой

$$\rho = \frac{H_n}{\sum F_i} = \frac{99,44}{133} = 0,75$$

Степень черноты поглощающей среды находим по формуле [41, с. 104]:

$$\varepsilon_V \approx \frac{2}{1+2.15\alpha} = \frac{2}{1+2.15\cdot 1.1} \approx 0.59$$

где α = 1,1 — коэффициент избытка воздуха.

Тогда

$$\gamma = \frac{1}{1 + \frac{0.59}{1 - 0.59} \cdot \frac{1}{0.9 \cdot 0.75}} = 0.32$$

Так как значения ε_H и ε_F одинаковы, то можем записать:

$$H_s = \frac{\epsilon_V \epsilon_H}{\psi(T)} \left(H_n + \gamma F \right)$$

По Белоконю [41, с. 91]

$$\frac{\varepsilon_V \varepsilon_H}{\psi(T)} = 0.22 + \frac{0.33}{\alpha} = 0.22 + \frac{0.33}{1.1} = 0.52$$

следовательно, получим:

$$H_s = 0.52(99.44 + 0.32 \cdot 33.56) = 57 \text{ m}^2$$

Определим коэффициент теплоотдачи свободной конвекцией от газов к трубам экрана:

$$\alpha_{\kappa} = 2,1 \sqrt[4]{T_{\pi} - \theta}$$

где θ— температура наружной поверхности экранных труб. Без большой погрешности примем ее на 35 К выше средней температуры сырья в трубах, т.е.

$$\theta = \frac{T_1 + T_2}{2} + 35 = \frac{438 + 503}{2} + 35 = 506 \text{ K}$$

191

Тогда

$$\alpha_{\kappa} = 2,1 \sqrt[V]{820 - 506} = 8,9 \text{ BT/(M}^2 \cdot \text{K})$$

Проверим температуру дымовых газов, покидающих топку.

Находим температурную поправку к теплопередаче в топке по формуле Белоконя [41, с. 49]:

$$\Delta T = \frac{\alpha_{\rm K} H_{\rm p} \left(T_{\rm Makc} - \theta \right) - 10^{-8} \theta^4 H_s c_s}{B \sum m c_{\rm p} + \alpha_{\rm K} H_{\rm p}}$$

Здесь $T_{\text{макс}}$ — максимальная температура горения (в нашем случае при $Q_p^{\text{H}}\eta_r = 49\,970 \cdot 0.96 = 48\,000 \text{ кДж}$ на 1 кг топлива по рис. 2.21 $T_{\text{макс}} = 2053 \text{ K}$); c_s — постоянная излучения абсолютно черного тела, равная 5,77 Вт/(м²·K); $\sum mc_p$ — суммарная теплоемкость дымовых газов при $T_{\text{H}} = 820 \text{ K}$, определяемая по формуле:

$$\sum mc_p = \frac{q_{T_n}}{T_n - 273} = \frac{12\,600}{820 - 273} = 23$$
 кДж/(кг · К)

Получим:

$$\Delta T = \frac{8,9 \cdot 168 (2053 - 506) - 10^{-8} \cdot 503^4 \cdot 57 \cdot 5,77}{\frac{236 \cdot 23}{3,6} + 8,9 \cdot 168} = 775 \text{ K}$$

Находим величину аргумента излучения по формуле Белоконя:

$$X = \frac{10c_s H_s}{B \sum mc_p + \alpha_{\rm K} H_{\rm p}} \left(\frac{T_{\rm MAKC} - \Delta T}{1000}\right)^3 = \frac{10 \cdot 5.77 \cdot 57}{\frac{236 \cdot 23}{3.6} + 8.9 \cdot 168} \left(\frac{2053 - 775}{1000}\right)^3 = 2.33$$

По графику [41, с. 90] находим характеристику излучения: $\beta_s = 0,628.$

Определяем температуру дымовых газов на выходе из камеры радиации по формуле Белоконя:

$$T_{\rm fi} = \beta_s (T_{\rm make} - \Delta T) = 628 (2053 - 775) = 805 \text{ K}$$

Полученная температура несколько ниже найденной ранее; расхождение составляет 2%, поэтому пересчета не делаем, а выбранное значение q_p считаем правильным.

6. Расчет конвекционной камеры

Согласно принятой ранее схеме печи (рис. 2.22), в ее конвекционной камере устанавливается только пароперегреватель производительностью Z = 1850 кг/ч. Расход тепла на перегрев составляет $Q_{\rm II} = 181$ кВт (см. п. 2 расчета).

Определим поверхность нагрева пароперегревателя (в м²):

$$F_{\kappa} = \frac{Q_{\pi}}{k_{\pi} \Delta T_{\rm cp}}$$

где $k_{\rm n}$ — коэффициент теплопередачи в пароперегревателе, Вт/(м²·K); $\Delta T_{\rm cp}$ — средний температурный напор в пароперегревателе, К.

Принимаем для пароперегревателя цельнотянутые стальные трубы диаметром 57 \times 3,5 мм, длиной $l_{\rm TP} = 2,5$ м (длина трубы, омываемая дымовыми газами). Расположение труб — коридорное,

шаг труб по ширине пучка $S_1 = 1,5d_{\rm H} = 86$ мм, шаг труб по глубине пучка (расстояние между рядами труб по вертикали) $S_2 = 250$ мм. В одном горизонтальном ряду принимаем $n_1 = 21$ трубе.

При таком числе труб расстояние по осям крайних труб будет равно:

$$b_{\rm t} = (n_1 - 1) S_1 =$$

= $(21 - 1) \cdot 86 = 1720 \text{ mm}$

Коэффициент теплопередачи в пароперегревателе рассчитываем по формуле:

$$k_{\rm m} = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta_{\rm cT}}{\lambda_{\rm cT}} + \frac{1}{\alpha_2}}$$

где α_1 — суммарный коэффициент теплоотдачи со стороны дымовых газов, $BT/(M^2 \cdot K)$; $\delta_{cT} =$ = 0,0035 м — толщина стенки трубки; $\lambda_{cT} = 45,2$ $BT/(M \cdot K)$ —

коэффициент теплопроводности стали; α_2 — коэффициент теплоотдачи от стенки трубы к водяному пару, $Bt/(M^2 \cdot K)$.

Суммарный коэффициент теплоотдачи со стороны дымовых газов [41, с. 114]:

$$\alpha_1 = 1, 1 (\alpha_{\kappa} + \alpha_{\eta})$$

где α_{κ} — коэффициент теплоотдачи конвекцией от газов к трубам, Вт/(м²·K); α_{π} — коэффициент теплоотдачи излучением трехатомных газов, Вт/(м²·K).

Коэффициент α_к определим по формуле [8, с. 133]:

$$\alpha_{\rm K} = c\beta \frac{\lambda_{\rm F}}{d_{\rm H}} \, {\rm Re}^{0.6} \, {\rm Pr}^{1/3}$$

где c = 0,26 — коэффициент для коридорного пучка труб; β — коэффициент, зависящий от числа рядов труб в пучке [8, с. 133], полагая, что число рядов будет более 10, примем $\beta = 1$; $\lambda_{\rm r}$ — коэффициент теплопроводности дымовых газов, BT/(м·K).

Критерии Re и Pr в формуле вычисляются при средней температуре дымовых газов в камере конвекции (определяющий

7 Зак. 100

размер — наружный диаметр труб, скорость газов находится для самого узкого сечения пучка).

Определим наименьшую площадь свободного сечения для прохода дымовых газов. Согласно принятой схеме (рис. 2.23) распределения труб, она будет равна:

$$f_{\rm r} = (b_{\rm K} - n_{\rm l} d_{\rm H}) l_{\rm Tp} = [(n_{\rm l} - 1) S_{\rm l} + 3d_{\rm H} - n_{\rm l} d_{\rm H}] l_{\rm Tp} = [(21 - 1) \cdot 0,086 + 3 \cdot 0,057 - 21 \cdot 0,057)] \cdot 2,5 = 1,735 \text{ M}^2$$

Определим линейную скорость дымовых газов в самом узком сечении трубного пучка:

$$w = \frac{B \sum v_i T_{\rm cp}}{3600 \cdot f_{\rm F} \cdot 273}$$

где $T_{\rm cp} = 0.5 (T_{\rm n} + T_{\rm yx}) = 0.5 (820 + 673) = 747 \ {\rm K} - {\rm средняя}$ температура дымовых газов в конвекционной камере.

Имеем:

$$\omega = \frac{236 \cdot 15,95 \cdot 747}{3600 \cdot 1,735 \cdot 273} = 1,65 \text{ M/c}$$

Для определения критериев Re и Pr нужно вычислить для дымовых газов при $T_{cp} = 747$ K кинематическую вязкость, плотность, теплоемкость и коэффициент теплопроводности.

Коэффициент динамической вязкости найдем по формуле:

$$\frac{M_{\rm r}}{\mu_{\rm r}} = \sum \frac{x_i' M_i}{\mu_i}$$

где M_r , μ_r — молекулярная масса и динамическая вязкость дымовых газов; M_i — молекулярная масса компонентов дымовых газов; μ_i — динамическая вязкость компонентов дымовых газов, — определяются по номограмме [49, с. 597]; x'_i — объемные (мольные) доли компонентов дымовых газов в их смеси.

Результаты расчета приведены в табл. 2.14.

Получим:

$$\mu_{\rm r} = \frac{M_{\rm r}}{\sum \frac{x_i' M_i}{\mu_i}} = \frac{27,77}{871,9 \cdot 10^3} = 31,9 \cdot 10^{-6} \,\, \Pi \rm{a} \cdot \rm{c}$$

Таблица 2.20

Компоненты дымовых газов	Mį	т _і , кг/кг топлива	<i>х_і.</i> масс. доля	v _į (при нор- мальных условиях), м ³ /кг топлива	<i>х</i> _і , объемн. доля	
CO ₂ H ₂ O O ₂ N ₂ Сумма	44 18 32 23	2,75 2,15 0,39 14,4 19,7	0,139 0,109 0,020 0,732 1,000	1,40 2,68 0,27 11,6 15,95	0,087 0,168 0,018 0,728 1,000	

Плотность дымовых газов:

$$\rho_{\rm r} = \frac{M_{\rm r}}{22.4} \cdot \frac{T_{\rm o}}{T_{\rm cp}} = \frac{27.77 \cdot 273}{22.4 \cdot 747} = 0.452 \ {\rm kr/m^3}$$

Кинематическая вязкость дымовых газов:

$$v_{\rm r} = \frac{\mu_{\rm r}}{\rho_{\rm r}} = \frac{31.9 \cdot 10^{-6}}{0.452} = 70.5 \cdot 10^{-6} \,{\rm m}^2/{\rm c}$$

Коэффициент теплопроводности дымовых газов найдем по формуле [8, с. 125]:

$$\lambda_{\rm r} = \sum x_i' \lambda_i$$

где λ_i — коэффициенты теплопроводности компонентов дымовых газов, определенные по таблице [8, с. 430]. Необходимые расчеты сделаны в табл. 2.20, из которой и взято значение λ_r = 0,0548 Br/(м·K).

Теплоемкость дымовых газов:

$$c_{\rm r} = \sum c_i x_i$$

где c_i — теплоемкость компонентов дымовых газов, определяемая по таблице [8, с. 130]; x_i — массовые доли компонентов в дымовых газах. Результаты расчетов приведены в табл. 2.20, из которой $c_r = 1.24 \text{ кДж/(кг·K)}$.

Находим значения критериев:

$$\operatorname{Re} = \frac{wd_{\rm H}}{v_{\rm r}} = \frac{1.65 \cdot 0.057}{70.5 \cdot 10^{-6}} = 1335$$
$$\operatorname{Pr} = \frac{v_{\rm r}c_{\rm r}\rho_{\rm r}}{\lambda_{\rm r}} = \frac{70.5 \cdot 10^{-6} \cdot 1.24 \cdot 0.452 \cdot 10^3}{0.0548} = 0.72$$

После подстановки всех величин в формулу для вычисления значения α_{κ} получим:

$$\alpha_{\kappa} = 0.26 \cdot 1 \frac{0.0548}{0.057} \cdot 1335^{0.6} \cdot 0.72^{1/2} = 17 \text{ Bt/(M}^2 \cdot \text{K})$$

Коэффициент теплоотдачи излучением от трехатомных газов найдем по формуле Нельсона [5, с. 479];

$$a_n = 0.025T_{cp} - 9.3 = 0.025 \cdot 747 - 9.3 = 9.3 \text{ BT}/(\text{M}^2 \cdot \text{K})$$

 M _i x _i	μ _į . 103, Па∙с	$\frac{M_i x_i'}{\mu_j} \cdot 10^{-3}$	λ _i , Βτ/(м·Κ)	λ _i x _i , Βτ/(Μ·Κ)	<i>с_і.</i> кДж/(кг·К)	^с і ^х і, кДж/(кг·К)
 3,83 3,02 0,54 20,38	0,032 0,025 0,039 0,033	119,7 120,8 13,8 617,6	0,051 0,056 0,058 0,055	0,0044 0,0094 0,0010 0,0400	1,136 2,100 1,039 1,106	0,189 0,229 0,021 0,800
27,77	_	871,9	$\lambda_{\Gamma} = 0,0548$		_	$c_{\Gamma} = 1,24$

195

Тогда суммарный коэффициент теплоотдачи от дымовых газов будет равен:

$$\alpha_1 = 1,1 (17 + 9,3) = 29 \text{ Bt/}(\text{M}^2 \cdot \text{K})$$

Коэффициент теплоотдачи от стенки трубы к водяному пару найдем по формуле [46, с. 161, 162]:

$$\alpha_2 = \left(3,24 + \frac{0,35T_Z}{100}\right) \frac{w_0^{0,75}}{d_{\rm B}^{0,25}}$$

где T_z — средняя температура перегреваемого водяного пара, равная

$$T_Z = \frac{T_s + T_{\text{nap}}}{2} = \frac{393 + 513}{2} = 453 \,\text{K}$$

 w_0 — линейная скорость пара (приведена к температуре 273 К и давлению 0,1·10⁶ Па), м/с; $d_{\rm B} = 0,05$ м — внутренний диаметр труб пароперегревателя.

Линейная скорость водяного пара при движении его двадцатью одним параллельным потоком равна:

$$w_0 = \frac{4V_{\rm ce\kappa}}{\pi d_{\rm B}^2 n_1}$$

Здесь $n_1 = 21$ — число труб в одном горизонтальном ряду пароперегревателя; $V_{\text{сек}}$ — секундный объем перегретого водяного пара, приведенный к нормальным условиям (273 К и 0,1 · 10⁶ Па):

$$V_{\rm cek} = \frac{1850 \cdot 22,4}{3600 \cdot 18} = 0,655 \text{ m}^3/\text{c}$$

Тогда

$$w_0 = \frac{4 \cdot 0,655}{3,14 \cdot 0,05^2 \cdot 21} = 16 \text{ M/c}$$

Подставив известные числовые значения в формулу коэффициента теплоотдачи, получим:

$$\alpha_2 = \left(3,24 + \frac{0,35 \cdot 453}{100}\right) \cdot \frac{16^{0,75}}{0,05^{0,25}} = 84,3 \text{ BT/(M}^2 \cdot \text{K})$$

Коэффициент теплопередачи пароперегревателя равен:

$$k_{\rm n} = \frac{1}{\frac{1}{29} + \frac{0.0035}{45.2} + \frac{1}{84.3}} = 21.5 \ {\rm Br/(M^2 \cdot K)}$$

Определим средний температурный напор в пароперегревателе. Теплообмен идет по схеме:

$$T_{n} = 820 \text{ K} \longrightarrow T_{yx} = 673 \text{ K}$$

$$T_{nap} = 513 \text{ K} \longleftarrow T_{s} = 393 \text{ K}$$

$$\Delta T_{\text{Marc}} = T_{n} - T_{nap} = 820 - 513 = 307 \text{ K};$$

$$\Delta T_{\text{Marr}} = T_{yx} - T_{s} = 673 - 393 = 280 \text{ K}$$

196

При $\frac{\Delta T_{\text{макс}}}{\Delta T_{\text{мин}}} \leq 2$ средний температурный напор определяется по формуле:

$$\Delta T_{\rm cp} = \frac{\Delta T_{\rm Marc} + \Delta T_{\rm MHH}}{2} = \frac{307 + 280}{2} = 294 \, {\rm K}$$

Поверхность нагрева пароперегревателя:

$$F_{\rm n} = \frac{180\ 700}{21,5\cdot 294} = 28,7\ {\rm M}^2$$

Число труб пароперегревателя:

$$N_{\rm fl} = \frac{F_{\rm fl}}{\pi d_{\rm fl} l_{\rm Tp}} = \frac{28,7}{3,14 \cdot 0,057 \cdot 2,5} = 64$$

Число горизонтальных рядов:

$$m = \frac{N_{\pi}}{n_1} = \frac{64}{21} = 3$$

Примем пароперегреватель с тремя пучками коридорно расположенных труб. Тогда общее число труб будет равно 63.

Гидравлический расчет сырьевого змеевика печи и расчет газового сопротивления и тяги здесь не приводятся, так как они аналогичны сделанным в предыдущем примере. Глава З ХИМИЧЕСКИЕ ПРОЦЕССЫ

В нефтеперерабатывающей и нефтехимической промышленности широкое распространение получили следующие процессы: пиролиз этана и пропана с целью получения этилена и пропилена; каталитический крекинг дистиллятного и остаточного сырья для получения бензинов и газов с высоким содержанием пропан-пропиленовой и бутан-бутиленовой фракций; риформинг на платиновом катализаторе бензинов и лигроинов прямой гонки с целью получения высокооктановых бензинов; алкилирование изопарафиновых углеводородов олефинами для получения высокооктановых компонентов бензинов; полимеризация низкомолекулярных непредельных углеводородов с целью получения топлив или высокомолекулярных полимеров.

Ниже приводятся технологические расчеты реакционных аппаратов для этих процессов.

Технологический расчет любого реакционного аппарата включает решение следующих основных задач.

1. Термодинамический расчет (анализ) процесса, при котором определяют наиболее благоприятные условия его протекания и оптимальную глубину (степень) превращения сырья.

2. Кинетический расчет реакционного аппарата, конечной целью которого является определение величины реакционного объема.

3. Тепловой расчет реакционного аппарата, позволяющий определить количество тепла, которое необходимо подводить в реактор или отводить из него, а также необходимое количество теплоносителя и величину поверхности теплообмена.

4. Гидравлический расчет реактора, позволяющий установить потери напора при движении реагирующих веществ, что очень важно для определения энергетических затрат на ведение процесса.

5. Конструирование и расчет аппарата и его узлов на прочность.

При расчете реакционного аппарата, как правило, все указанные выше основные задачи должны решаться параллельно, так как величины, с которыми приходится оперировать, взаимно связаны. Это обстоятельство и является основной причиной большой сложности расчета. Накопление и обобщение данных по промышленной эксплуатации различных реакционных систем, а также теоретический анализ экспериментальных данных, получаемых на лабораторных и полузаводских установках, позволяют во многих случаях значительно облегчить решение этих задач. Наиболее современным методом решения комплекса указанных задач является, как известно, математическое моделирование, осуществляемое при широком использовании электронно-вычислительных машин (ЭВМ).

Теоретические основы расчета, конструктивное оформление, особенности работы реакционных аппаратов различного технологического назначения изложены во многих литературных источниках [4, 5, 54, 68, 69, 70 и др.].

Реакционные аппараты, предназначенные для проведения химических процессов, резко различаются по условиям работы, производительности и конструктивному оформлению. Поэтому и технологические расчеты их имеют ряд особенностей, которые рассмотрены ниже на конкретных примерах.

ТРУБЧАТЫЙ РЕАКТОР ПИРОЛИЗА

Рассчитать реакционный змеевик трубчатой печи градиентного типа (рис. 3.1) для пиролиза пропановой фракции, состав которой приведен в табл. 3.1. Состав продуктов пиролиза (пирогаза) также дан в табл. 3.1 [4, с. 38]. Производительность печи $G = 10\,000$ кг/ч. Пиролиз пропановой фракции проводится с добавкой Z = 2000 кг/ч (20 масс. % на сырье) водяного пара. Температура сырья на входе в печь $T_1 = 308$ К.

Состав топливного газа и коэффициент избытка воздуха приняты такими же, как при расчете печи с излучающими стенками топки (стр. 154 и 156).

Конструктивное оформление, технологические показатели работы и основные методы расчета трубчатых печей для термического разложения (пиролиза) углеводородов достаточно подробно рассмотрены в литературе [4, с. 51; 84, с. 124; 85, с. 90].

Наиболее совершенной в настоящее время реакционно-нагревательной печью для пиролиза углеводородов является трубчатая печь (реактор) градиентного типа с излучающими стенками и с экранами двухстороннего облучения.

Самой сложной и трудной задачей при расчете такой трубчатой печи является расчет реакционного змеевика, в котором должно осуществляться термическое разложение углеводородов до необходимой глубины в минимальное время. Процесс пиролиза сырья идет при непрерывном изменении температуры, давления, объема

Таблица 3.1

	Состав,	мол. %		Состав, мол. %		
Компоненты	сырье — пропановая фракция	пирогаз	Компоненты	сырье— пропановая фракция	пирогаз	
$\begin{array}{c} H_2 & & & \\ CH_4 & & & \\ C_2H_2 & & \\ C_2H_2 & & \\ C_2H_4 & & \\ C_2H_6 & & \\ \end{array}$	0,7 6,3 	13,2 33,6 0,3 27,3 9,6	С ₃ H ₆ С ₃ H ₈ С ₄ С ₅₊ Сумма	10,7 56,7 4,1 100,0	8,9 4,1 0,9 2,1 100,0	

и состава реакционной смеси по длине змеевика. Поэтому расчет реакционного змеевика проводят в две стадии: первая называется предварительным расчетом, вторая — расчетом по секциям, т.е. по отдельным, очень небольшим участкам змеевика.

Предварительным расчетом определяют поверхность нагрева, длину и число труб реакционного змеевика, а также время пребывания реакционной смеси в змеевике, которое не должно быть выше некоторого оптимального значения, зависящего от температуры. Расчет ведется методом последовательного приближения предварительно задаются перепадом давления в реакционном змеевике, а затем вычислениями подтверждают правильность принятой ранее величины.

Исходными данными для расчета являются следующие: количество и состав исходного сырья (газа); состав продуктов пиролиза (пирогаза), получаемый на основе лабораторных или полузаводских опытов термического разложения исходного сырья; количество водяного пара, добавляемого к исходному сырью перед его подачей в печь; состав топливного газа; температура сырья на входе в печь.

ПОСЛЕДОВАТЕЛЬНОСТЬ ПРЕДВАРИТЕЛЬНОГО РАСЧЕТА Реакционного змеевика трубчатой печи градиентного типа

1. Рассчитывают процесс горения. Все определения проводят так же, как и при расчете печи с излучающими стенками топки.

2. Зная производительность печи по исходному сырью, составы сырья и продуктов пиролиза (пирогаза), определяют:

a) молекулярную массу и плотность (при нормальных условиях) сырья, массовые и мольные часовые количества каждого компонента в сырье;

б) молекулярную массу и плотность (при нормальных условиях) пирогаза, массовые и мольные часовые количества каждого компонента в пирогазе;

в) состав парогазовой смеси на входе в печь и на выходе из нее в массовых и мольных долях.

Полученные данные сводят в таблицы.

3. Зная состав газа, подвергаемого пиролизу, определяют температуру в конце реакционного змеевика. Для этого предварительно задаются величиной общего времени пребывания газовой смеси в змеевике печи.

4. Определяют полезную тепловую мощность (полезное тепло) печи, ее коэффициент полезного действия и часовой расход топлива.

Расчеты ведут по следующей схеме:

a) определяют температуру на выходе из реакционного змеевика с учетом углеводородного состава сырья;

б) находят теплоту реакции и часовой расход тепла на реакции пиролиза;

в) определяют часовое количество тепла, необходимого для нагревания парогазовой смеси (сырья и водяного пара) от температуры на входе в печь до температуры входа в реакционный змеевик, которая предварительно должна быть принята;

г) находят часовое количество тепла, расходуемого на нагревание парогазовой смеси в реакционном змеевике, имея в виду, что в начале змеевика парогазовая смесь состоит из сырья и водяного пара, а в конце — из продуктов пиролиза (пирогаза) и водяного пара;

д) рассчитывают часовое количество тепла, расходуемого в реакционном змеевике;

е) находят полезное тепло печи;

ж) задаваясь температурой уходящих из печи дымовых газов и долей потерь тепла печью в окружающую среду, находят к.п.д. печи;

з) определяют часовой расход топлива.

5. Определяют температуру дымовых газов, покидающих радиантную камеру. Для этого из уравнения теплового баланса топки, зная тепловую нагрузку реакционного змеевика, находят энтальпию дымовых газов на выходе из топки и соответствующую температуру.

6. Определяют поверхность нагрева реакционного змеевика, задаваясь предварительно ее допускаемой теплонапряженностью. Выбирая диаметр и полезную длину трубы, находят общую длину реакционного змеевика. Принимая число параллельно включенных потоков, определяют полезную длину труб и число труб в одном потоке. Принимая полную длину одной трубы, находят полную длину одного потока реакционного змеевика.

7. Определяют время пребывания парогазовой смеси в реакционном змеевике.

Расчет ведут по следующей схеме:

a) принимают давление в конце реакционного змеевика, задаются величиной потерь напора в нем и находят давление в начале змеевика;

б) находят плотность парогазовой смеси в начале и в конце змеевика, а также ее среднюю плотность в реакционном змеевике;

в) находят массовую скорость парогазовой смеси в змеевике;

Таблица 3.2

Сырье —	пропановая	фракция
---------	------------	---------

Компоненты сырья	Молекулярная	Плотность р _і .	Мольная (объемная)
	масса М _і	кг/м ³	доля c' _i (cv _i)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 28 30 42 44 58	0,090 0,717 1,260 1,342 1,915 1,967 2,593	0,007 0,063 0,049 0,166 0,107 0,567 0,041 1,000

Примечание. Плотность сырья можно определить также по формуле:

 $\rho_{\rm c} = \frac{M_{\rm c}}{22.4} = \frac{39.2}{22.4} = 1.75 \text{ kg/m}^3$

г) находят линейную скорость парогазовой смеси в начале и в конце змеевика, а также среднюю линейную скорость в реакционном змеевике;

д) делением полной длины одного потока реакционного змеевика на среднюю скорость парогазовой смеси определяют время пребывания смеси в реакционном змеевике. Это время не должно превышать ранее заданной величины. В противном случае следует задаться новым значением потери напора и повторить расчет. Если и после этого не обеспечивается необходимое снижение времени пребывания, расчет реактора следует повторить, начиная с п. 3.

8. Определяют потери напора в реакционном змеевике. Этот расчет ведется обычно по уравнению Дарси — Вейсбаха.

Найденная величина потерь напора не должна превышать ранее принятую величину. В противном случае расчет следует повторить, начиная с п. 7, увязывая величину потерь напора в змеевике со временем пребывания в нем парогазовой смеси.

Детальный посекционный расчет реакционного змеевика должен проводиться по методике, предлагаемой в литературе [4, с. 63]. Ввиду сложности этот расчет не приводится. Если ограничиться предварительным расчетом реакционного змеевика, то все остальные определения по трубчатой печи для пиролиза углеводородов нужно проводить в той последовательности, которая принята для печи с излучающими стенками топки.

РАСЧЕТ

1. Расчет процесса горения

Поскольку для данной печи состав топливного газа и коэффициент избытка воздуха приняты такими же, как и выше (см.

	Массовая доля	17	Коли	чество
M _i c _{vi}	$c_i = \frac{M_i c_i}{\sum M_i c_i'}$	плотность сырья р _і с _{иі} , кг/м ³	$G_i = 10\ 000\ c_i,$ Kr/4	$G'_{i} \Rightarrow \frac{G_{i}}{M_{i}},$ $KMOJE/4$
0.014	0.0004	0.0006		2.00
1,008	0,0004	0.0450	260	16.25
1,372	0,0200	0.0618	349	12 42
4,980	0.1280	0.2220	1 280	42.68
4,494	0,1155	0.2040	1 155	27.50
24,948	0.6344	1,1150	6 344	144,46
2,378	0,0608	0,1060	608	10,48
$M_{c} = 39.2$	1.0000	$0_{2} = 1.75$	10 000	255.79≈255.8

стр. 154—156), то расчет процесса горения здесь не повторяем и все необходимые данные берем из указанного расчета. График энтальпия дымовых газов — температура для этого случая представлен на рис. 2.16.

2. Состав сырья и пирогаза

Для последующих расчетов необходимо иметь характеристики сырья и пирогаза. Они рассчитаны и приведены в табл. 3.2 и 3.3, которые особых пояснений не требуют *.

Из табл. 3.2 имеем: молекулярная масса сырья $M_c = 39,2$; плотность сырья $\rho_c = 1,75$ кг/м³. Из табл. 3.3: молекулярная масса пирогаза $M_x = 23,8$; плотность пирогаза $\rho_x = 1,07$ кг/м³.

Согласно заданию, пиролиз сырья осуществляется с добавкой 20 масс.% или 2000 кг/ч водяного пара. В табл. 3.4 дается состав парогазовой смеси при входе ее в змеевик печи (сырье и водяной пар) и на выходе из змеевика (пирогаз и водяной пар).

По данным табл. 3.4 найдем:

молекулярная масса парогазовой смеси при входе в змеевик печи

$$M_{\rm BX} = \frac{12\,000}{366,9} = 32,7$$

молекулярная масса парогазовой смеси на выходе из змеевика печи

$$M_{\rm Biax} = \frac{12\,000}{530,68} = 22,6$$

^{*} Здесь и далее плотность и объемы сырья и пирогаза отнесены к нормальным условиям.

Компоненты пирогаза	Молекулярная масса М _і	Плотность р _і , кг/м ³	Мольная (объемная) доля х' _i (х _{vi})	M _i x'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 26 28 30 42 44 58 72 	0,090 0,717 1,162 1,260 1,342 1,915 1,967 2,593 3,220 —	0,132 0,336 0,003 0,273 0,096 0,089 0,041 0,009 0,021 1,000	$0,264 \\ 5,376 \\ 0,078 \\ 7,644 \\ 2,880 \\ 3,738 \\ 1,804 \\ 0,522 \\ 1,512 \\ M_x = 23,8$	

Таблица 3.3 Продукты пиролиза (пирогаз)

Примечание. Плотность пирогаза можно определить иначе:

 $\rho_{\mathbf{x}} = \frac{M_{\mathbf{x}}}{22.4} = \frac{23.8}{22.4} = 1.07 \text{ Kr/m}^3$

Таблица 3.4

Парогазовая смесь при входе в печь				Парогазовая смесь на выходе из печи			
количе	ество	до	доля		чество	доля	
кг/ч	кмоль/ч	массовая	мольная	кг/ч	кмоль/ч	массовая	мольная
4	2 00	0.0003	0.0054	110	55.00	0.0092	0.1037
260	16.26	0.0217	0.0443	2 260	141.20	0,1883	0.2657
				30	1,16	0,0025	0,0023
349	12,42	0.0290	0,0338	3 200	114,36	0,2667	0,2156
1 280	42,68	0,1067	0,1162	1 2 2 0	40,68	0,1017	0,0768
1 155	27,50	0,0963	0,0749	1 570	37,36	0,1308	0,0704
6 3 4 4	144,46	0,5287	0,3940	760	17,26	0,0634	0,0328
608	10,48	0,0507	0,0286	220	3,80	0,0183	0,0072
	<u> </u>	·	·	630	8,76	0,0525	0,0165
2 000	111,10	0,1666	0,3028	2 000	111,10	0,1666	0,2090
12 000	36 5,€ 0	1,0000	1,0000	12 000	530,68	1,0000	1,0000
	Парога количе кг/ч 4 260 - 349 1 280 1 155 6 344 608 - 2 000 12 000	Парогазовая смел количество кг/ч кмоль/ч 4 2,00 260 16,26 349 12,42 1 280 42,68 1 155 27,50 6 344 144,46 608 10,48 2 000 111,10 12 000 366,0	Парогазовая смесь при вхол количество до кг/ч кмоль/ч массовая 4 2,00 0,0003 260 16,26 0,0217 349 12,42 0,0290 1 280 42,68 0,1067 1 155 27,50 0,0963 6 344 144,46 0,5287 608 10,48 0,0507 2 000 111,10 0,1666 12 000 366,50 1,0000	Парогазовая смесь при входе в печь количество доля кг/ч кмоль/ч массовая мольная 4 2,00 0,0003 0,0054 260 16,26 0,0217 0,0443 349 12,42 0,0290 0,0338 1 280 42,68 0,1067 0,1162 1 155 27,50 0,0963 0,0749 6 344 144,46 0,5287 0,3940 608 10,48 0,0507 0,0286 2 000 111,10 0,1666 0,3028 12 000 366,50 1,0000 1,0000	Парогазовая смесь при входе в печь Парога количество доля коли кг/ч кмоль/ч массовая мольная кг/ч 4 2,00 0,0003 0,0054 110 260 16,26 0,0217 0,0443 2 260 349 12,42 0,0290 0,0338 3 200 1 280 42,68 0,1067 0,1162 1 220 1 155 27,50 0,0963 0,0749 1 570 6 344 144,46 0,5287 0,3940 760 608 10,48 0,0507 0,0286 2200 2 000 111,10 0,1666 0,3028 2 000 12 000 365,€0 1,0000 1,0000 12 000	Парогазовая смесь при входе в печь Парогазовая смес количество доля количество кг/ч кмоль/ч массовая мольная кг/ч кмоль/ч 4 2,00 0,0003 0,0054 110 55,00 260 16,26 0,0217 0,0443 2 260 141,20 - - - - 30 1,16 349 12,42 0,0290 0,0338 3 200 114,36 1 280 42,68 0,1067 0,1162 1 220 40,68 1 155 27,50 0,0963 0,0749 1 570 37,36 6 344 144,46 0,5287 0,3940 760 17,26 608 10,48 0,0507 0,0286 220 380 2 000 111,10 0,1666 0,3028 2 000 111,10 12 000 366,0 1,0000 1,0000 12 000 530,68	Парогазовая смесь при входе в печь Парогазовая смесь на выхо количество доля количество доля количество доля количество до кг/ч кмоль/ч массовая мольная кг/ч кмоль/ч массовая 4 2,00 0,0003 0,0054 110 55,00 0,0092 260 16,26 0,0217 0,0443 2 260 141,20 0,1883 - - - 30 1,16 0,0025 349 12,42 0,0290 0,0338 3 200 114,36 0,2667 1 280 42,68 0,1067 0,1162 1 220 40,68 0,1017 1 155 27,50 0,0963 0,0749 1 570 37,36 0,1308 6 344 144,46 0,5287 0,3940 760 17,26 0,0634 608 10,48 0,0507 0,0286 220 3,80 0,0183 2 000 111,10 0,1666 0,3

3. Конечная температура реакции

Конечную температуру реакции, или температуру пирогаза на выходе из змеевика печи, найдем по формуле линейной интерполяции:

$$T = T_2 x_2 + T_3 x_{3'} + T_3 x_3 + T_4 x_4$$

где T_2 , T_3 и T_4 — конечная температура реакции при пиролизе углеводородов С₂H₆, С₃H₆, С₃H₈ и С₄H₁₀ в чистом виде, К; x_2 , x_3 , x_3 и

Массовая доля		Колич	Количество		
$x_i = \frac{M_i x_i'}{\sum M_i x_i'}$	ρ _i z _{vi} , кг/м ³	$g_i = 10\ 000\ x_i,$ Kr/4	$g'_{i} = \frac{g_{l}}{M_{i}}$ 	продуктоз пиролиза, кмоль/кмоль сырья	
0.011	0.019	110	EE 00	0.0150	
0,011	0,012	2 260	141.90	0,2150	
0.003	0,003	30	1 16	0,0045	
0,320	0,344	3 200	114.36	0,0045	
0,122	0,129	1 2200	40.68	0,1500	
0.157	0,170	1 570	37,36	0,1460	
0.076	0.081	760	17.26	0.0675	
0.022	0.023	220	3.80	0.0148	
0.063	0,063	630	8,76	0.0342	
1,000	$\rho_x = 1,07$	10 000	419,58	~1,64	

 x_4 — содержание углеводородов C₂H₆, C₃H₆, C₃H₈ и C₄H₁₀ в сырье в расчете только на их смесь, масс. доли.

Конечная температура процесса связана с оптимальным временем контакта формулами Шмидта [4, с. 41, 43]:

при пиролизе этана без выделения углерода

$$\lg \tau_{on\tau}^{s\tau} = -12,75 + \frac{13700}{T_2}$$

при пиролизе пропилена, пропана и бутана без выделения углерода

$$\lg \tau_{out}^{np} = -10,96 + \frac{11\,038}{T_3}$$

где т^{эт} и т^{пр} — оптимальное время контакта, с.

Пиролизу подвергается смесь углеводородов, поэтому облее время тобщ пребывания газовой смеси в зоне реакции для всех углеводородов будет одинаковым. Общее время пребывания газовой смеси в зоне реакции связано с оптимальным временем [4, с. 58]:

$$τ_{o6ut} \leq (1,8 \div 2,1) τ_{out}$$

Сведения о величине общего времени $\tau_{\rm общ}$ пребывания газов в змеевиках трубчатых печей пиролиза приведены в табл. 3.5.

Сырье обогащено пропаном, поэтому примем по данным табл. 3.5 величину общего времени пребывания 0,7 с. Приняв кратность превышения общего времени $\tau_{05\mu}$ над оптимальным временем $\tau_{0\pi\tau}$ равной 2,1, найдем:

$$\tau_{ont} = \frac{\tau_{o6m}}{2,1} = \frac{0.7}{2,1} = 0.33 \,\mathrm{c}$$

205

Пиролиз углеводородов	температуры процесса, К	давления процесса · 10 ^{—3} , Па	^т общ, с	Литература
$\begin{array}{c} C_2H_6 & \dots & \dots \\ C_3H_6 & \dots & \dots \\ C_3H_8 & \dots & \dots \\ C_4H_{10} & \dots & \dots \end{array}$	1048	208-319 208-319 208-319 208-319 208-319	0,7—1,30 0,5—0,80 0,7—1,13 0,7—1,13	[84, c. 82] [84, c. 87] [85, c. 18] [4, c. 47]

Используя величину топт = 0,33 с в формулах Шмидта

1~0.22 - 19.75	13 700
$1g_{0,00} = -12,70 +$	$\overline{T_2}$
$1 \times 0.33 - 10.06 \pm$	11 038
1g 0,00 = -10,00 +	T_3

найдем, что $T_2 = 1117$ K, а $T_3 = 1055$ K.

Расчет содержания углеводородов C_2H_6 , C_3H_6 , C_3H_8 и C_4H_{10} в их смеси в сырье сделан в табл. 3.6.

Таблица 3,6

Компоненты	Количество <i>G_i</i> (табл. 3.2), кг/ч	Содержание $x_i = \frac{G_i}{\sum_{i=1}^{N} G_i},$ масс. доля		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1280 1155 6344 608	0,1363 0,1230 0,6755 0,0652		
Сумма	9387	1,0000		

Подставив числовые значения величин в формулу для определения конечной температуры пирогаза на выходе из змеевика печи, получим:

 $T = 1117 \cdot 0,1363 + 1055 \cdot 0,1230 + 1055 \cdot 0,6755 + 1055 \cdot 0,0652 = 1063 \text{ K}$

4. Тепловая нагрузка печи, ее к.п.д. и расход топлива

Полезное тепло печи равно:

$$Q_{\text{полезн}} = Q_1 + Q_p$$

где Q_1 — расход тепла на нагревание смеси газов в реакционном змеевике, кВт; Q_p — расход тепла на реакцию, кВт.

Температура сырья перед реакционным змеевиком должна быть ниже той, при которой начинается реакция пиролиза [4, с. 35]. Согласно литературным данным, некаталитическое превращение пропилена в этилен начинается при 883 К [85, с. 18], а пропана в этилен — при 923 К [4, с. 43]. Поэтому в нашем расчете примем температуру входа сырья в реакционный змеевик $T_{\rm H} = 873$ К.

Количество тепла, затрачиваемого на нагревание парогазовой смеси (сырье и водяной пар) от $T_1 = 308$ К (задана) до $T_{\rm H} = 873$ К, найдем по формуле:

$$Q_1 = (G + Z) (q_{873} - q_{308})$$

где $G = \sum G_i = 10\,000 \,\text{кг/ч} - \text{количество сырья; } Z = 2000 \,\text{кг/ч} -$ количество водяного пара; q_{308} , q_{873} — энтальпии парогазовой смеси соответственно при $T_1 = 308 \,\text{K}$ и $T_{\text{H}} = 873 \,\text{K}$, кДж/кг.

Энтальпию парогазовой смеси найдем по правилу аддитивности, при этом энтальпии отдельных компонентов возьмем из таблиц [21, с. 121—128]; массовые доли компонентов в смеси см. в табл. 3.4.

Результаты расчета энтальпий сведены в табл. 3.7, из которой следует, что $q_{873} \approx 1567,9$ кДж/кг и $q_{308} \approx 63,2$ кДж/кг.

Таблица 3.7

$T_1 = 308 \text{ K}$		Т _н =873 К			<i>T</i> ==1063 Қ				
Компоненты	<i>а_i.</i> кДж/кг	Х _[, масс. доля	<i>а_i*i</i> , кДж/кг	^q į, кДж/кг	<i>X_I</i> • масс. доля	<i>а_ix_i,</i> кДж/кг	<i>а_i</i> , кДж/кг	<i>х₁,</i> масс. доля	^q _i x _i , кДж/кг
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	502,0 80,4 62,0 57,4 64,5 57,0 62,8 62,0 62,0 65,8	0,0003 0,0217 0 0,0290 0,1067 0,0963 0,5287 0,0507 0 0,1666 1,0000	$\begin{array}{c} 0,151\\ 1,746\\ 0\\ 1,665\\ 6,884\\ 5,488\\ 33,200\\ 3,142\\ 0\\ 10,960\\ \sim 63,2 \end{array}$	8750 1897 1283 1452 1690 1451 1658 1647 1638 1206	0,0003 0,0217 0 0,0290 0,1067 0,0963 0,5287 0,0507 0,1666 1,0000	$\begin{array}{c} 2,62\\ 41,16\\ 0\\ 42,12\\ 180,35\\ 139,80\\ 877,50\\ 83,50\\ 0\\ 200,80\\ \sim 1567,9\end{array}$	11650 2743 1764 2080 2453 2092 2400 2370 2353 1640	0,0092 0,1883 0,0025 0,2667 0,1017 0,1308 0,0634 0,0183 0,0525 0,1666 1,0000	$106,40 \\ 516,50 \\ 4,41 \\ 555,00 \\ 249,40 \\ 273,40 \\ 152,30 \\ 43,38 \\ 123,50 \\ 273,00 \\ \sim 2297,3$

Ввиду небольшого давления в змеевике печи его влияние на энтальпию не учитывается.

Получим:

 $Q_1 = (10\,000 + 2000)\,(1567, 9 - 63, 2) = 18, 1 \cdot 10^6 \,\mathrm{km/m} = 5015 \,\mathrm{kBT}$

Тепло Q_1 вычислено с некоторым избытком, так как начальная температура перегретого водяного пара, подаваемого в змеевик печи, значительно выше начальной температуры ($T_1 = 308$ K) сырья.

Расход тепла на реакцию и нагревание в реакционном змеевике, или количество радиантного тепла печи, определим по формуле:

$$Q_{\rm p} = Q_{\rm n} + Q_2$$

где Q_п — расход тепла на реакцию пиролиза, кВт; Q₂ — расход тепла на нагревание парогазовой смеси от T_н = 873 К (сырье и водяной пар) до T = 1063 К (пирогаз и водяной пар), кВт.

Расход тепла на реакцию пиролиза:

$$Q_{\mathfrak{n}} = \Delta H \sum G_{i}'$$

где ΔH — тепловой эффект реакции, кДж/кмоль сырья; $\sum G'_i =$ =255.9 кмоль/ч — часовое количество молей сырья (см. табл. 3.2). Тепловой эффект реакции найдем по уравнению:

$$\Delta H = H_2 - H_1$$

где H₁ и H₂ — соответственно теплоты образования исходного сырья и пирогаза, кДж/кмоль.

Теплоты образования Н_и и Н₂ можно определить путем суммирования парциальных теплот образования компонентов соответственно сырья и пирогаза при конечной температуре Т реакции.

При температуре T = 1063 К теплоты образования компонентов сырья и пирогаза приведены в литературе [86, с. 468-490], а расчет значений H₁ и Ĥ₂ — в табл. 3.8.

Таблица	3.8
---------	-----

		Сы	ье	Пирогаз		
Компоненты	Теплота образования <i>ΔН</i> _f , кДж/кмоль	сі (табл. 3.2), мол. доля	<i>с</i> і́дН°, кДж/кмоль сырья	$g'_i / \sum_{(табл. 3.3)}^{BUXOЛ} G'_i$ (табл. 3.3) кмоль/кмоль сырья	$g'_{i}\Delta H^{\circ}_{f}/\sum_{\substack{\kappa \ {\cal K} \not= \kappa \ {\cal K} \ {\cal K$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -\\ -90\ 280\\ +223\ 000\\ +38\ 080\\ -106\ 500\\ -\ 428\\ -130\ 000\\ -156\ 600\\ -181\ 300\\ -\end{array}$	0,007 0,063 0,049 0,166 0,107 0,567 0,041 	$ \begin{array}{r} -5688 \\ +1867 \\ -17680 \\ -46 \\ -73700 \\ -6420 \\ - \\ H_1 = -101667 \end{array} $	$\begin{array}{c} 0,2150\\ 0,5520\\ 0,0045\\ 0,4472\\ 0,1590\\ 0,1460\\ 0,0675\\ 0,0148\\ 0,0342\\ \approx 1,64\end{array}$	$\begin{array}{c} -49\ 850 \\ +1\ 003 \\ +17\ 050 \\ -63 \\ -63 \\ -8\ 750 \\ -2\ 320 \\ -6\ 200 \\ H_2 = -66\ 060 \end{array}$	

Теплота реакции:

 $\Delta H = H_2 - H_1 = -66\,060 - (-101\,667) = 35\,607$ кДж/кмоль сырья

Расход тепла на реакцию пиролиза:

 $Q_{\rm m} = \Delta HG'_i = 35\,607 \cdot 255, 8 = 9,11 \cdot 10^6 \,\,\mathrm{kg m/m} = 2530 \,\,\mathrm{kBt}$

Количество тепла, которое затрачивается на нагревание парогазовой смеси от $T_{\rm H} = 873$ K (сырье и водяной пар) до T = 1063 K (пирогаз и водяной пар):

$$Q_2 = (G + Z)(q_{1063} - q_{873}) =$$

= (10 000 + 2000) (2297,3 - 1567,9) = 8,76 · 10⁶ кДж/ч = 2433 кВт

Величина q₁₀₆₃ = 2297,3 кДж/кг взята из табл. 3.7.

Подставляя числовые значения величин в формулу для расчета количества радиантного тепла печи, получим:

$$Q_{\rm p} = 2530 + 2433 = 4963 \text{ kBt}$$

Полезное тепло печи:

$$Q_{\mu\nu} = 4963 + 5015 = 9978 \text{ kBr}$$

Потери тепла печью в окружающую среду q_1 примем равными 7% от рабочей теплоты сгорания топлива $Q_p^{\rm H}$, в том числе, в камере радиации 5%, в камере конвекции 2%.

Примем температуру уходящих из печи дымовых газов $T_{yx} = 673$ К (с последующим их охлаждением в котле-утилизаторе). Тогда по графику q - T (рис. 2.16) найдем их энтальпию: $q_2 = 8800$ кДж/кг.

Теперь найдем к.п.д. печи:

$$\eta = 1 - \left(\frac{q_1}{Q_p^{ii}} + \frac{q_2}{Q_p^{ii}}\right) = 1 - \left(0.07 + \frac{8800}{49\,040}\right) = 0.75$$

Расход топлива:

$$B = \frac{Q_{\Pi 0.763H}}{Q_{\mu}^{H} \eta} = \frac{9978 \cdot 3600}{49\,040 \cdot 0.75} = 977 \text{ kr/y}$$

5. Определение температуры дымовых газов, покидающих радиантную камеру

Из уравнения теплового баланса топки

$$Q_{\rm p} = B \left(Q_{\rm p}^{\rm H} \eta_{\rm r} - q_{T_{\rm n}}^{\rm r} \right)$$

(где пт — к. п. д. топки, равный пт = 1 — 0,05 = 0,95) найдем энтальпию уходящих из нее дымовых газов:

$$q_{T_{\text{п}}}^{\text{r}} = Q_{\text{p}}^{\text{H}} \eta_{\text{T}} - \frac{Q_{\text{p}}}{B} = 49\ 040 \cdot 0,95 - \frac{4963 \cdot 3600}{977} = 28\ 250\ \text{кДж/кг}$$

По графику q - T (рис. 2.16) этой энтальпии соответствует температура $T_{\pi} = 1473$ К.

6. Поверхность нагрева реакционного змеевика (экранных труб)

Определим поверхность нагрева реакционного змеевика по формуле:

$$F_{\rm p} = -\frac{Q_{\rm p}}{q_{\rm p}}$$

где q_р — средняя теплонапряженность поверхности нагрева экранных труб, кВт/м².

Величина средней теплонапряженности поверхности экранных реакционных труб в печах современных конструкций принимается равной 34,7—37,2 кВт/м² [85, с. 30].

Считая, что $q_{\rm p} = 37,2$ кВт/м², получим:

$$F_{\rm p} = \frac{4963}{37,2} = 133 \text{ m}^2$$

Принимая диаметр труб $d_n = 0,14$ м и толщину стенок 0,008 м [85, с. 28], находим общую рабочую длину труб:

$$L_{\rm p} = \frac{F_{\rm p}}{\pi d_{\rm H}} = \frac{133}{3,14 \cdot 0,14} = 302 \text{ M}$$

Число параллельных потоков m сырья в печи не рекомендуется принимать больше 3. Для проектируемой печи принято (см. рис. 3.1) m = 2. Рабочая длина труб в одном потоке:

$$L'_{\rm p} = \frac{L_{\rm p}}{m} = \frac{302}{2} = 151 \text{ M}$$

Выбираем рабочую длину одной трубы $l_{\rm T} = 12,5$ м. Тогда число труб в одном потоке реакционного змеевика составит:

$$N'_{\rm p} = \frac{L'_{\rm p}}{l_{\rm T}} = \frac{151}{12.5} = 12$$

При полной длине одной трубы $l'_{\tau} = 13$ м общая длина труб в одном потоке:

$$L_{p}'' = N_{p}' l_{T}' = 12 \cdot 13 = 156 \text{ M}$$

7. Время пребывания парогазовой смеси в реакционном змеевике

Определим время пребывания смеси в реакционном змеевике по уравнению:

$$\tau_{\rm obst} = \frac{L_{\rm p}''}{w_{\rm cp}}$$

где w_{cp} — средняя линейная скорость газа в реакционном змеевике, м/с.

Для определения величины w_{ср} сделаем предварительные вычисления.

Массовая скорость парогазовой смеси в реакционном змеевике:

$$U = \frac{4 (G + Z)}{3600 m \pi d_{\rm B}^2} = \frac{4 (10\ 000\ +\ 2000)}{3600 \cdot 2 \cdot 3, 14 \cdot 0, 124^2} = 138\ {\rm kr/(M^2 \cdot c)}$$

На основании литературных данных [4, с. 57] перепад давления $\Delta P_{\rm p}$ в реакционном (радиантном) змеевике равен $245 \cdot 10^3$ — $343 \cdot 10^3$ Па.

Давление P_{κ} на выходе из реактора в большинстве случаев равно 127·10³—196·10³ Па,

Примем $\Delta P_{\rm p} = 335 \cdot 10^3 \, \Pi a$ и $P_{\kappa} = 130 \cdot 10^3 \, \Pi a$. Тогда давление в начале змеевика будет равно:

$$P_{\rm H} = P_{\kappa} + \Delta P_{\rm p} = 130 \cdot 10^3 + 335 \cdot 10^3 = 465 \cdot 10^3$$
 IIa

Плотность парогазовой смеси в начале реакционного змеевика: а) при нормальных условиях

$$\rho_0' = \frac{M_{\text{BX}}}{22,4} = \frac{32,7}{22,4} = 1,46 \text{ Kr/M}^3$$

где $M_{\rm BX} = 32,7$ — средняя молекулярная масса парогазовой смеси на входе в змеевик печи (в начале реакционного змеевика она будет такой же, поскольку реакция пиролиза еще не началась).

б) при T_н = 873 К и P_н = 465 · 10³ Па

$$\rho_{\rm H} = \rho_0' \frac{T_0 P_{\rm H}}{T_{\rm H} P_0} = 1,46 \frac{273 \cdot 465 \cdot 10^3}{873 \cdot 98,1 \cdot 10^3} = 2,17 \text{ Kr/M}^3$$

Плотность парогазовой смеси в конце реакционного змеевика: а) при нормальных условиях

$$\rho_0'' = \frac{M_{\text{BMX}}}{22.4} = \frac{22.6}{22.4} = 1.01 \text{ KG/M}^3$$

где $M_{\text{вых}} = 22,6$ — средняя молекулярная масса парогазовой смеси на выходе из реакционного змеевика.

б) при $T \doteq 1063$ К и $P_{\rm s} = 130 \cdot 10^3$ Па

$$\rho_{\kappa} = \rho_0'' \frac{T_0 P_{\kappa}}{T P_0} = 1.01 \frac{273 \cdot 130 \cdot 10^3}{1063 \cdot 98.1 \cdot 10^3} = 0.344 \text{ kr/m}^3$$

Средняя плотность смеси в реакционном змеевике:

$$\rho_{\rm cp} = \frac{\rho_{\rm H} + \rho_{\rm K}}{2} = \frac{2.17 + 0.344}{2} = 1,257 \text{ Kr/m}^2$$

Линейная скорость парогазовой смеси:

а) в начале реакционного змеевика

$$w_{\rm H} = \frac{u}{\rho_{\rm H}} = \frac{138}{2,17} = 63,5 \,\,{\rm M/c}$$

б) в конце реакционного змеевика

$$w_{\kappa} = \frac{u}{\rho_{\kappa}} = \frac{138}{0,344} = 401 \text{ M/c}$$

в) средняя скорость

$$w_{\rm cp} = \frac{w_{\rm H} + w_{\rm K}}{2} = \frac{63.5 + 401}{2} = 232$$
 M/C

Подставив в формулу числовые значения величин, получим:

$$\tau_{o6m} = \frac{156}{232} = 0,674c$$

Полученная величина не превышает ранее принятого значения $\tau_{obm} = 0,7$ с, поэтому пересчета не делаем.

8. Потери напора в реакционном (радиантном) змеевике печи

Выше была принята величина потерь напора в реакционном змеевике печи $\Delta P_{\rm p} = 335 \cdot 10^3$ Па. Проверим правильность принятия величины $\Delta P_{\rm p}$, вычислив ее значение по формуле:

$$\Delta P_{\rm p} = \lambda \frac{l_{\rm 3KB}}{d_{\rm B}} \cdot \frac{u^2}{2\rho_{\rm CD}}$$

где λ — коэффициент гидравлического сопротивления; *l*_{экв} — эквивалентная длина труб одного потока радиантного змеевика, м.

Для определения величины коэффициента гидравлического сопротивления подсчитаем числовое значение критерия Рейнольдса:

$$\mathrm{Re} = \frac{w_{\mathrm{cp}}d_{\mathrm{B}}}{v_{\mathrm{cm}}}$$

где v_{см} — кинетическая вязкость парогазовой смеси в реакционном змеевике, м²/с.

Предварительно определим необходимые для расчета v_{см} среднюю температуру парогазовой смеси в реакционном змеевике

$$T_{\rm cp} = \frac{T_{\rm H} + T}{2} = \frac{873 + 1063}{2} = 968 \,\mathrm{K}$$

и среднюю молекулярную массу смеси углеводородных газов (см. табл. 3.2 и 3.3)

$$M_{\rm cp} = \frac{M_{\rm c} + M_x}{2} = \frac{39.2 + 23.8}{2} = 31.5$$

С целью некоторого упрощения расчета, имея в виду, что средняя молекулярная масса углеводородных газов в реакционном змеевике соответствует этану ($M_{\rm cp}=31,5\approx30$), по таблице [21, с. 57] экстраполяцией находим кинематическую вязкость этих газов при 968 К: $v_{\rm r}=71\cdot10^{-6}~{\rm m}^2/{\rm c}.$

Кинематическая вязкость водяного пара при 968 К по таблице [21, с. 56]: $v_{\rm B,\ \pi} = 120,9\cdot 10^{-6} \ {\rm M}^2/{\rm c}.$

Среднее содержание водяного пара в парогазовой смеси (см. табл. 3.4):

$$y'_{cp} = \frac{y'_{\pi} + y''_{\pi}}{2} = \frac{0,3028 + 0,2090}{2} = 0,2559$$
 мол. доли

Тогда кинематическая вязкость парогазовой смеси в реакционном змеевике:

$$\mathbf{v}_{\rm cM} = \frac{1}{\frac{1 - y'_{\rm cp}}{v_{\rm r}} + \frac{y'_{\rm cp}}{v_{\rm B, \ \Pi}}} = \frac{1}{\frac{1 - 0.2559}{71 \cdot 10^{-6}} + \frac{0.2559}{120.9 \cdot 10^{-6}}} = 78.9 \cdot 10^{-6} \ \text{m}^2/\text{c}$$

Критерий Рейнольдса:

$$\operatorname{Re} = \frac{232 \cdot 0.124}{78.9 \cdot 10^{-6}} = 364\,000$$

По графику [8, с. 445; 64, с. 102] при Re = 364 000 и относительной шероховатости $\frac{l}{d_{\rm B}} = \frac{0,0001}{0,124} = 0,0008$, где l = 0,0001 м — среднее значение высоты выступов шероховатости, принимаемое по [8, с. 62, табл. 111-2], найдем: $\lambda = 0,025$.

Определим эквивалентную длину труб одного потока радиантного змеевика:

$$l_{\mathfrak{s}\mathsf{k}\mathfrak{B}} = N'_{p}l'_{\mathsf{T}p} + (N'_{p} - 1)\psi d_{\mathsf{B}}$$

где ψ — коэффициент, зависящий от типа соединения труб. По таблице [40, с. 131] принимаем ψ = 50. Тогда

 $l_{3KB} = 12 \cdot 13 + (12 - 1) \cdot 50 \cdot 0,124 = 224 \text{ M}$

Подставив в формулу числовые значения величин, получим:

$$\Delta P_{\rm p} = 0.025 \, \frac{224}{0.124} \cdot \frac{138^2}{2 \cdot 1.257} = 343 \cdot 10^3 \,\, \Pi a$$

Полученная величина $\Delta P_{\rm p} = 343 \cdot 10^3$ Па мало отличается от ранее принятой величины $\Delta P_{\rm p} = 335 \cdot 10^3$ Па, поэтому повторного расчета не делаем.

РЕАКТОР УСТАНОВКИ КАТАЛИТИЧЕСКОГО КРЕКИНГА в псевдоожиженном слое катализатора

Рассчитать реактор установки каталитического крекинга вакуумного дистиллята в псевдоожиженном слое — технологическую схему см. [54, с. 263, 264] — при следующих исходных данных: производительность реактора по свежему сырью $G_c = 250$ т/ч; количество рециркулирующего каталитического газойля составляет 28,4 масс. % на свежее сырье. Режим процесса: температура крекинга $T_p = 758$ K, массовая кратность циркуляции катализатора по свежему сырью 7:1 [54, с. 153].

Характеристики сырья и продуктов крекинга по лабораторным данным приводятся в табл. 3.9.

Технология процесса каталитического крекинга в псевдоожиженном («кипящем») слое, конструктивное оформление и основы расчета реакторов, регенераторов и систем транспорта катализатора достаточно подробно освещены в литературе [5, 54, 83, 87—90].

Успехи, достигнутые в СССР по созданию новых цеолитсодержащих катализаторов, позволяют перевести действующие установки каталитического крекинга на цеолитсодержащие катализаторы. Проектирование новых установок ориентировано на использование именно этих катализаторов. Некоторые сведения об использовании цеолитсодержащих катализаторов при каталитическом крекинге имеются в литературе [91—93].

Технологический расчет реактора крекинга в псевдоожиженном слое цеолитсодержащего катализатора не отличается от подобного расчета реактора крекинга в псевдоожиженном слое микросферического катализатора.

	Сы	рье	Продукты крекинга			
Показатели	ваку умный	рециркули- рующий	бензин	каталитический газойль		
	дистиллят	газойль		легкий	тяжелый	
Относительная плотность:	0,9100 0,9131 623—773 360 683	0,9330 0,9340 468—773 248	0,7600 0,7641 313—468 105 384	0,9300 0,9330 468—623 200	0,9400 0,9420 623—773 340	

Ниже приводится технологический расчет реактора установки каталитического крекинга в псевдоожиженном слое микросферического аморфного алюмосиликатного катализатора.

В задачу расчета реактора входит определение его основных размеров — диаметра и высоты, температуры сырья при подаче его в узел смешения с катализатором, температуры катализатора на выходе из реактора, размеров распределительных устройств для парокатализаторного потока, числа циклонов и их гидравлического сопротивления.

Исходными данными для расчета реактора являются: производительность реактора по свежему сырью и количество рециркулирующего газойля; характеристика сырья и продуктов крекинга (плотность, пределы выкипания, вязкость и др.); температура крекинга; кратность циркуляции катализатора по свежему сырью; выход продуктов реакции (по лабораторным или заводским данным).

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РЕАКТОРА

1. Составляют материальный баланс реактора. Для этого, зная производительность реактора по свежему сырью и выходы продуктов крекинга в долях от свежего сырья, находят часовые количества газа, бензина, легкого и тяжелого газойлей, кокса. С учетом рециркулирующего газойля определяют загрузку реактора.

Результаты расчета сводят в таблицу.

2. Определяют количество катализатора и расход водяного пара.

3. Составляют тепловой баланс реактора, из которого определяют температуру сырья на входе в узел смешения с катализатором.

Таблица 3,9

4. Определяют размеры реактора: диаметр корпуса и десорбера, высоту аппарата. При этом высоту псевдоожиженного слоя находят делением объема реакционного пространства на площадь поперечного сечения реактора; высоту сепарационного пространства рассчитывают в зависимости от скорости паров, проходящих через свободное сечение реактора над кипящим слоем. Высоты остальных частей реактора (десорбера и др.) принимаются конструктивно в соответствии с практическими данными.

5. Определяют давление у основания зоны отпарки (десорбера) и температуру катализатора на выходе из нее.

6. Выбирают конструкцию распределительного устройства парокатализаторного потока и рассчитывают его геометрические размеры.

7. Проводят поверочный расчет циклона предварительно выбранного типа. Целью этого расчета является определение числа циклонов, их гидравлического сопротивления и эффективности улавливания катализаторной пыли.

РАСЧЕТ

1. Материальный баланс

Материальный баланс процеса каталитического крекинга обычно известен по лабораторным или промышленным данным. Зададимся глубиной превращения 75 объемн.% на исходное сырье [54, с. 7, 8] и определим выходы продуктов крекинга.

Рис. 3.3. График для определения выхода кокса.

Отношение количества сырья к количеству циркулирующего газойля:

$$\kappa = \frac{G_{\rm c}}{0.284G_{\rm c}} = \frac{250}{0.284 \cdot 250} = 3,52$$

По графику (рис. 3.2) [94] определим выход бензина $v_6 = 54$ объемн. % на свежее сырье или в массовых процентах:

$$x_6 = \frac{\rho_{277\,6}^{293} v_6}{\rho_{277\,c}^{293}}$$

где x_6 — выход бензина, масс. % на свежее сырье; ρ_{2776}^{233} , ρ_{277c}^{293} — относительные плотности соответственно бензина и свежего сырья.

Получим:

 $x_6 = \frac{0.760 \cdot 54}{0.910} = 45,1$ масс.% на свежее сырье

Выход кокса в зависимости от заданной глубины превращения по графику (рис. 3.3) [94] составляет $x_{\kappa} = 8,7$ масс.% на свежее сырье.

Выход газа при каталитическом крекинге вакуумного дистиллята, выкипающего в пределах 623—773 К, примем равным $x_r = 17,7$ масс. % на свежее сырье [84, с. 8].

Выход каталитического газойля, который в ректификационной колонне разделяется на легкий и тяжелый, определим по разности:

 $x_{\pi,r} + x_{\tau,r} = 100 - (45, 1 + 8, 7 + 17, 7) =$

= 28,5 масс.% на свежее сырье

Для определения выхода бензина, газа и кокса в зависимости от режимных показателей процесса можно воспользоваться и другими данными [90].

Расчет выхода продуктов крекинга приводится в табл. 3.10.

		Состав		
. Потоки	Количество, т/ч	масс. % на свежее сырье	масс. % на загрузку реактора	
Приход	250,00	100,0	77,9	
Сырье — вакуумный дистиллят 623 —	71,0	28,4	22,1	
—773 К	321,0	128,4	100,00	
Газ	44,25	17,70	13,78	
	112,75	45,10	35,13	
	39,25	15,70	12,22	
	32,00	12,80	9,97	
	21,75	8,70	6,80	
	250,00	100,00	77,90	
	71,00	28,40	22,1	
	321,00	128,4	100,00	

Таблица 3.10
2. Количество циркулирующего катализатора и расход водяного пара

При кратности циркуляции катализатора R = 7:1 количество циркулирующего катализатора:

$$G_{\rm w} = RG_{\rm c} = 7 \cdot 250 = 1750 \, {\rm T/Y}$$

Определим расход водяного пара.

Для регулирования плотности смеси паров сырья с катализатором в транспортную линию подается водяной пар в количестве 2-6 масс.%, считая на загрузку реактора [54, с. 149; 95, 96]. На отпарку продуктов крекинга с закоксованного катализатора в зону отпарки подается 5-10 кг пара на 1 т катализатора [54, с. 152].

Принимаем расход водяного пара для регулирования плотности смеси равным 4 масс. % на сырье или

$$G_{r1} = 250 \cdot 0.04 = 10 \text{ T/Y} = 10\,000 \text{ KG/Y}$$

На катализаторе после регенерации остается кокс в количестве 0,2—0,5 масс. %, считая на свежий катализатор. Примем содержание остаточного кокса на регенерированном катализаторе равным 0,4 масс. %, что составит:

$$G_{\text{o. }\kappa} = \frac{0.4 \cdot 1750}{100} = 7 \text{ T/H}$$

Количество закоксованного катализатора на выходе из реактора:

$$G_{3,\kappa} = G_{\kappa} + G_{0,\kappa} + 21,75 = 1750 + 7 + 21,75 = 1778,75 \text{ T/Y}$$

Приняв расход водяного пара на отпарку 1 т закоксованного катализатора равным 7 кг, найдем часовой расход водяного пара:

$$G_{g_1} = 7G_{3,\kappa} = 7 \cdot 1778,75 = 12\,430 \text{ kr/y}$$

3. Тепловой баланс реактора

Уравнение теплового баланса реактора в общем виде:

$$Q_{c} + Q_{u1} + Q_{\kappa1} + Q_{n1} + Q_{n1} + Q_{o.\kappa} = Q_{r} + Q_{6} + Q_{n.r} + Q_{r.r} + Q_{\kappa2} + Q_{\kappa} + Q_{u2} + Q_{n2} + Q_{n2} + Q_{p} + Q_{u}$$

Левая часть уравнения отвечает приходу тепла (в кВт): Q_c — с сырьем; $Q_{q,1}$ — с рециркулирующим каталитическим газойлем; $Q_{\kappa 1}$ — с циркулирующим катализатором; $Q_{\sigma 1}$ — с водяным паром, подаваемым в транспортную линию; $Q_{d,1}$ — с водяным паром, подаваемым на отпарку углеводородов с катализатора; $Q_{o.\kappa}$ — с остаточным коксом.

Правая часть уравнения отвечает расходу тепла (в кВт): Q_r — с образовавшимися газами крекинга; Q_6 — с парами бензина; $Q_{\pi,r}$ — с парами легкого газойля; $Q_{\pi,r}$ — с парами тяжелого газойля; $Q_{\kappa,2}$ — с циркулирующим катализатором; Q_{κ} — с образовавшимся при крекинге коксом; $Q_{\mu,2}$ — с рециркулирующим газойлем;

 $Q_{\pi,2}$ — с водяным паром, подаваемым на отпарку углеводородов с катализатора; $Q_{\pi,2}$ — с водяным паром, подаваемым в транспортную линию; Q_p — на реакции каталитического крекинга; Q_{π} — потери тепла в окружающую среду.

Из теплового баланса реактора определим температуру сырья при подаче его в узел смешения с катализатором.

Ввиду того, что полный технологический расчет установки каталитического крекинга мы не производим, по литературным и промышленным данным принимаем следующие температуры потоков на входе в реактор: $T_{n,l} = 561$ К — температура рециркулирующего каталитического газойля; $T_{\kappa 1} = 873$ К — температура катализатора [54, с. 266]; $T_{n\,1} = 873$ К — температура водяного пара, подаваемого в транспортную линию (с давлением $\pi = 0,46 \cdot 10^6$ Па) [58, с. 107]; $T_{\pi\,1} = 783$ К — температура водяного пара [97], подаваемого в отпарную зону реактора при давлении $0,46 \cdot 10^6$ Па.

Рассчитаем энтальпию потоков. Предварительно определим состав крекинг-газа.

При проектировании промышленных установок каталитического крекинга пользуются данными хроматографического анализа газа, полученного при крекинге сырья в лаборатории. При отсутствии лабораторных данных можно пользоваться литературными [54, с. 210; 82, с. 121; 83, с. 125].

В табл. 3.11 приведен примерный состав крекинг-газа.

Таблица 3.11

Kausan	м. Выход		Количество			
Компоненты	1	масс. % на сырье	кг/ч	кмоль/ч		
$\begin{array}{c} H_2S & & \\ H_2 & & \\ CH_4 & & \\ C_2H_4 & & \\ C_2H_4 & & \\ C_3H_6 & & \\ C_3H_6 & & \\ C_3H_6 & & \\ C_4H_8 & & \\ C_4H_8 & & \\ C_4H_10 & & \\ C_4H_10 & & \\ C_4H_10 & \\ C_4H$	34 2 16 28 30 42 44 56 58	0,85 0,20 2,31 0,57 1,25 3,22 2,43 3,95 2,92	2 125 500 5 770 1 424 3 120 8 050 6 070 9 868 7 323 4 200	62,5 250,0 361,0 51,0 104,0 191,8 138,0 176,4 126,3		

Ввиду низкого давления в реакторе влияние давления на энтальпию не учитывается. Зная состав крекинг-газа, можно найти энтальпию компонентов и затем подсчигать энтальпию смеси по правилу смешения. В табл. 3.12 приведены энтальпии компонентов газа в интервале температур 673—773 К. Например, энтальпия сероводорода при 673 К равна произведению удельной энтальпии, определяемой по справочникам, на массовую долю последнего в крекинг-газе:

Таблица 3.12

			Энтальпи	ія, кДж/к г	
Компоненты	Состав ^х і,	67	3 Қ	7	73 K
	масс. %	q_i^{Γ}	$q_i^{\Gamma} x_i$	$q_{i}^{\mathbf{r}}$	$q_i^{\Gamma} x_i$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,80 1,13 13,07 3,22 7,07 18,22 13,76 22,28 16,45 100,00	432,2 5798,0 1127,0 858,6 988,0 853,8 967,3 896,0 967,3 	20,74 65,50 147,20 27,66 69,82 155,60 133,00 199,70 159,20 ~978,4	548,3 7255,0 1495,0 1143,0 1323,0 1139,0 1293,5 1193,0 1290,0	26,3 82,0 195,4 36,8 93,5 207,4 177,8 266,2 212,2 ~1297,6

Сумма энтальпий компонентов равна энтальпии крекинг-газа при данной температуре. Путем интерполяции можно определить энтальпию газа при промежуточных температурах.

Энтальпия углеводородных паров (в кДж/кг) определяется по таблицам, приведенным в приложении, или по формуле [62, с. 18]:

$$q_T^{n} = 209,2 - 130,25\rho_{288}^{288} + (0,543 - 0,134\rho_{288}^{288})T + (0,00234 - 0,00059\rho_{288}^{288})T^2$$

Для определения энтальпии жидких углеводородов (в кДж/кг) также можно воспользоваться таблицами или формулой [62, с. 18]:

$$q_T^{\text{xx}} = \frac{1}{\sqrt{\rho_{288}^{288}}} (0,0017T^2 + 0,762T - 334,3)$$

где ρ_{288}^{283} — относительная плотность жидкого углеводорода: *Т* — температура потока, К.

Энтальпии углеводородных паров и жидкостей, а также катализатора и кокса подсчитаны и приведены в табл. 3.13.

Энтальпия катализатора и кокса подсчитана по формуле:

$$q_T^{\kappa} = cT$$

где q_T^{κ} — энтальпия катализатора или кокса, кДж/кг; с — теплоемкость катализатора или кокса, кДж/(кг · К); Т — температура катализатора или кокса, К.

Теплоемкость катализатора равна 1,05—1,13 кДж/(кг·К) [98, 99], теплоемкость кокса 1,65—2,51 кДж/(кг·К) [100, с. 36; 101, с. 252].

Теплоемкость катализатора и кокса принята соответственно равной 1,13 и 2,51 кДж/(кг·К).

Таблица 3.13

Обозначение потока	Состояние	Температу ра, К	Количество, кг/ч	Энтальпия, кДж/кг	Количество тепла, кВт
Приход					
Qc Qu1 Qri Qni Qni Qni Qo.к Cymma	Ж Ж П П Т	T _c 561 873 873 783 873 -	250 000 71 000 1 750 000 10 000 12 430 7 000 —	9c 648,0 678,4 3708,0 3510,0 1506,0 —	$\begin{array}{c} Q_{\rm c} \\ 12\ 790 \\ 329\ 500 \\ 10\ 300 \\ 12\ 130 \\ 2\ 930 \\ Q_{\rm c} + 367\ 550 \end{array}$
Расход Qг Q6 Qл.г Qт.г Qк Qк	Г П П Т Т П П	758 758 758 758 758 758 758 758 758 758	$\begin{array}{r} 44\ 250\\ 1\ 12\ 750\\ 39\ 250\\ 32\ 000\\ 1\ 750\ 000\\ 28\ 750\\ 71\ 000\\ 10\ 000\\ 12\ 430\\ 250\ 000\\ \end{array}$	1252,0 1162,0 1102,5 1097,0 548,8 1219,0 1102,5 3455,0 205,2	15 380 36 330 12 020 9 755 26 650 9 720 21 720 9 600 11 920 14 250
Q _п	Приним —	лается .	-		815 409 160

Энтальпия водяного пара определяется по диаграмме *i*—S [102] для водяного пара или по таблицам ВТИ в зависимости от температуры и давления. Температуру пара принимают, исходя из диапазона изменения температур в реакторе и охлаждающих змеевиках регенератора.

Реакция каталитического крекинга сопровождается поглощением тепла. На рис. 3.4 [103, с. 170] приведены примерные данные о тепловом эффекте реакции каталитического крекинга в зависимости от глубины превращения в массовых процентах.

Глубина превращения определяется по табл. 3.10:

$$100 - (15,7 + 12,8) = 71,5$$
 mace.%

При глубине превращения 71,5 масс.% величина теплового эффекта составит 205,2 кДж на 1 кг сырья.

Из теплового баланса (табл. 3.13) имеем:

$$Q_{\rm c} = 409\,140 - 367\,550 = 41\,590\,\,{\rm kBt}$$

Энтальпия сырья:

$$q_{\rm c} = \frac{3600 Q_{\rm c}}{G_{\rm c}} = \frac{3600 \cdot 41\,590}{250\,000} = 600$$
 кДж/кг

Чтобы по найденной энтальпии определить температуру сырья, необходимо знать его фазовое состояние.

Интервал температуры, в котором сырье будет испаряться в низу реактора:

$$\Delta T = T_{\rm p} - T_{\rm c}$$

Величину интервала температуры ΔT можно определить из формулы [96]

$$1 - e = 10^4 (140 \Delta T - 0.33 \Delta T^2)$$

где 1 — *е* — массовая доля жидкого остатка при однократном испарении сырья.

Предположим, что сырье подается в узел смешения в жидком виде, тогда доля отгона e = 0 и из двух действительно ΔT уравнения во внимание примем наименьшее числовое значение, равное $\Delta T = 91$ К. При этом предельное значение температуры, при которой сырье практически находится еще в жидком состоянии, окажется равным:

 $T_{\rm mp, c} = 758 - 91 = 667 \text{ K}$

Если температура сырья будет выше 667 К, то произойдет частичное его испарение.

В соответствии с энтальпией сырья температура $T_c = 540$ К. (Приложение 2). Следовательно, сырье подается в узел смешения в жидком состоянии.

Температура сырья в промышленных установках находится в пределах 473—633 К [54, с. 153].

4. Размеры реактора

Площадь поперечного сечения реактора равна:

$$S = \frac{V}{3600w}$$

где V — объем паров, проходящих через свободное сечение реактора, м³/ч; w — допустимая скорость паров в свободном сечении реактора, м/с.

Величину V определим по формуле:

$$V = \frac{22, 4 \sum \frac{G_i}{M_i} T_{\rm p} \cdot 0, 1 \cdot 10^6}{273\pi}$$

где $\sum \frac{G_i}{M_i}$ — количество паровой смеси в реакторе, кмоль/ч; T_p — температура в реакторе, К; π — абсолютное давление в реакторе

Рис. 3.4. График для определения теплового эффекта реакции каталитического крекинга.

над псевдоожиженным слоем, принимаемое равным 0,2·10⁶ Па (2 ат).

Для расчета величины $\sum \frac{G_i}{M_i}$ необходимо определить среднюю молекулярную массу крекинг-газа. Из табл. 3.11 имеем

$$M_{\rm r} = \frac{44\,200}{1461,0} = 30,3$$

и из табл. 3.13:

$$\sum \frac{G_i}{M_i} = \frac{44\,200}{30,3} + \frac{112\,750}{105} + \frac{39\,250}{200} + \frac{32\,000}{340} + \frac{71\,000}{248} + \frac{10\,000}{18} + \frac{12\,430}{18} = 4380 \text{ кмоль/ч}$$

Тогда

$$V = \frac{22,4 \cdot 4380 \cdot 758 \cdot 0,1 \cdot 10^6}{273 \cdot 0,2 \cdot 10^6} = 136\ 210\ \text{m}^3/\text{y}$$

Этот объем паров является наибольшим, так как суммарный объем всех получающихся продуктов крекинга больше объема сырья.

Для установок каталитического крекинга с псевдоожиженным слоем катализатора средняя скорость движения газов в свободном (над псевдоожиженным слоем) сечении реактора рекомендуется принимать равной 0,63 м/с [87, с. 150]. По другим литературным данным эта скорость может изменяться от 0,5 м/с [104, с. 216] до 0,89 м/с [54, с. 150]. Примем w = 0,85 м/с. Тогда площадь поперечного сечения реактора:

$$S = \frac{136\ 200}{3600 \cdot 0.85} = 44,5\ \text{m}^2$$

Диаметр реактора:

$$D = 1,128 \sqrt{S} = 1,128 \sqrt{44,5} \approx 7,5 \text{ M}$$

На существующих промышленных установках применяются реакторы диаметром от 2,5 до 12 м.

Диаметр зоны отпарки (десорбера) найдем после того, как будем знать давление у верхнего основания десорбера

Полная высота реактора (рис. 3.5).

$$H_{\mathfrak{n}} = h + h_1 + h_2 + h_3 + h_4 + h_5$$

где h — высота псевдоожиженного слоя, м; h_1 — высота переходной зоны от псевдоожиженного слоя до зоны отпарки (распределительного устройства), м; h_2 — высота зоны отпарки (конструктивно принимается равной 6 м); h_3 — высота сепарационной зоны, м; h_4 — часть высоты аппарата, занятая циклонами (зависит от размеров циклонов), — принимаем $h_4 = 6$ м; h_5 — высота верхнего полушарового днища, равная 0,5 D = 3,75 м. Высота псевдоожиженного слоя в промышленных реакторах составляет 4,5—7,0 м [54, с. 149]. В нашем случае ее можно рассчитать по формуле:

 $h = \frac{V_{\rm p}}{S}$

 $V_{\rm p} = \frac{G_{\rm K, p}}{Q_{\rm R, p}}$

Здесь V_p — объем реакционного пространства (в м³):

где $G_{\kappa, p}$ — количество катализатора в реакционном пространстве реактора, кг; $\rho_{n. c}$ — плотность псевдоожиженного слоя катализатора, обычно равная 450—500 кг/м³ (примем $\rho_{n. c}$ = 500 кг/м³).

Величина G_{к. р} равна:

$$G_{\kappa, p} = \frac{G_c}{n_{\pi}}$$

 α'

где G'_{c} — загрузка реактора (свежее сырье + рециркулирующий газойль), кг/ч; $n_{\rm A}$ — массовая скорость подачи сырья, ч⁻¹. Эта скорость изменяется для тяжелого сырья в пределах 1,1—2,3 ч⁻¹ [82, с. 114], причем бо́льшие значения применяются в случае рециркуляции; примем $n_{\rm A} = 2,3$ ч⁻¹.

Тогда

$$G_{\text{K,p}} = \frac{250\ 000\ +\ 71\ 000}{2,3} = 139\ 500\ \text{Kr}$$

 $V_{\text{p}} = \frac{139\ 500}{500} = 279\ \text{M}^{3}$
 $h = \frac{279}{44.5} = 6,24\ \text{M}$

Если полученная расчетом высота псевдоожиженного слоя не укладывается в указанные выше пределы, следует изменить величину массовой ско-

рости подачи сырья или значение линейной скорости паров в допустимых пределах и повторить расчет.

Высота переходной зоны h₁:

$$h_1 = h_1' + h_{\kappa}$$

где h_1' — высота цилиндрической части переходной зоны; h_{κ} — высота ее конической части.

Примем высоту переходной зоны равной $h_1 = 7$ м. Величины h_1 и h_{κ} найдем после определения диаметра десорбера.

Процесс десорбции продуктов абсорбированных катализатором заключается в вытеснении углеводородных паров как из объема между частицами катализатора, так и с поверхности катализатора

Рис. 3.5. Схема для расчета рабочей высоты реактора

водяным паром, который заполняет эти пространства, — подробнее об этом см. [105, с. 113].

Площадь поперечного сечения десорбера:

$$S_{\rm g} = \frac{V_{\rm g}}{3600 \, w_{\rm g}}$$

где V_{π} — объем паров, проходящих через свободное сечение десорбера, м³/ч; w_{π} — линейная скорость паров в расчете на полное сечение десорбера, которая может находиться в пределах 0,3 0,9 м/с.

Наибольший объем паров будет в верхней части десорбера. Величина V_д рассчитывается по формуле:

$$V_{\rm g} = \frac{22,4 \sum \frac{G_i}{M_i} T_{\rm p} \cdot 0,1 \cdot 10^6}{273\pi_{\rm p}}$$

где $\sum \frac{G_i}{M_i}$ — количество паровой смеси в десорбере, кмоль/ч; $\pi_{\rm B}$ — давление в реакторе в верхней части десорбера, Па.

Количество паровой смеси в десорбере равно:

$$\sum \frac{G_i}{M_i} = \frac{G_{\pi}}{M_{\pi}} + \frac{G_{\pi 1}}{18}$$

где $G_{\rm m}$ — количество паров углеводородов, уносимых с катализатором в десорбер, кг/ч; $M_{\rm m}$ — средняя молекулярная масса уносимых паров углеводородов; $G_{\rm g1}$ — количество водяного пара, подаваемого в десорбер, кг/ч.

Количество углеводородных паров, заключенных в объеме между частицами катализатора и адсорбированных на поверхности циркулирующего катализатора равно:

 $G_{\mathfrak{n}} = y_{\mathfrak{n}} G_{\mathfrak{s. \kappa}}$

Здесь *у*_п — доля углеводородных паров, переносимых с потоком катализатора, рассчитываемая по формуле [106]:

$$y_{\pi} = \frac{\rho_{\kappa} - \rho_{\pi, c}}{\rho_{\pi, c} \rho_{\kappa}} \rho_{\pi}$$

где $\rho_{\kappa} = 2400 \text{ кг/m}^3$ — плотность материала катализатора [82, с. 40]; ρ_{π} — плотность адсорбированных паров углеводородов и газообразных продуктов в условиях температуры и давления в верхней части десорбера, кг/м³.

Если принять среднюю молекулярную массу $M_{\rm II}$ адсорбированных углеводородных паров и газообразных продуктов равной средней молекулярной массе $M_{\rm II}$ крекинг-газа, то при нормальных условиях имеем:

$$\rho_{\pi, o} = \frac{M_r}{22,4} = \frac{30,3}{22,4} = 1,35 \text{ kr/m}^3$$

В рабочих условиях для верхней части десорбера

$$\rho_{\rm n} = \rho_{\rm n,0} \frac{T_0 \pi_{\rm B}}{T_{\rm B} \pi_0}$$

при этом $T_{\rm B} = T_{\rm p} = 758$ К, а давление в верхней части десорбера равно:

$$\pi_{\rm B} = \pi + (h + h_1) \rho_{\rm n. c} g =$$

= 0,2 \cdot 10⁶ + (6,24 + 7) \cdot 500 \cdot 9,81 = 0,27 \cdot 10⁶ \Pi a

Тогда

$$\rho_{\rm n} = 1,35 \frac{273 \cdot 0,27 \cdot 10^6}{758 \cdot 0,1 \cdot 10^6} = 1,32 \text{ Kr/M}^3$$
$$y_{\rm n} = \frac{2400 - 500}{500 \cdot 2400} \cdot 1,32 = 0,0021$$
$$G_{\rm n} = 0,0021 \cdot 1\,778\,750 = 3730 \text{ Kr/H}$$

а величина

$$\sum \frac{G_i}{M_i} = \frac{3730}{30,3} + \frac{12\,430}{18} = 813$$
 кмоль/ч

Подставив в формулу для расчета объема газов и паров все известные величины, получим:

$$V_{\rm m} = \frac{22,4 \cdot 813 \cdot 758 \cdot 0,1 \cdot 10^6}{273 \cdot 0,27 \cdot 10^6} = 18\,800\,\,{\rm m}^3/{\rm q}$$

Примем линейную скорость паров в расчете на полное сечение десорбера равной $w_{\pi} = 0.74$ м/с.

Тогда

$$S_{\rm g} = \frac{18\,800}{3600 \cdot 0.74} = 7.1 \ {\rm m}^2$$

Диаметр десорбера

$$D_{\rm m} = 1,128 \ \sqrt{S_{\rm m}} = 1,128 \ \sqrt{7,1} = 3 \ {\rm m}$$

Принимая, что угол образующей конуса с вертикалью составляет 45°, и зная диаметр реактора (7,5 м), геометрически легко найти высоту конического перехода $h_{\kappa} = 2,25$ м. Получим:

$$h'_1 = h_1 - h_{\kappa} = 7 - 2,25 = 4,75$$
 M

Высота сепарационной зоны h₃ рассчитывается по формуле [107]:

$$h_3 = 0.85w^{1,2}(7,33 - 1,2 \lg w) = 0.85 \cdot 0.85^{1,2}(7,33 - 1,2 \lg 0.85) = 5.2 \text{ M}$$

где *w* — скорость паров в свободном сечении реактора, м/с.

Тогда

$$H_{\rm n} = 6,24 + 7 + 6 + 5,2 + 6 + 3,75 = 34,19$$
 M

Высота цилиндрической части корпуса:

$$H_{\mu} = h + h'_1 + h_3 + h_4 = 6,24 + 4,75 + 5,2 + 6 = 22,19$$
 M

В промышленных реакторах отношение высоты цилиндрической части корпуса к диаметру $H_u/D = 1,4 \div 4$ [54, с. 146]. Меньшие значения этого отношения характерны для мощных реакторов. Для нашего случая:

$$\frac{H_{\rm u}}{D} = \frac{22,19}{7,5} = 2,96$$

9 Зак. 100

5. Давление у основания зоны отпарки (десорбера). Температура катализатора на выходе из десорбера

При известной высоте реактора можно подсчитать давление у основания десорбера по следующему выражению:

$$\pi_{\rm H} = \pi + (h + h_1 + h_2) \rho_{\rm n. c} g$$

где π — давление над псевдоожиженным слоем, Па; h, h_1 , h_2 — соответственно высоты псевдоожиженного слоя, конической части и зоны отпарки, м.

Получим:

$$\pi_{\rm H} = 0.2 \cdot 10^6 + (6.24 + 7 + 6) \cdot 500 \cdot 9.81 = 0.294 \cdot 10^6 \,\,\text{Ta}$$

Чтобы определить температуру катализатора на входе в регенератор, необходимо знать температуру закоксованного катализатора на выходе из десорбера. Поступающий в десорбер перегретый водяной пар (T = 783 K, $\pi = 0.44 \cdot 10^6$ Па) охлаждается, отдавая тепло катализатору, до температуры 758 K, а температура катализатора повышается на величину:

$$\Delta T_1 = \frac{G_{\pi 1} \left(i_{783} - i_{758} \right)}{G_{\kappa} c_{\kappa}}$$

где i_{783} — энтальпия перегретого водяного пара на входе в зону отпарки при T = 783 К и давлении $\pi = 0,46 \cdot 10^6$ Па; i_{758} — энтальпия перегретого водяного пара на верху зоны отпарки (выход) при T = 758 К и давлении $\pi = 0,27 \cdot 10^6$ Па; G_{κ} — количество катализатора, кг/ч; c_{κ} — теплоемкость катализатора; кДж/(кг·К).

Подставив в формулу для расчета ΔT числовые значения величин, получим:

$$\Delta T_1 = \frac{12\,430\,(3510 - 3465)}{1\,750\,000 \cdot 1,13} \approx 0,3 \text{ K}$$

Температура выходящего из зоны отпарки отработанного катализатора:

$$T_{\rm K} = T_{\rm p} + \Delta T_{\rm l} = 758 + 0.3 = 758.3$$
 K

6. Выбор распределительного устройства парокатализаторного потока в реакторе

Суммарное живое сечение распределителей подбирают, исходя из условия сохранения величины линейной скорости подводимого потока; обычно оно составляет 1—2,5% от сечения реактора.

Конструктивно распределитель может быть оформлен в виде трубного пучка или в виде горизонтальных решеток. В нашем примере примем конструкцию распределителя в виде семи горизонтальных решеток (рис. 3.6). Такая конструкция распределителя испытана и описана в литературе [98].

Площадь, занимаемая решетками, должна составлять 60-70% поперечного сечения реактора. При этом решетки хорошо вписы-

226

ваются в сечение реактора. Если принять площадь, занимаемую решетками, равной 60%, то площадь решеток будет равна:

$$F_{\rm p} = 0.6S = 0.6 \cdot 44.5 = 26.7 \text{ m}^2$$

Площадь одной решетки:

$$f_{\rm p} = \frac{F_{\rm p}}{7} = \frac{26,7}{7} = 3,8 \,{\rm m}^2$$

Диаметр решетки:

$$D_{\rm p} = 1,128 \ \sqrt{f_{\rm p}} = 1,128 \ \sqrt{3,8} = 2,2 \ {\rm m}$$

Конструкции газораспределительных решеток описаны в литературе [78, с. 39]. К показателям конструкции газораспределительной решетки относятся: диаметр отверстий.

площадь живого сечения, толщина, шаг размещения отверстий.

Конструкция газораспределительных решеток существенно влияет на качество псевдоожижения катализатора. Увеличение живого сечения газораспределительных решеток, при неизменном диаметре отверстий, а также увеличение диаметра отверстий, при неизменном живом сечении, приводят к ухудшению качества псевдоожиженного слоя. Повышение скорости газа в отверстиях решеток и в связи с этим некоторое увеличение их гидравлического сопротивления оказывают положительное влияние на качество псевдоожижения [108].

Точных расчетных формул для определения необходимого гидравлического сопротивления решетки пока нет. Однако из имеющихся некоторые формулы могут быть рекомендованы [78, с. 39; 108].

Рис. 3.6. Схема распределителя катализатора.

Примем суммарное живое сечение распределителя равным 1% от сечения реактора. Площадь живого сечения распределителя:

$$F_{\rm m} = 0,01S = 0,01 \cdot 44,5 = 0,445 \,{\rm m}^2$$

Живое сечение одной решетки:

$$f_{\rm m} = \frac{F_{\rm m}}{7} = \frac{0,445}{7} = 0,064 \,{\rm M}^2$$

Примем толщину решетки $\delta = 0.02$ м, а диаметр отверстий в решетке $d_0 = 0.02$ м. Тогда число отверстий в решетке будет равно:

$$n_{\rm A} = \frac{4f_{\rm H}}{\pi d_{\rm o}^2} = \frac{4 \cdot 0,064}{3,14 \cdot 0,02^2} = 204$$

Суммарное живое сечение распределителя позволяет опреде лить диаметр ствола, подводящего парокатализаторную смесь (рис. 3.6 и 3.7):

$$D_{\rm ct} = 1,128 \ \sqrt{F_{\rm sc}} = 1,128 \ \sqrt{0,445} \approx 0,75 \ {
m m}$$

Диаметр каждого из семи ответвлений от центрального подводящего ствола:

$$D_{\rm o} = 1,128 \ \sqrt{f_{\rm w}} = 1,128 \ \sqrt{0,064} = 0,285 \ {\rm m}$$

Имея в виду, что рециркулят подается в псевдоожиженный слой катализатора минуя решетки, объем паров на подходе к ре-

Рис. 3.7. Зона отпарки: 1-подводящий ствол; 2-паровой маточник.

решетку, кмоль/ч; $m_{\rm p} = 7$ — число решеток; $\pi_{\rm p}$ — давление в реакторе у решеток, Па.

Количество углеводородных и водяных наров, проходящих через решетку, равно:

$$\sum \frac{G_i}{M_i} = \frac{250\ 000}{360} + \frac{10\ 000}{18} = 1248,8$$
 кмоль/ч

Давление в реакторе у решеток:

$$\pi_{p} = \pi + h \rho_{\pi.c} g = 0.2 \cdot 10^{6} + 6.24 \cdot 500 \cdot 9.81 = 0.23 \cdot 10^{6} \ \Pi a$$

В результате расчета получим:

$$V_{\rm n} = \frac{22.4 \cdot 1248.8 \cdot 758 \cdot 0.1 \cdot 10^6}{3600 \cdot 273 \cdot 7 \cdot 0.23 \cdot 10^6} = 1.34 \, \text{m}^3/\text{c}$$

Скорость паров в отверстиях решетки:

$$w_{o} = \frac{V_{\pi}}{f_{\pi}} = \frac{1,34}{0,064} = 21 \text{ M/c}$$

Гидравлическое сопротивление решеток рассчитаем по формуле [108]:

$$\Delta \pi_{\rm p} = k_1 k_2 [0, 35 + (1 - \varphi)^2] \frac{\rho_{\rm fl}}{2} w_{\rm o}^2$$

где k_1 и k_2 — поправочные коэффициенты, находимые по графикам (рис. 3.8); φ — доля живого сечения решетки; ρ_{π} — плотность паров, кг/м³.

По графикам рис. 3.8 найдем: $k_1 = 1$,6; $k_2 = 1,0$. Доля живого сечения решетки:

$$\varphi = \frac{f_{\pi}}{f_{p}} = \frac{0,064}{3,8} = 0,0168$$

Плотность паров равна:

$$\rho_{\rm n} = \frac{273M_{\rm n}\pi_{\rm p}}{22,4T_{\rm p}\cdot 0,1\cdot 10^6}$$

где $M_{\rm m}$ — средняя молекулярная масса смеси углеводородного и водяного паров.

Среднюю молекулярную массу смеси углеводородного и водяного паров рассчитаем так:

$$M_{\pi} = M_{c}y_{c}' + M_{B,\pi}y_{B,\pi}'$$

где M_c и $M_{\rm B.\,\pi}$ — соответственно средняя молекулярная масса углеводородных паров и молекулярная масса водяного пара; y'_c и $y'_{\rm B.\,\pi}$ — мольные доли сырья и водяного пара, подаваемого для регулирования плотности смеси сырья и катализатора (табл. 3.14).

Таблица 3.14

Потоки	Количество <i>G_i, кг/ч</i>	Молекулярная масса ^М і	Количество $n_i = \frac{G_i}{M_i}, \frac{кмоль}{ч}$	Мольная доля $y'_i = \frac{n_i}{\sum n_i}$
Сырье	250 000	360	693,8	0,5555
Водяной пар	10 000	18	555,0	0,4445
Сумма	260 000	—	1248,8	1,0000

Получим:

 $M_{\pi} = 360 \cdot 0.5555 + 18 \cdot 0.4445 = 207.8$

Таким образом

$$\rho_n \!=\! \frac{273 \cdot 207,\! 8 \cdot 0,\! 23 \cdot 10^6}{22,\! 4 \cdot 758 \cdot 0,\! 1 \cdot 10^6} \!=\! 7,\! 7 \text{ KG/M}^3$$

229

Подставив в формулу для определения гидравлического сопротивления решетки числовые значения величин, получим:

$$\Delta \pi_{\rm p} = 1.6 \cdot 1 \left[0.35 + (1 - 0.0168)^2 \right] \frac{7.7}{2} \cdot 21^2 = 3550 \text{ IIa}$$

Для хорошего парораспределения перепад давления на решетке должен укладываться в пределы 3400—4800 Па [109].

Если в результате расчета получится, что $\Delta \pi_p$ не укладывается в указанные пределы, то необходимо изменить среднюю скорость w газов в свободном сечении реактора (не превышая 0,9 м/с). Если и после этого величина $\Delta \pi_p$ не укладывается в рекомендуемые пределы, то можно изменить массовую скорость n_{π} подачи сырья или кратность циркуляции катализатора.

7. Циклоны реактора

Применяемый на установках каталитического крекинга в псевдоожиженном слое микросферический синтетический катализатор

Рис. 3.9. Циклон НИИОГаз имеет следующий гранулометрический состав [87, с. 150]:

Величина частиц, мкм	Количество, %
≤40	10 - 15
40-80	75 - 65
> 80	15 - 20

Частицы до 20 мкм уносятся парогазовым потоком и улавливаются циклонами.

В табл. 3.15 представлены основные размеры циклонов НИИОГаз (рис. 3.9).

Диаметры циклонов имеют следующую величину (в мм):

Расчет циклонов реактора, который сводится к определению их количества, гидравлического сопротивления и эффективности улавливания катализаторной пыли, здесь не приводится.

Расчет эффективности улавливания катализаторной пыли многоступенчатыми циклонами осуществляется приближенным графоаналитическим методом [110].

Определение количества циклонов и их гидравлического сопротивления должно осуществляться в следующей последовательности.

1. Выбирают тип циклона (табл. 3.15) и его диаметр D.

Таблица 3.15

		Тип циклон	10	
Величина	ЦН-24	ЦН-15	цн-н	
Диаметр выходной трубы D_1 , м	0,6 0,26 1,11 2,11 1,75 4,26 0,25 60	0,6 0,26 0,66 1,74 2,26 2,00 4,56 0,25 105	0,6 0,26 0,48 1,56 2,08 2,00 4,38 0,25 180	

2. Рассчитывают условную скорость v_{ycn} парогазовой смеси, отнесенную к полному поперечному сечению цилиндрической части корпуса циклона [5, с. 378].

3. По известным объему V парогазовой смеси над псевдоожиженным слоем и условной скорости v_{ycn} определяют требуемое суммарное сечение S циклонов.

4. Делением величины S на поперечное сечение одного циклона определяют число циклонов N и суммарную площадь сечения входа парогазовой смеси во все циклоны.

5. Проверяют скорость входа парогазовой смеси в циклон, которая не должна превышать 18 м/с [111].

6. Подсчитывают гидравлическое сопротивление циклона [5, с. 378]; оно не должно превышать 5150 Па [111].

Если полученные величины скорости и гидравлического сопротивления (см. пп. 5-и 6) не соответствуют нормам, то нужно подобрать другой тип циклона или изменить количество циклонов [54].

РЕГЕНЕРАТОР КАТАЛИЗАТОРА УСТАНОВКИ Каталитического крекинга в псевдоожиженном слое

Рассчитать регенератор катализатора установки каталитического крекинга в псевдоожиженном слое — технологическую схему см. [54, с. 263] — при следующих исходных данных: количество циркулирующего катализатора $G_{\rm R} = 2578$ т/ч; максимальный размер частиц катализатора 150 мкм, плотность псевдоожиженного слоя катализатора $\rho_{\rm n. c} = 500$ кг/м³; температура катализатора на выходе из реактора 755 К; количество кокса, поступающего в регенератор с катализатором, $\Delta g = 20$ т/ч; количество кокса на регенерированном катализаторе 0,2 масс.%; количество водяного пара, адсорбированного катализатором, $G_{\rm n} = 4130$ кг/ч; температура в регенераторе $T_{\rm p} = 873$ К; давление над псевдоожиженным слоем $\pi = 0.23 \cdot 10^6$ Па; температура воздуха $T_{\rm B} = 353$ К. Задачей расчета регенератора является определение количества воздуха, потребного для выжига кокса, расхода водяного пара для отпарки дымовых газов с регенерированного катализатора, диаметра регенератора и его основных зон, высоты регенератора и его основных зон, времени пребывания катализатора в регенераторе, количества избыточного тепла, подлежащего отводу,

Закоксованный закоксованный катализатор

Регенерированный катализатор

Рис. 3.10. Регенератор установки каталитического крекинга в псевдоожиженном слое:

1 — первая зона;
 2 — вторая зона;
 3 — цилиндрическая перегородка;
 4 — третья зона;
 5 — распределительная решетка;
 6 — четвертая зона:
 7 — пятая зона;
 8 — циклоны.

и поверхности теплообмена охлаждающего устройства.

Процесс регенерации закоксованного катализатора, конструктивное оформление регенераторов с псевдоожиженным слоем катализатора и основы их расчета рассматриваются в литературе [5, 54, 82, 83, 88, 89, 112].

Температура катализатора не должна превышать 873—883 К, для чего закоксованный катализатор в регенераторе обрабатывают воздухом в две стадии:

 прямоточная продувка воздухом, при которой выгорает 75—80% всего кокса, подлежащего выжигу;

2) противоточная продувка воздухом, при которой почти полностью выжигаются остальные 20—25% кокса; тепло, выделяющееся на этой стадии, во избежание перегрева катализатора отводится и используется для производства водяного пара.

Затем для вытеснения газов регенерации из пор частиц катализатора и из пространства между частицами осуществляется противоточная пропарка нисходящего потока катализатора водяным паром, полученным во второй стадии регенерации.

В соответствии с этим аппарат разделен на пять зон (рис. 3.10).

Первая зона 1 представляет собой кольцеобразное пространство между корпусом аппарата и внутренней цилиндрической перегородкой 3. Снизу находится воздухораспределительная решетка 5, сверху эта зона открыта.

Вторая зона 2 заключена между цилиндрической перегородкой 3 и стенкой третьей (отпарной) зоны. Снизу она ограничена воздухораспределительной решеткой, сверху открыта. В этой зоне осуществляется вторая стадия регенерации, для чего зона секционируется вертикальными перегородками [88, с. 230].

Третья зона 4 представляет собой цилиндрическую полость, в которую катализатор попадает из второй зоны через отверстия.

В этой зоне осуществляется отпарка катализатора. Из третьей (отпарной) зоны регенерированный и пропаренный катализатор в виде взвеси в водяном паре уходит по катализаторопроводу в реактор.

Четвертая зона 6 располагается под распределительной решеткой.

Пятая зона 7 регенератора расположена над псевдоожиженным слоем и служит для отделения катализаторной пыли от газов регенерации. В этой зоне размещаются циклоны 8.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РЕГЕНЕРАТОРА

1. Определяют количество газов регенерации, образующихся при выжиге кокса с отработанного катализатора.

Расчет ведется по следующей схеме:

a) задаются объемным соотношением CO₂/CO в газах регенерации и, зная элементарный состав кокса, находят массовое и объемное количества продуктов окисления кокса;

б) принимая содержание избыточного кислорода в газах регенерации (в объемн.%), находят массовое и объемное количества газов регенерации;

в) определяют теоретический и действительный расходы воздуха на выжигание 1 кг кокса и рассчитывают коэффициент избытка воздуха;

г) находят часовой расход воздуха на выжигание кокса;

д) рассчитывают часовое количество газов регенерации.

2. Определяют расход водяного пара на пропарку катализатора.

3. Составляют материальный баланс регенератора.

4. Составляют тепловой баланс регенератора, из которого определяют (по разности между приходом и расходом) избыточное тепло, подлежащее отводу из регенератора с помощью охлаждающих устройств.

5. Составляют материальные балансы трех основных зон регенератора: прямоточной продувки, противоточной продувки и отпарки. Полученные данные являются исходными величинами для определения основных размеров указанных зон. Расчет ведут в такой последовательности:

а) из уравнения теплового баланса первой зоны находят количество кокса, выжигаемого в ней;

б) по разности количеств всего выжигаемого кокса и кокса, выжигаемого в первой зоне, находят количество кокса, подлежащего выжигу во второй зоне;

в) находят количество воздуха, требующегося для выжига кокса в первой и второй зонах, и соответственно количества газов регенерации по зонам.

6. Определяют объем газов, проходящих основные зоны регенератора, и, принимая по промышленным данным величину скорости газов в свободных сечениях этих зон и в регенераторе, находят их площади поперечного сечения и диаметры. 7. Определяют высоту регенератора и его зон. Расчет проводят по следующей схеме:

 а) по практическим данным принимают удельную скорость регенерации катализатора в первой зоне (прямоточная продувка); делением количества кокса, сжигаемого в этой зоне, на удельную скорость регенерации катализатора находят количество катализатора в первой зоне;

б) делением количества катализатора в первой зоне на плотность псевдоожиженного слоя находят объем псевдоожиженного слоя в этой зоне;

в) делением полученного объема на ранее найденную площадь поперечного сечения первой зоны находят ее высоту;

г) аналогично (пп. а, б, в) находят высоту второй зоны;

д) по разности высот первой и второй зон находят высоту псевдоожиженного слоя над второй зоной, затем рассчитывают объем этого слоя и количество катализатора в нем;

e) принимают конструктивно высоту зоны под распределительной решеткой и высоту зоны сепарации, в которой размещаются циклоны;

ж) высоту регенератора определяют суммированием высот первой зоны, зоны под распределительной решеткой и зоны сепарации.

. 8. Определяют объем зоны отпарки и количество псевдоожиженного катализатора в ней.

Высота взвешенного слоя катализатора в зоне отпарки может быть принята равной сумме высот первой зоны и зоны под распределительной решеткой. Тогда объем зоны отпарки будет равен произведению этой высоты на площадь поперечного сечения зоны, найденную ранее (п. 6). Количество катализатора в зоне отпарки найдется умножением его объема на плотность псевдоожиженного слоя.

9. Определяют среднее время пребывания катализатора в регенераторе.

Для каждой зоны регенератора среднее время пребывания в ней катализатора находят как частное от деления количества катализатора в этой зоне на количество катализатора, циркулирующего в системе. Суммированием периодов пребывания катализатора во всех зонах находят среднее время пребывания его в регенераторе.

10. Определяют давление под воздухораспределительной решеткой и у основания зоны отпарки, а также температуру катализатора на входе в зону отпарки.

Давление под воздухораспределительной решеткой равно сумме давлений над псевдоожиженным слоем и столба псевдоожиженного катализатора в первой зоне.

Давление у основания зоны отпарки равно сумме давлений над псевдоожиженным слоем и столба псевдоожиженного катализатора в зоне отпарки. Температура катализатора на входе в зону отпарки должна быть выше температуры катализатора на выходе из регенератора, так как в зоне отпарки происходит дополнительный перегрев водяного пара от его начальной температуры до температуры в регенераторе.

11. Рассчитывают площадь воздухораспределительной решетки и количество отверстий в ней, приходящееся на первую и вторую зоны. Предварительно принимают суммарную площадь отверстий в решетке в долях от площади решетки и диаметр отверстий.

Определяют скорость воздуха в отверстиях решетки и предельную скорость воздуха в отверстиях, при которой провал частиц катализатора через отверстия полностью прекращается. Первая скорость должна быть больше второй.

12. Рассчитывают гидравлическое сопротивление воздухораспределительной решетки по схеме расчета гидравлического сопротивления газораспределительных решеток реактора (см. предыдущий пример).

13. Определяют количество водяного пара, которое может быть получено за счет избыточного тепла второй зоны регенератора.

14. Определяют поверхность теплообмена охлаждающего змеевика.

15. Проводят поверочный расчет циклонов.

PACHET

1. Характеристика полноты сгорания углерода. Количество газов регенерации

Таблица 3,16

Элементарный состав кокса обычно известен по лабораторным данным. В табл. 3.16 приведен усредненный состав кокса.

Элементы	Содержание, масс. %
Углерод	. 86,0
Зодород Сера	. 8,5

В зависимости от избытка воздуха, условия процесса сжигания кокса, качества и степени отработанности катализатора в газах регенерации будет различное соотношение CO₂/CO. Количество образовавшихся двуокиси и окиси углерода характеризует полноту сгорания углерода. При отсутствии данных о составе кокса рекомендуется задаваться объемным отношением CO₂/CO [54, с. 162].

Зная суммарное количество углерода в коксе (86 масс.%, см. табл. 3.16) и задавшись объемным соотношением (при нормальных условиях) CO₂/CO = 1,85, рассчитаем количество углерода

в 1 кг кокса, которое пошло на образование CO₂ и CO, и определим количества продуктов окисления.

Так как в 1 кг кокса содержится 0,86 кг углерода, то

$$C_{\rm CO_2} + C_{\rm CO} = 0,86$$

где C_{CO_2} и C_{CO} — количество углерода, пошедшего на образование CO_2 и CO соответственно.

Определим количество CO₂, образующегося из C_{CO_2} кг углерода, имея в виду, что для сжигания 1 кмоль C необходим один киломоль O₂ (расчеты ведутся в кг на 1 кг кокса):

$$m_{\rm CO_2} = C_{\rm CO_2} + \frac{C_{\rm CO_2}}{12} \cdot 32 = 3,67C_{\rm CO_2} \, {\rm kr/kr}$$

Аналогично найдем количество СО:

$$m_{\rm co} = C_{\rm co} + \frac{C_{\rm co}}{12} \cdot \frac{1}{2} \cdot 32 = 2,34C_{\rm co} \text{ kg/kg}$$

Объемные количества CO₂ и CO при нормальных условиях будут равны:

$$v_{\rm CO_2} = \frac{3.67C_{\rm CO_2}}{44} \cdot 22,4 \approx 1,87C_{\rm CO_2} \,\,\text{m}^3/\text{kg}$$
$$v_{\rm CO} = \frac{2,34C_{\rm CO}}{28} \cdot 22,4 \approx 1,87C_{\rm CO} \,\,\text{m}^3/\text{kg}$$

Из принятого выше отношения объемов СО2/СО следует:

$$\frac{v_{\rm CO_2}}{v_{\rm CO}} = \frac{1.87C_{\rm CO_2}}{1.87C_{\rm CO}} = \frac{C_{\rm CO_2}}{C_{\rm CO}} = 1.85$$

Решая совместно уравнения

$$C_{\rm CO_2} + C_{\rm CO} = 0,86$$

 $\frac{C_{\rm CO_2}}{C_{\rm CO}} = 1,85$

получим:

 $C_{\rm CO_2} = 0,558$ кг/кг; $C_{\rm CO} = 0,302$ кг/кг

Тогда:

$$v_{\rm CO_2} = 1,87 \cdot 0,558 = 1,042$$
 м³/кг
 $v_{\rm CO} = 1,87 \cdot 0,302 = 0,563$ м³/кг

или

$$m_{\rm CO_2} = 3,67 \cdot 0,558 = 2,048$$
 кг/кг
 $m_{\rm CO} = 2,34 \cdot 0,302 = 0,707$ кг/кг

Количество водяных паров, образующихся при сгорании водорода кокса (на 1 кг кокса):

$$m_{\rm H_2O} = {\rm H}_2 + \frac{{\rm H}_2}{2} \cdot \frac{1}{2} \cdot 32 = 0,085 + \frac{0,085}{2} \cdot \frac{1}{2} \cdot 32 = 0,765 \,\,{\rm kr/kr}$$

И

$$v_{\rm H_2O} = \frac{0,765}{18} \cdot 22,4 = 0,952$$
 м³/кг

236

Количество SO₂, образующегося при сгорании серы:

$$m_{SO_2} = S + \frac{S}{32} \cdot 32 = 2S = 2 \cdot 0,055 = 0,110$$
 кг/кг
 $v_{SO_2} = \frac{0,110}{64} \cdot 22,4 = 0,038$ м³/кг

Суммарное количество продуктов сгорания кокса:

$$\sum m = m_{\text{CO}_2} + m_{\text{CO}} + m_{\text{H}_2\text{O}} + m_{\text{SO}_2} =$$

= 2,048 + 0,707 + 0,765 + 0,110 = 3,63 kr/kr

или

$$\sum v = v_{CO_2} + v_{CO} + v_{H_2O} + v_{SO_2} =$$

= 1,042 + 0,563 + 0,952 + 0,038 = 2,595 m³/kr

В газах регенерации кроме продуктов сгорания содержатся азот и избыточный кислород. Принимаем количество избыточного кислорода в газах регенерации 1,3 объемн.%. Объем газов регенерации (в м³ на 1 кг кокса):

$$v_{r, p} = \sum v + v_{N_2} + v'_{O_2} + v'_{N_2}$$

где v_{N_2} — объем азота, содержащегося в воздухе, израсходованном на окисление элементов кокса; v'_{O_2} — объем избыточного кислорода; v'_N, - объем азота в избыточном воздухе.

Количество кислорода, пошедшего на сгорание кокса (в расчете на 1 кг кокса):

$$m_{\text{O}_2} = \sum m - 1 = 3,63 - 1 = 2,63$$
 кг/кг

или

$$v_{O_2} = \frac{m_{O_2}}{32} \cdot 22.4 = \frac{2.63}{32} \cdot 22.4 = 1.84 \text{ m}^3/\text{kr}$$

Соответствующее количество азота воздуха:

$$m_{\rm N_2} = \frac{m_{\rm O_2} \cdot 0.77}{0.23} = \frac{2.63 \cdot 0.77}{0.23} = 8,804 \, {\rm kr/kr}$$

или

$$v_{N_2} = \frac{m_{N_2}}{28} \cdot 22,4 = \frac{8,804 \cdot 22,4}{28} = 7,043 \text{ m}^3/\text{km}$$

Количество азота в избыточном воздухе:

$$v'_{N_2} = \frac{v'_{O_2} \cdot 0.79}{0.21} = 3,762 v'_{O_2} \text{ M}^3/\text{Kr}$$

Количество избыточного кислорода определится из уравнения:

$$\frac{v'_{O_2}}{v_{r,p}} = \frac{v'_{O_2}}{\sum v + v_{N_2} + v'_{O_2} + v'_{N_2}} = \frac{v'_{O_2}}{2,595 + 7,043 + v'_{O_2} + 3,762v'_{O_2}} = 0,013$$

Из этого уравнения получим: $v'_{\rm O} = 0,132$ м³/кг. Следовательно

$$m'_{O_2} = \frac{v'_{O_2}}{22,4} \cdot 32 = \frac{0,132 \cdot 32}{22,4} = 0,189 \text{ kg/kg}$$

Тогда

$$v'_{N_2} = 3,762 v'_{O_2} = 3,762 \cdot 0,132 = 0,496 \text{ m}^3/\text{km}$$

или

$$m'_{N_2} = \frac{v'_{N_2}}{22,4} \cdot 28 = \frac{0.496 \cdot 28}{22,4} = 0.620 \text{ Ke/ke}$$

Количество газов регенерации:

$$v_{r. p} = \sum v + v_{N_2} + v'_{O_2} + v'_{N_2} =$$

= 2,595 + 7,043 + 0,132 + 0,496 = 10,266 м³/кг

или

$$m_{\text{г. p}} = \sum m + m_{\text{N}_2} + m'_{\text{O}_2} + m'_{\text{N}_2} =$$

= 3,630 + 8,804 + 0,189 + 0,620 = 13,243 кг/кг

Полученные данные сведены в табл. 3.17.

Таблица 3.17

Компоненты	Количест получаюц сгорании	во газов, цихся при 1 кг кокса	Состав газов регенерации, масс. %		
-	м ³ /кг	кг/кг	влажного	сухого	
СО ₂	1,042 0,563 0,038 7,539 0,132 9,314 0,952 10,266	2,048 0,707 0,110 9,424 0,189 12,478 0,765 13,243	$15,465,390,8371,161,4394,275,76\sim 100,00$	16,41 5,66 0,83 75,52 1,53 100,00	

Определим теоретический расход воздуха на выжиг 1 кг кокса:

$$L_0 = m_{O_2} + m_{N_2} = 2,63 + 8,804 \approx 11,43 \text{ kr/km}$$

или

$$v_0 = v_{O_2} + v_{N_2} = 1,84 + 7,043 \approx 8,88 \text{ m}^3/\text{km}$$

Подсчитаем расход воздуха на регенерацию катализатора (на 1 кг кокса).

238

.

а. Суммарное количество кислорода в воздухе, израсходованном на регенерацию:

$$m_{0_2} + m'_{0_2} = 2,63 + 0,189 \approx 2,82 \text{ KG/KG}$$

или

$$v_{N_2} + v'_{O_2} = 1,84 + 0,132 = 1,97 \text{ m}^3/\text{kg}$$

б. Суммарное количество азота:

$$m_{N_2} + m'_{N_2} = 8,804 + 0,620 \approx 9,42 \text{ kr/kr}$$

или

$$v_{N_2} + v'_{N_2} = 7,043 + 0,496 \approx 7,54 \text{ m}^3/\text{kg}$$

Определим действительный расход воздуха:

$$L_{a} = 2,82 + 9,42 = 12,24 \text{ KeV/Ke}$$

или

$$v_{\rm m} = 1,97 + 7,54 = 9,51 \, \text{m}^3/\text{kg}$$

Коэффициент избытка воздуха при регенерации катализатора:

$$\beta = \frac{L_{\pi}}{L_0} = \frac{12,24}{11,43} = 1,07$$

Количество кокса на регенерированном катализаторе:

$$\Delta g_0 = 0,002 \cdot 2578 = 5,16 \text{ T/H}$$

Количество выжигаемого кокса:

$$\Delta g_{\scriptscriptstyle B} = \Delta g - \Delta g_0 = 20 - 5,16 = 14,84 \text{ T/r}$$

Количество воздуха, необходимое для выжига кокса:

$$G_{\rm b} = L_{\rm m} \Delta g_{\rm b} = 12,24 \cdot 14\,840 = 181\,600\,\,{\rm kr/y}$$

Количество влажных газов регенерации:

$$G_{\rm B.r} = \Delta g_{\rm B} + G_{\rm B} = 14\,840 + 181\,600 = 196\,440\,\,{\rm kr/y}$$

2. Расход водяного пара на отпарку газов регенерации с катализатора

С целью вытеснения (десорбции) газов регенерации из пор катализатора и пневмовзвеси в регенератор подается перегретый водяной пар в количестве 5—10 кг на 1 т катализатора [54].

Если принять расход пара 5 кг/т, то количество водяного пара для отпарки газов регенерации со всего катализатора будет равно:

$$G_0 = 5 \cdot 2578 = 12\,890$$
 кг/ч

3. Материальный баланс регенератора

Материальный баланс аппарата сведен в табл. 3.18.

Таблица 3.18

Потоки	Обозначение	Количество, к г /ч
Приход Катализатор	<i>G</i> _к Δ <i>g</i> <i>G</i> _в <i>G</i> _π <i>G</i> ₀	2578000200001816004130128902796620
Расход Катализатор Остаточный кокс Влажные газы регенерации Водяной пар, адсорбированный на катализаторе Водяной пар на отпарку газов регенерации с катализатора Сумма	G _к Лg ₀ G _{в, г} G _π G ₀ —	2 578 000 5 160 196 440 4 130 12 890 2 796 620

4. Тепловой баланс регенератора

Для составления тепловых балансов регенератора и его основных зон необходимо знать энтальпию каждого технологического потока при соответствующей температуре и количество тепла, выделяющегося при сгорании кокса.

Энтальпия влажного газа зависит от температуры и давления, однако в пределах тех давлений, которые обычно применяются в регенераторах, можно применять данные по энтальпии компонентов влажного газа только в зависимости от температуры. Зная

Таблица	3.19
---------	------

														Энтальпи	ия, кДж/кг
]	Ко	мп	101	lei	ITE	I				COCTAB y_l , Macc. %	q_{i}^{Γ}	$q_i^{\Gamma} y_i$
$\begin{array}{c} CO_2\\ CO\\ SO_2\\ N_2\\ O_2\\ H_2O \end{array}$	•	•					•			1M	 		15,46 5,39 0,83 71,16 1,43 5,76 100,00	623,8 651,5 379,2 646,0 596,3 1206,0 —	96,37 35,10 3,15 459,20 8,52 69,50 671,84

240

состав влажного газа, определяем по правилу аддитивности его энтальпию. В табл. 3.19 приведены значения энтальпий для компонентов влажного газа при 873 К [21, с. 120], а также произведения энтальпии компонента на его массовую долю во влажном газе, например для CO₂

Энтальпия влажного газа при 873 К по правилу аддитивности равна сумме этих произведений.

Энтальпия воздуха при 353 К [47, с. 547]:

Энтальпию катализатора и кокса можно подсчитать по формуле

$$q_T^{\kappa} = cT$$

где *с* — теплоемкость катализатора или кокса, кДж/(кг·К); *T* — температура катализатора или кокса, К.

Теплоемкость катализатора обычно принимают равной 1,13 кДж/(кг·К), а теплоемкость кокса 2,51 кДж/(кг·К).

Таблица 3,20

Потоки	Количество. кг/ч	Температу- ра, Қ	Энтальпия, кДж/кг	Количество тепла, кВт	
Приход					
Катализатор	$2\ 578\ 000\ 20\ 000\ 181\ 600$	755 755 353	546,00 1212,00 80,68	391 000 6 730 4 068 [.]	
ванный нар, адсорояро- ванный на катализаторе Водяной пар на отпарку	4 130	755	3457,00	3 960	
газов регенерации с ка- тализатора Теплота сгорания кокса.	12 890 14 840	783 —	3512,00 32913,00	12 580 136 000	
Сумма		-	-	554 338	
Расход					
Катализатор Кокс Влажный газ	2 578 000 5 160 196 440	873 873 873	680,20 1508,00 671,84	487 500 2 160 36 700	
Водяной пар, адсороиро- ванный на катализаторе Водяной пар на отпарку	4 130	873	3708,00	4 262	
газов регенерации с ка- тализатора Потери тепла	12 890 873 Принимаются		3708,00	13 280 2 328	
Итого			_	546 230	
Избыточное тепло (по раз- ности)				8 1 0 8	
Сумма	_	-	_	554 338	

Энтальпию перегретого и насыщенного водяного пара можно определить по диаграмме *i*—S для водяного пара или по таблицам ВТИ в зависимости от температуры и давления (см. Приложение 4).

Количество тепла, выделяющегося в результате сгорания кокса:

$$Q_{\rm p}^{\rm H} = 0.558Q_{\rm CO_4} + 0.302Q_{\rm CO} + 0.085Q_{\rm H,O} + 0.055Q_{\rm SO_4}$$

где Q_p^{μ} — низшая теплота сгорания кокса, кДж/кг; Q_{CO_2} , Q_{CO} , Q_{H_2O} и Q_{SO_2} — тепловые эффекты реакций окисления соответственно углерода, водорода и серы [21, с. 172]; значения коэффициентов перед Q см. п. 1 расчета.

Получим:

$$Q_{p}^{H} = 0,558 \cdot 34\ 120 + 0,302 \cdot 10\ 260 + 0,085 \cdot 121\ 000 + 0,055 \cdot 9138 =$$

= 32 913 кДж/кг

В табл. 3.20 приведен тепловой баланс регенератора.

5. Материальные балансы основных зон регенератора

Материальный баланс основных зон регенератора составляется с целью определения их размеров.

Определим коксовую нагрузку зоны прямоточной продувки катализатора воздухом.

Количество выжигаемого в этой зоне кокса вычисляется на основе теплового баланса и приводится в табл. 3.21.

Обозначение потоков	Количество, кг/ч	Температу- ра, Қ	Энтальпия, кДж/кг	Количество тепла, кВт	
Приход $Q_{\kappa 1}$	2 578 000 20 000 12,24 x 4 130 x 	755 755 353 755 —	546,00 1212,00 80,68 3457,00 32913,00 —	391 000 6 730 0,274 x 3 960 9,14 x 401 690-9,414 x	
Расход Q _{K2}	2 578 000 20 000—х 13,243 х 4 130 Прини	873 873 873 873 маются —	680,20 1508,00 671,84 3708,00 —	$\begin{array}{r} 487\ 500\\ 8\ 375-0,419\ x\\ 2,472\ x\\ 4\ 162\\ 2\ 000\\ 502\ 137+2,053\ x\end{array}$	

Таблица 3,21

Уравнение теплового баланса первой зоны регенератора в общем виде:

 $Q_{\rm k1} + Q_{\rm \Delta g} + Q_{\rm B} + Q_{\rm m1} + Q_{\rm p} = Q_{\rm k2} + Q_{\rm o.\ k} + Q_{\rm b.\ r} + Q_{\rm m2} + Q_{\rm m}$

где вносится тепло (в кВт); $Q_{\kappa 1}$ — циркулирующим катализатором; $Q_{\Delta g}$ — коксом; $Q_{\rm B}$ — воздухом; $Q_{\Pi 1}$ — водяным паром, адсорбированным на катализаторе; $Q_{\rm p}$ — тепло, выделяющееся при сгорании кокса; выносится тепло (в кВт): $Q_{\kappa 2}$ — катализатором; $Q_{0.\kappa}$ — остаточным коксом; $Q_{\rm B.r}$ — влажным газом; $Q_{\Pi 2}$ водяным паром, адсорбированном на катализаторе; $Q_{\rm n}$ — потери тепла в окружающую среду.

Из табл. 3.21 получим:

$$401690 + 9,414x = 502137 + 2,053x$$

где х — количество кокса, выжигаемого в первой зоне.

Решая это уравнение относительно *x*, получим *x* = 13 650 кг/ч. Количество кокса, подлежащего выжигу во второй зоне, определяется по разности:

В соответствии с табл. 3.21 определим количество воздуха, необходимое для выжига кокса в первой зоне:

$$L_x = 12,24 \cdot 13650 = 167200 \text{ Kg/m}$$

Разность между общим потребным количеством воздуха (табл. 3.18) и количеством воздуха, расходуемым в первой зоне, равна количеству воздуха, расходуемому во второй зоне:

Найдем количество влажных газов регенерации по зонам.

В соответствии с табл. 3.21 количество влажных газов, образовавшихся при выжиге кокса в первой зоне, определим из уравнения

$$G'_{\text{B, r}} = m_{\text{r, p}} x = 13,243 \cdot 13650 = 180700 \text{ kr/y}$$

и во второй зоне — по разности между общим количеством образовавшихся газов регенерации (табл. 3.18) и количеством их в первой зоне:

$$G_{\mu\nu}'' = 196\,440 - 180\,700 = 15\,740\,\,\mathrm{kr/y}$$

Определив по зонам количества выжигаемого кокса, воздуха и образующихся влажных газов, можно составить материальный баланс основных зон регенератора. При этом допускается, что водяной пар, циркулирующий с катализатором, не перераспределяется между потоками катализатора и газами регенерации. В табл. 3.22 приведен материальный баланс основных зон регенератора.

Таблица 3.22

_	Зона прямоточной продувки		Зона противоточной продувки		Зона отпарки (десорбции)	
Потоки	приход, к г /ч	расход, к г /ч	приход, кг/ч	расход, кг/ч	приход, кг/ч	расход, кг/ч
Катализатор Кокс Воздух	2 578 000 20 000 167 200	2 578 000 6 350	$2578000 \\ 6350 \\ 14400$	2 578 000 5 160	2 578 000 5 160 —	2 578 000 5 160
Водяной пар, адсор- бированный на катализаторе	4 130	4 130	4 130	4 130	4 130	4 130
Влажные газы регенерации	-	180 700	-	15 740	-	-
парку катализа- тора				-	12 890	12 890
Cymma	2,00,000	2,00,100	2 002 000	2 000 000	2 000 100	2 000 100

Примечание: Незначительные расхождения в балансах объясняются округлением чисел в предыдущих расчетах.

6. Диаметр регенератора и его основных зон

Площадь поперечного сечения регенератора и его основных зон определяется по формуле:

$$S = \frac{v}{3600w}$$

где v — часовой объем газов и паров, проходящих через данное сечение регенератора (над псевдоожиженным слоем), м³/ч; w — допускаемая скорость газов в свободном сечении, м/с.

Объем газов и паров определяется по формуле:

$$v = \frac{22,4 \sum \frac{G_{l}}{M_{l}} T_{p} \cdot 0,1 \cdot 10^{6}}{273\pi}$$

где $\sum \frac{G_i}{M_i}$ — количество газовой смеси, кмоль/ч; $T_p = 873$ К — температура в регенераторе; $\pi = 0,23 \cdot 10^6$ Па — абсолютное давление над псевдоожиженным слоем катализатора.

Предварительно найдем среднюю молекулярную массу влажного газа (табл. 3.17)

$$M_{\rm B.\ r} = 22,4 \, \frac{13,243}{10,266} = 29$$

Тогда для регенератора

$$\sum \frac{G_{l}}{M_{l}} = \frac{G_{\text{в. г}}}{M_{\text{в. г}}} + \frac{G_{0}}{M_{0}} = \frac{196\,440}{29} + \frac{12\,890}{18} = 7491 \text{ кмоль/ч}$$

для первой зоны

$$\sum \frac{G_i}{M_i} = \frac{G'_{\text{в. г}}}{M_{\text{в. г}}} = \frac{180\,700}{29} = 6225$$
 кмоль/ч

для второй зоны

$$\sum \frac{G_i}{M_i} = \frac{G_{\text{B, r}}''}{M_{\text{B, r}}} = \frac{15\,740}{29} = 543 \text{ кмоль/ч}$$

для зоны отпарки (десорбера)

$$\sum \frac{G_i}{M_i} = \frac{G_0}{M_0} = \frac{12\,890}{18} = 716$$
 кмоль/ч

Часовые объемы газов в сечениях регенератора и его основных зон, рассчитанные по приведенной выше формуле, даны в табл. 3.23.

Таблица 3.23

Сечения	U, M ³ /4	<i>w</i> , м/с	S, м ²
Регенератора .	234 000	0,55	119,0
Первой зоны .	194 500	0,56	97,0
Второй зоцы	16 940	0,43	11,0
Зоны отпарки .	22 360	0,80	7,8

Скорость газов в свободном сечении регенератора может достигать 0,8 м/с [54, с. 161]. Принятые в расчете значения скорости газов в различных сечениях регенератора и результаты подсчета поперечных сечений также приведены в табл. 3.23.

В первую очередь определим диаметр зоны отпарки (десорбции):

$$D_{\pi} = \sqrt{\frac{4S_{\pi}}{\pi}} = \sqrt{\frac{4\cdot7,8}{3,14}} = 3,1 \text{ M}$$

Рис. 3.11. Схема к определению размеров регенератора.

При определении диаметра внутренней цилиндрической перегородки или диаметра второй зоны следует учитывать, что в этой зоне расположен охлаждающий змеевик (по периферии зоны) с трубками диаметром $d_{\rm H} = 0,06$ м. Подсчитанные выше поперечные сечения остаются прежними. Тогда диаметр второй зоны (рис. 3.11) определим по формуле:

$$D_2 = \sqrt{\frac{4S_2 + \pi D_2^2}{\pi}} + 2d_{\rm H} = \sqrt{\frac{4 \cdot 11 + 3.14 \cdot 3.1^2}{3.14}} + 2 \cdot 0.06 = 5.02 \text{ M}$$

Диаметр регенератора равен диаметру первой зоны и определяется с учетом толщины цилиндрической перегородки $\delta = 0,02$ м по формуле:

$$D_{\rm p} = D_{\rm l} = \sqrt{\frac{4S_{\rm l} + \pi D_{\rm 2}^2}{\pi}} + 2\delta =$$
$$= \sqrt{\frac{4 \cdot 97 + 3.14 \cdot 5.02^2}{3.14}} + 2 \cdot 0.02 = 12.3 \text{ M}$$

7. Высота регенератора и его зон

Высота первой зоны (см. рис. 3.11) равна высоте псевдоожиженного слоя катализатора:

$$h_1 = \frac{V_1}{S_1}$$

где V_1 — объем псевдоожиженного слоя, м³; S_1 — поперечное сечение первой зоны, м² (см. табл. 3.23).

Объем псевдоожиженного слоя рассчитаем по формуле:

$$V_{\rm I} = \frac{G_{\rm I}}{\rho_{\rm n.\,c}}$$

где G₁ — количество катализатора в первой зоне, кг; ρ_{п. с} — плотность псевдоожиженного слоя, кг/м³.

Величина G₁ равна:

$$G_1 = \frac{x}{k_p}$$

где x — количество кокса, сжигаемого в данной зоне, кг/ч; k_p — удельная скорость регенерации 1 т катализатора, кг/(т.ч).

Удельная скорость регенерации катализатора, по промышленным данным, равна 50—115 кг/(т ч) [82, с. 114]. Меньшие значения этой скорости относятся к зонам прямоточной продувки катализатора воздухом, большие — к зонам противоточной продувки.

Примем удельную скорость регенерации катализатора равной 56 кг/(т·ч). Тогда

$$G_{1} = \frac{13\,650}{56} = 243 \text{ T}$$

$$V_{1} = \frac{243\,000}{500} = 486 \text{ M}^{3}$$

$$h_{1} = \frac{486}{97} = 5 \text{ M}$$

Чтобы регенерация катализатора протекала наиболее эффективно, высота псевдоожиженного слоя должна быть не менее 3 м [54, с. 156].

246

Высота второй зоны равна высоте цилиндрической перегородки (рис. 3.11) и определяется аналогично высоте первой зоны:

$$G_2 = \frac{1190}{56} = 21,2$$
 т
 $V_2 = \frac{21200}{500} = 42,4$ м³
 $h_2 = \frac{42,4}{11} = 3,9$ м

Высота псевдоожиженного слоя катализатора над второй зоной:

$$h_3 = h_1 - h_2 = 5 - 3,9 = 1,1$$
 M

Объем этого слоя:

$$V_{\rm c} = h_3 S_2 = 1, 1 \cdot 11 = 12, 1 \, {\rm m}^3$$

Количество псевдоожиженного катализатора в этом слое:

$$G_{\rm c} = V_{\rm c} \rho_{\rm fl, c} = 12, 1 \cdot 500 = 6050 \text{ kg}$$

Высота *h*₄ под распределительной решеткой (см. рис. 3.11) принимается равной 5 м.

Высота зоны сспарации h₅ с учетом расположения в ней циклонов принимается равной 8 м.

Высота регенератора:

$$H_{\rm p} = h_1 + h_4 + h_5 = 5 + 5 + 8 = 18 \text{ M}$$

8. Объем зоны отпарки катализатора (десорбера)

Примем число секций N_c в противоточной зоне регенератора равным 18. В каждой секции имеется два отверстия диаметром $d_o = 0,3$ м (рис. 3.11) для перетекания катализатора из этой зоны в зону отпарки.

Скорость перетекания псевдоожиженного катализатора из зоны противоточной продувки в зону отпарки определяется по формуле:

$$w = \frac{G_{\rm K}}{1800\rho_{\rm H,\ c}N_{\rm c}\pi d_{\rm B}^2} = \frac{2\,578\,000}{1800\cdot500\cdot18\cdot3.14\cdot0.3^2} = 0,56\,\,{\rm m/c}$$

Примем высоту взвешенного слоя катализатора в зоне отпарки равной сумме $h_1 + h_4$ (см. рис. 3.11). Объем зоны отпарки будет равен:

$$V_{\rm m} = S_{\rm m} (h_1 + h_4) = 7,8 (5 + 5) = 78 \text{ m}^3$$

Количество псевдоожиженного катализатора в зоне отпарки:

$$G_{\rm a} = V_{\rm a} \rho_{\rm m, c} = 78 \cdot 500 = 39\,000$$
 kr

9. Время пребывания катализатора в регенераторе

Среднее время пребывания катализатора в регенераторе равно:

$$\tau = \tau_1 + \tau_2 + \tau_3 + \tau_4$$

где τ_1 , τ_2 , τ_3 , τ_4 — время пребывания катализатора соответственно в первой зоне, над второй зоной в распределительном слое, во второй зоне и в зоне отпарки, мин.

Имеем:

$$\tau_{1} = \frac{60G_{1}}{G_{\kappa}} = \frac{60 \cdot 243\,000}{2\,578\,000} = 5,65 \text{ мин}$$

$$\tau_{2} = \frac{60G_{c}}{G_{\kappa}} = \frac{60 \cdot 6050}{2\,578\,000} = 0,14 \text{ мин}$$

$$\tau_{3} = \frac{60G_{2}}{G_{\kappa}} = \frac{60 \cdot 21\,200}{2\,578\,000} = 0,5 \text{ мин}$$

$$\tau_{4} = \frac{60G_{\pi}}{G_{\kappa}} = \frac{60 \cdot 39\,000}{2\,578\,000} = 0,91 \text{ мин}$$

Тогда

 $\tau = 5,65 + 0,14 + 0,5 + 0,91 = 7,2$ мин

Время пребывания катализатора в регенераторе обычно составляет 5—12 мин [54, с. 157].

Давление под распределительной решеткой и у основания зоны отпарки (десорбера). Температура катализатора на входе в зону отпарки (десорбер)

Давление под воздухораспределительной решеткой:

 $\pi_{\rm p} = \pi + h_1 \rho_{\rm n.c} g = 0.23 \cdot 10^6 + 5 \cdot 500 \cdot 9.81 = 0.26 \cdot 10^6 \,\, \Pi a.$

Давление у основания зоны отпарки:

 $\pi_{\pi} = \pi + (h_1 + h_4) \rho_{\pi. c} g = 0.23 \cdot 10^6 + (5+5) \cdot 500 \cdot 9.81 = 0.28 \cdot 10^6 \, \Pi a$

Температура катализатора на входе в зону отпарки $T_{\rm Bx}$ должна быть выше температуры $T_{\rm p}$ выхода из регенератора:

$$T_{\rm BX} = T_{\rm p} + \Delta T$$

где ΔT — снижение температуры катализатора в зоне отпарки, К. При этом водяной пар перегревается от T = 783 К до $T_p = 873$ К.

Снижение температуры катализатора подсчитываем по формуле:

$$\Delta T = \frac{G_0 (i_{873} - i_{783})}{G_{\rm K} c_{\rm K} + \Delta g_0 c_0}$$

где G₀ — количество водяного пара, расходуемого на отпарку катализатора, кг/ч; i₈₇₃ и i₇₈₃ — энтальпии перегретого водяного пара при температурах 873 К и $\pi_p = 0,25 \cdot 10^6$ Па и 783 К и $\pi = 0,44 \cdot 10^6$ Па, кДж/кг; G_{κ} — количество катализатора, кг/ч; Δg_0 — количество остаточного кокса на катализаторе, кг/ч; c_{κ} и c_0 — теплоемкости соответственно катализатора и кокса, кДж/(кг·К).

Тогда

И

$$\Delta T = \frac{12\,890\,(3708 - 3512)}{2\,578\,000 \cdot 1,13 + 5160 \cdot 2,51} = 0,9 \text{ K}$$
$$T_{\text{BX}} = 873 + 0,9 = 873,9 \text{ K}$$

11. Воздухораспределительная решетка

Площадь отверстий воздухораспределительных решеток обычно составляет 0,3—1,5% от площади самих решеток. Примем, что площадь отверстий в решетке равна 0,5% от площади решетки:

$$S_0 = 0,005S_{\rm B}$$

Здесь S_в — площадь воздухораспределительной решетки регенератора, м²

$$S_{\rm B} = S_1 + S_2 - S_{\rm m}$$

где S_{π} — площадь, занимаемая двумя стволами, подводящими катализатор (рис. 3.12), м².

Получим:

$$S_{\rm m} = 2 \frac{3.14 \cdot 0.75^2}{4} = 0.9 \text{ m}^2$$

 $S_{\rm b} = 97 + 11 - 0.9 = 107.1 \text{ m}^2$

Тогда

 $S_0 = 0.005 \cdot 107.1 = 0.536 \text{ M}^2$

Примем диаметр отверстий в решетке $D_0 = 0,025$ [113, с. 25]. Число отверстий в решетке, приходящееся соответственно на первую и вторую зоны:

$$N_{1} = \frac{4 (S_{1} - S_{n}) S_{0}}{\pi S_{u} D_{0}^{2}} = \frac{4 (97 - 0.9) \cdot 0.536}{3.14 \cdot 107.1 \cdot 0.025^{2}} = 980$$
$$N_{2} = \frac{4S_{2}S_{0}}{\pi S_{u} D_{0}^{2}} = \frac{4 \cdot 11 \cdot 0.536}{3.14 \cdot 107.1 \cdot 0.025^{2}} = 112$$

Скорость воздуха в отверстиях решетки равна:

$$w_{\text{o. p}} = \frac{v_{\text{cer}}}{S_{\text{o}}}$$

где *v*_{сек} — секундный объем воздуха, м³/с.

$$v_{\rm cek} = \frac{22.4G_{\rm B}T_{\rm B} \cdot 0.1 \cdot 10^6}{3600M_{\rm B} \cdot 273\pi_{\rm p}}$$

Рис. 3.12. Воздухораспределительная решетка (в плане): 1-решетка первой зоны; 2-решетка второй зоны; 3-два подвода катализатора; 4-зона отпарки (десорбер).

где $G_{\rm B}$ — количество воздуха, кг/ч; $T_{\rm B}$ — температура воздуха, К; $M_{\rm B}$ — молекулярная масса воздуха [58, с. 6].

Имеем:

$$v_{\text{cer}} = \frac{22.4 \cdot 181\ 600 \cdot 353 \cdot 0.1 \cdot 10^6}{3600 \cdot 28.96 \cdot 273 \cdot 0.25 \cdot 10^6} = 20 \text{ m}^3/\text{c}$$
$$w_{\text{o. p}} = \frac{20}{0.536} = 37.4 \text{ m/c}$$

Предельная скорость газа в отверстиях решетки, при которой частицы катализатора перестают проваливаться через отверстия [114, с. 2231]:

$$m_{\rm np} = 100 \varphi \sqrt{\frac{d_m \left(\rho_{\rm K} - \rho_{\rm B}\right)g}{\rho_{\rm B}}}$$

где ф — относительная площадь отверстий решетки, равная отношению площади отверстий к площади сечения регенератора; d_m — максимальный размер частиц катализатора, м; $\rho_{\rm R}$ — плотность материала катализатора, кг/м³ (принимается равной 2400) [82, с. 40]; $\rho_{\rm B}$ — плотность воздуха при $T_{\rm B}$ = 353 K и $\pi_{\rm p}$ = 0,25 · 10⁶ Па.

Величина ф равна:

$$\varphi = \frac{S_o}{S_p} = \frac{0.536}{119} = 0.0045$$

Тогда

$$\rho_{\rm B} = \frac{M_{\rm B} \pi_{\rm p} \cdot 273}{22.4T_{\rm B} \cdot 0.1 \cdot 10^6} = \frac{28.96 \cdot 0.25 \cdot 10^6 \cdot 273}{22.4 \cdot 353 \cdot 0.1 \cdot 10^6} = 2.5 \text{ Kr/m}^3$$
$$w_{\rm np} = 100 \cdot 0.0045 \sqrt{\frac{0.00015 (2400 - 2.5) \cdot 9.81}{2.5}} = 0.54 \text{ m/c}$$

Частицы катализатора не будут проваливаться в отверстия решетки, так как w_{0. p} ≫ w_{пр} (37,4 ≥ 0,54).

12. Количество получаемого водяного пара

Для отвода избыточного тепла во второй зоне устанавливают охлаждающий змеевик, в который подается вода с температурой $T'_2 = 373$ К. Из змеевика выходит насыщенный водяной пар с параметрами $\pi = 3,92 \cdot 10^6$ Па, $T''_2 = 522$ К.

Количество образующегося водяного пара:

$$G_{\rm B. n} = \frac{3600Q_{\rm o}}{i_{522} - i_{373}}$$

где Q_0 — количество тепла, отводимого из второй зоны, кВт; i_{522} и i_{373} — энтальпия соответственно водяного пара и воды при 522 и 373 К, кДж/кг.

Количество тепла, отводимого из второй зоны, определим из теплового баланса регенератора (табл. 3.20):

$$Q_0 = 554\ 338 - 546\ 230 = 8108\ \text{kBt}$$

Тогда

$$G_{\rm b.\ n} = \frac{3600 \cdot 8108}{2805 - 418,7} = 12\,230\,\,{\rm kg/m}$$

250

13. Поверхность охлаждающего змеевика

Расчет поверхности нагрева охлаждающего змеевика здесь не приводится; как и для всякого теплообменника его поверхность рассчитывается в следующем порядке:

1) находят коэффициент теплоотдачи от псевдоожиженного слоя катализатора к наружной поверхности змеевика; этот расчет рекомендуется проводить по формулам, имеющимся в литературе [115, 116];

2) определяют коэффициент теплоотдачи от внутренней поверхности труб змеевика к кипящей воде [117, с. 148];

3) вычисляют коэффициент теплопередачи от псевдоожиженного слоя катализатора к кипящей воде;

4) определяют поверхность охлаждения змеевика.

14. Циклоны регенератора

Рекомендации по выбору и расчету циклонов приведены на стр. 230, 231.

Далее определяют диаметры всех штуцеров и по соответствующим нормалям выбирают их размеры.

РЕАКТОРНЫЙ ВЛОК УОТАНОВКИ Каталитического риформинга Над алюмоплатиновым катализатором

Рассчитать реакционный блок установки каталитического риформинга бензина (состав которого приведен в табл. 3.24) над неподвижным слоем алюмоплатинового катализатора. Технологическая схема реакторного блока описана в литературе [103, с. 240; 118].

Производительность реакционного блока по сырью 3600 т/сут. Таблица 3.24

Относитель- ная		Фракционный состав					Углеводородный состав, масс. %		
плотность Р ²⁹³ 277	н. к.	10%	50%	90%	к. к.	аромати- ческие	нафте- новые	парафи- новые	
0,7288	329	348	385	428	453	12	38	50	

Исходными данными для расчета являются производительность реактора по сырью, углеводородный состав сырья, температура реакции, давление в начале процесса (на входе в реактор). Кроме того, на основе промышленных или лабораторных данных должны быть приняты: объемная скорость подачи сырья, количество циркулирующего водородсодержащего газа, число последовательных реакторов, количество катализатора и его распределение между реакторами.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РЕАКТОРНОГО БЛОКА

1. Принятие необходимых исходных величин и некоторые предварительные определения.

а. На основе промышленных и проектных данных принимаются: давление в начале процесса (первый реактор блока); температура, с которой сырье и циркулирующий газ подаются в первый реактор; объемная скорость подачи сырья; кратность циркуляции водородсодержащего газа и его состав, количество последовательно соединенных реакторов;

б. Рассчитывается мольный состав питания реактора и количества каждого компонента в циркулирующем газе.

в. Рассчитывается необходимое количество алюмоплатинового катализатора с предварительным распределением его по реакторам.

2. Расчет первого реактора.

а. Материальный баланс реактора рассчитывают по следующей схеме:

- определяют константу скорости реакции ароматизации;
- определяют константу химического равновесия реакции ароматизации;
- вычисляют уменьшение количества нафтеновых углеводородов в результате реакции ароматизации;
- определяют константу скорости реакции превращения нафтеновых углеводородов в парафиновые;
- определяют константу химического равновесия реакции превращения нафтеновых углеводородов в парафиновые;
- вычисляют увеличение количества нафтеновых углеводородов в результате реакции превращения парафиновых углеводородов в нафтеновые;
- определяют константу скорости реакции гидрокрекинга нафтеновых углеводородов;
- вычисляют уменьшение количества нафтеновых углеводородов в результате реакции гидрокрекинга;
- вычисляют уменьшение количества парафиновых углеводородов в результате реакции гидрокрекинга;
- рассчитывают материальный баланс реакций в реакторе;
- определяют состав газа, покидающего реактор;
- составляют материальный баланс реактора и определяют выходы продуктов риформинга.

б. Составляют тепловой баланс реактора с целью определения температуры выходящего из него потока.

в. Принимают тип реактора (радиальный или аксиальный) и определяют его диаметр и высоту.

3. Расчет второго реактора.

а. Выбирают температуру в начале процесса, имея в виду во втором реакторе практически полное превращение нафтеновых
углеводородов. Давление в этом реакторе должно быть несколько ниже, чем в первом.

б. Материальный баланс второго реактора рассчитывается в том же порядке, как это было сделано для первого реактора (п. 2a).

в. Расчет теплового баланса второго реактора аналогичен расчету для первого реактора (п. 26).

г. Определяются диаметр и высота реактора.

4. Расчет третьего реактора.

а. Температуру в начале процесса принимают равной температуре потока, выходящего из второго реактора.

б. Остальные расчеты ведутся также, как для первого и второго реакторов.

PACHET

1. Необходимые исходные данные и определения

Над платиновым катализатором при риформинге протекают следующие реакции [119—122]:

превращение нафтеновых углеводородов в ароматические:

$$C_n H_{2n} \rightleftharpoons C_n H_{2n-6} + 3H_2 \tag{1}$$

превращение нафтеновых углеводородов в парафиновые:

$$C_n H_{2n} + H_2 \rightleftarrows C_n H_{2n+2} \tag{2}$$

гидрокрекинг нафтеновых углеводородов:

$$C_n H_{2n} + \frac{n}{3} H_2 \rightarrow \frac{n}{15} (CH_4 + C_2 H_6 + C_3 H_8 + C_4 H_{10} + C_5 H_{12})$$
 (3)

гидрокрекинг парафиновых углеводородов:

$$C_n H_{2n+2} + \frac{n-3}{3} H_2 \rightarrow \frac{n}{15} (CH_4 + C_2 H_6 + C_3 H_8 + C_4 H_{10} + C_5 H_{12})$$
(4)

где *n* — углеродное число (число углеродных атомов в молекуле углеводорода).

Для указанных реакций можно записать четыре дифференциальных уравнения, описывающих уменьшение количества углеводородов в результате химических превращений:

$$-\frac{dN_{\rm H}}{dv_{R}} = k_{\rm I} p_{\rm H} - \frac{k_{\rm I}}{k_{\rm pI}} p_{\rm A} p_{\rm H_{2}}^{3}$$
(5)

$$-\frac{dN_{\rm H}}{dv_{R}} = k_{2} p_{\rm H} p_{\rm H_{2}} - \frac{k_{1}}{k_{\rm p2}} p_{\rm ff}$$
(6)

$$-\frac{dN_{\rm H}}{dv_{\rm R}} = k_3 \frac{p_{\rm H}}{\pi} \tag{7}$$

$$-\frac{dN_{\rm n}}{dv_{\rm R}} = k_4 \frac{p_{\rm H}}{\pi} \tag{8}$$

253

где $N_{\rm H}$, $N_{\rm m}$ — доля нафтеновых и парафиновых углеводородов в питании, подвергнутых химическому превращению, кмоль/кмоль; v_R — величина, обратная объемной скорости питания, кг катализатора/(кмоль/ч) сырья; k_1 — константа скорости реакции, определяемая из графика [120] (рис. 3.13), кмоль/(ч-Па·кг катализа-

Рис. 3.13. График для определения константы k₁.

Рис. 3.14. График для определения константы k₂.

тора); $p_{\rm H}$, $p_{\rm a}$, $p_{\rm n}$, $p_{\rm H_2}$ — парциальные давления нафтеновых, ароматических, парафиновых углеводородов и водорода, Па; $k_{\rm p1}$ — константа химического равновесия, Па³; k_2 — константа скорости реакции, определяемая из графика [120] (рис. 3.14), кмоль/(ч·Па²·кг катализатора); $k_{\rm p2}$ — константа химического равновесия, Па⁻¹; k_3 , k_4 — константы скорости реакции, определяемые из графика

Константы химического равновесия рассчитываются по уравнениям [120]:

$$\boldsymbol{k}_{\text{p1}} = 9,81^3 \cdot 10^{12} e^{46,15 - \frac{25}{T} \frac{600}{T}} \quad (9)$$

.

$$k_{\rm p2} = 98,1^{-1} \cdot 10^{-3} e^{\frac{4450}{T} - 7.12} \quad (10)$$

где *Т* — температура в реакторе, К.

Уточненная запись дифференциальных уравнений кине-

тики риформинга, используемых при машинных расчетах процесса, дается в работе [123, с. 14—20].

Уравнения (5—8) не учитывают состояния катализатора. Однако ввиду отсутствия в литературе сведений о зависимости степени химических превращений при риформинге от состояния катализатора [123, с. 15—16], из-за малого (всего 0,5—0,7%) содержания платины в катализаторе и возможности компенсации снижения активности катализатора некоторым повышением темпера-

1,25 1,30 1,35 100 - 1

0,500

Рис. 3.15. График для определения константы k₃ и k₄.

туры процесса, указанные уравнения обеспечивают достаточную точность при проектировании.

Для уменьшения коксовых отложений риформинг осуществляют при избытке водорода. С этой целью в блоке циркулирует водородсодержащий газ.

Основные реакции риформинга (1) и (3), (4) сопровождаются значительным увеличением объема, поэтому процесс протекает под повышенным давлением в интервале $(2 \div 4) \cdot 10^6$ Па [124, с. 134].

Примем давление в начале процесса (в первом реакторе блока) $\pi_{\rm H} = 3,43 \cdot 10^6 \,\, {\rm \Pi a} \,\, (35 \,\, {\rm ar}).$

Риформинг бензиновых фракций проводят в интервале температур 740—810 К [103, с. 221]. По мере отработки катализатора температуру повышают до 800—810 К. Примем в расчете температуру подачи сырья и циркулирующего газа в первый реактор $T_{Bx1} = 803$ К.

В промышленных реакторах объемная скорость подачи сырья равна 1—3 ч⁻¹ [118, с. 98; 124, с. 128; 125—128]. В расчете используем числовое значение объемной скорости подачи сырья $v_0 =$ = 1,5 ч⁻¹. Циркуляцию водородсодержащего газа поддерживают в интервале 900—1850 м³ (при нормальных условиях) на 1 м³ сырья [128, 129]. Примем кратность циркуляции газа по данным производства равной $n_r = 1500 \text{ м}^3/\text{м}^3$ [118, с. 14]. Содержание водорода в водородсодержащем газе достигает 85—93 объемн. % [130]. Примерный состав циркулирующего газа приведен в табл. 3.25 [124, с. 59].

Таблица 3,25

Компоненты	H ₂	CH₄	C₂H₀	C ₃ H ₈	C_4H_{10}	C_5H_{12}
Содержание, ооъемн. % · · · · · · · ·	86	4	5	3	1	1

В уравнениях (5—8) уменьшение количества углеводородов в питании в результате химических превращений выражено в мольных долях, а состав питания задан в массовых долях. Для пересчета состава питания воспользуемся формулой:

$$M_{\rm c} y_i = M_i y'_i$$

где M_c — средняя молекулярная масса сырья; M_i — средняя молекулярная масса *i*-го компонента (фракции) сырья; y_i — содержание *i*-го компонента в питании в массовых долях; y'_i — то же в мольных долях.

Среднюю молекулярную массу сырья рассчитаем по формуле [131]:

$$M_{\rm c} = 0.4T_{50} - 45$$

где T₅₀ — температура выкипания 50% бензина, К.

При температуре $T_{50} \doteq 385$ К (табл. 3.24) средняя молекулярная масса сырья равна:

 $M_{\rm c} = 0.4 \cdot 385 - 45 = 109$

Средние молекулярные массы ароматических, нафтеновых и парафиновых углеводородов питания можно рассчитать, исходя из условия, что число атомов *n* углерода в них будет одно и то же. Формулы для расчета молекулярных масс углеводородов питания даны в табл. 3.26.

Таблица 3.26

Углеводороды (компоненты)	Формула углеводорода	Формула для расчета молекулярной массы по углеродному числу
Ароматические Нафтеновые Парафиновые	$\begin{array}{c} C_n H_{2n-6} \\ C_n H_{2n} \\ C_n H_{2n+2} \end{array}$	$M_{a} = 12n + 1 (2n - 6) = 14n - 6$ $M_{H} = 12n + 1 \cdot 2n = 14n$ $M_{\pi} = 12n + 1 (2n + 2) = 14n + 2$

Для того чтобы рассчитать углеродное число *n* используем формулу:

$$M_{\rm c} = \frac{1}{\frac{y_{\rm a}}{M_{\rm a}} + \frac{y_{\rm H}}{M_{\rm H}} + \frac{y_{\rm \pi}}{M_{\rm \pi}}}$$

где $y_a, y_{\rm H}, y_{\rm II}$ — содержание ароматических, нафтеновых и парафиновых углеводородов в питании (табл. 3.24), масс. доли; $M_a, M_{\rm H}, M_{\rm II}$ — средние молекулярные массы углеводородов (табл. 3.26).

Формулу для подсчета величины Мс запишем так:

$$M_{\rm c} = \frac{1}{\frac{y_{\rm a}}{14n-6} + \frac{y_{\rm H}}{14n} + \frac{y_{\rm \pi}}{14n+2}}$$

После преобразований получим кубическое уравнение: $n^3 - \frac{1}{14}(M_c + 4)n^2 + \frac{1}{98} \{6 + (y_a - 2y_{_{\rm H}} - 3y_{_{\rm H}})M_c\}n + \frac{3}{686}y_{_{\rm H}}M_c = 0$

Графическое решение этого уравнения дает величину n = 7,7 [132, с. 116].

Если состав сырья задан в мольных долях, то для расчета углеродного числа можно воспользоваться формулой [119]:

$$n = \frac{1}{14} (M_{\rm c} - 2y'_{\rm n} + 6y'_{\rm a})$$

в которой y'_{π} и y'_{a} — содержание парафиновых и ароматических углеводородов в сырье, мол. доли.

Числовые значения молекулярных масс углеводородов:

$$M_{a} = 14n - 6 = 14 \cdot 7,7 - 6 = 101,8$$

$$M_{n} = 14n = 14 \cdot 7,7 = 107,8$$

$$M_{n} = 14n + 2 = 14 \cdot 7,7 + 2 = 109,8$$

Пересчет состава сырья сделан в табл. 3.27.

Таблица 3,27

	Молекуляр	Содержание в сырье		
Қомпоненты	ная масса M _i	<i>у_і.</i> масс. доли	$y'_{i} = y_{i} \frac{M_{c}}{M_{i}}$. мол. доли	
$C_n H_{2n-6}$	101,8 107,8 109,8 —	0,12 0,38 0,50 1,00	0,127 0,382 0,491 1,000	

Парциальные давления компонентов в сырье ввиду не очень высокого давления и значительного разбавления водородом рассчитаем по формуле:

$$p_i = \pi y'_i$$

где π— общее давление в аппарате, Па; y'_i — содержание *i*-го компонента в смеси газов, мол. доли.

Количество сырья (в кмоль) равно:

$$n_{\rm c1} = \frac{G_{\rm c}}{M_{\rm c}}$$

где G_с — количество сырья, кг/ч.

Рассчитаем величину Gc:

$$G_{\rm c} = \frac{3\,600 \cdot 1000}{24} = 150\,\,000\,\,{\rm kr/y}$$

Подставив числовое значение величины G_c в предыдущую формулу, получим:

$$n_{\rm c1} = \frac{150\ 000}{108.8} = 1\ 377\$$
кмоль/ч

Расчетные данные по количеству и составу сырья приведены в табл. 3.28.

Компоненты	Мольная доля	Количество п _{с11} =n _c y' _{с11} , кмоль/ч
С _n H _{2n-6}	0,127	174,8
С _n H _{2n}	0,382	526,0
С _n H _{2n+2}	0,491	676,2
Сумма	1,000	1377,0

Таблица 3,28

Количество водородсодержащего газа:

$$G_{\rm r} = \frac{G_{\rm c}}{\rho_{\rm c}} n_{\rm r}$$

тде n_r — кратность циркуляции газа, м³/м³; ρ_c — плотность сырья в жидком виде (при нормальных условиях), кг/м³.

Плотность сырья равна:

$$ρ_{c} = ρ_{277}^{293} \cdot 1000 = 0,7288 \cdot 1000 = 728,8$$
 кг/м³

Подставив в формулу числовые значения величин, найдем:

$$G_{\rm r} = \frac{150\ 000}{728.8} \cdot 1500 = 308\ 700\ {\rm m}^{3}/{\rm q}$$

Количество циркулирующего газа в кмолях равно:

$$n_{\rm r}' = \frac{G_{\rm r}}{22.4} = \frac{308\,700}{22.4} = 13\,770$$
 кмоль/ч

Данные по определению состава циркулирующего газа приведены в табл. 3.29.

Таблица 3,29

Компоненты		Молекуляр- ная масса <i>М_і</i>	Содержание У _{гі} (табл. 3.25), мол. доли	M ₁ y' _{r1}	Количество $n_{ri} = n_r^{\prime i'} p_{ri}^{\prime}$, кмоль/ч
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • • • • •	2 16 30 44 58 72 —	0,86 0,04 0,05 0,03 0,01 0,01 1,00	$ \begin{array}{c} 1,72\\ 0,64\\ 1,50\\ 1,32\\ 0,58\\ 0,72\\ M_{\Gamma} = 6,48 \approx 6,5 \end{array} $	11840,0 551,0 688,0 416,6 137,7 137,7 137,7

Общее количество парафиновых углеводородов в циркулирующем газе (табл. 3.29) равно:

13 770 — 11 840 = 1 930 кмоль/ч

Данные расчета по определению состава смеси сырья и водорода и парциальных давлений ее компонентов приведены в табл. 3.30.

Количество катализатора, необходимое для проведения реакции:

$$v_{\kappa} = \frac{G_{c}}{\rho_{c}v_{o}} = \frac{150\ 000}{728.8\cdot 1.5} = 137.2 \text{ m}^{3}$$

Насыпная масса алюмоплатинового катализатора равна $\rho_{\rm H} = 550-650$ кг/м³ [124, с. 164]. Приняв насыпную массу катализатора $\rho_{\rm H} = 600$ кг/м³, найдем количество катализатора:

 $G_{\rm b} = v_{\rm b} \rho_{\rm b} = 137,2 \cdot 600 = 82\,320\,\,{\rm kg}$

Таблица 3.30

Компоненты	Количество л _{зі} , кмоль/ч	Содержание $y'_{3l} = \frac{n_{3l}}{\sum_{MOЛ. ДОЛ. H} n_{3l}}$.	Парциальное давление $p_i = \pi_1 y'_{3i} = 3,43 \cdot 106 y'_{3i},$ Па
$C_n H_{2n-6} \cdots \cdots C_n H_{2n} \cdots \cdots C_n H_{2n+2} \cdots \cdots \cdots C_n H_{2n+2} \cdots \cdots \cdots \cdots \cdots H_2 \cdots \cdots$	174,8 526,0 676,2 11 840,0 1930,0	0,0114 0,0347 0,0446 0,7820 0,1273	$\begin{array}{c} 39,1\cdot 10^{3} \\ 119\cdot 10^{3} \\ 153\cdot 10^{3} \\ 2682\cdot 10^{3} \\ 436,9\cdot 10^{3} \end{array}$
Сумма	15 147,0	1,0000	3430 · 10 ³

Здесь и далее звездочкой обозначены парафиновые углеводороды циркулирующего водородсодержащего газа.

Риформинг бензиновых фракций осуществляют в блоке из трех или четырех последовательно соединенных реакторов. Примем число реакторов $n_p = 3$. Катализатор между реакторами распределяют в отношении 1:2:4. Общее количество катализатора первоначально распределим между тремя реакторами в указанном отношении (табл. 3.31). Последующим расчетом уточним распределение катализатора между реакторами.

	Количество катализатора		
Номер реактора	υ _{κί} , м ³	G _{кі} , кг	
1 2 3	19,6 39,2 78,4	11 760 23 520 47 040	
умма	137,2	82 320	

Таблица 3.31

2. Расчет первого реактора

Материальный баланс первого реактора. Константа скорости реакции ароматизации. Зная температуру подачи сырья в первый реактор $T_{\text{вх1}} = 803$ К, из графика (рис. 3.13) при $\frac{1000}{T_{\text{вх1}}} = \frac{1000}{803} = 1,245$ получим $k_1 = 314,5 \cdot 10^{-9}$ кмоль/(ч.Па кг катализатора).

Константа химического равновесия реакции ароматизации. При температуре T_{вх1} = 803 К по уравнению (9) найдем:

$$k_{\text{pl}} = 9,81^3 \cdot 10^{12} e^{46,15 - \frac{25\,600}{803}} = 14,96 \cdot 10^{20} \,\,\Pi a^3$$

Уменьшение количества нафтеновых углеводородов в результате реакции ароматизации. Подставив числовые значения найденных

величин в уравнение (5), определим относительное уменьшение количества нафтеновых углеводородов в реакторе в результате первой реакции:

$$\frac{dN_{\rm H}}{dv_R} = 314,5 \cdot 10^{-9} \cdot 119 \cdot 10^3 - \frac{314.5 \cdot 10^{-9}}{14,96 \cdot 10^{20}} \cdot 39,1 \cdot 10^3 \cdot 2682 \cdot 10^3 = 0,0374 \ \text{кмоль/(ч \cdot кг катализатора)}$$

После разделения переменных и интегрирования имеем:

 $-N_{\rm H11} = 0.0374 v_{\rm P1}$

Знак минус в левой части полученного уравнения указывает на уменьшение количества нафтеновых углеводородов в результате реакции их ароматизации, знак плюс в правой части - на преобладание прямой реакции. Если бы в правой части уравнения был получен знак минус, то преобладала бы обратная реакция.

Величина v_{R1} для первого реактора:

$$v_{R1} = \frac{G_{K1}}{n_{c1}} = \frac{11\,760}{1\,377} = 8,53$$
 кг катализатора/(кмоль/ч) сырья

где $n_{c1} = n_c - количество сырья, подаваемого в первый реактор.$ кмоль/ч.

Доля нафтеновых углеводородов, подвергнутых ароматизации, равна:

$$-N_{\rm HII} = 0,0374 \cdot 8,53 = 0,3108$$

Вычислим количество нафтеновых углеводородов, которое осталось после реакции ароматизации:

$$n_{\text{H11}} = (y'_{\text{cH1}} - N_{\text{H11}}) n_{\text{cl}} = (0,3820 - 0,3108) \cdot 1377 = 98$$
кмоль/ч

где $y'_{\rm cH^1}$ — мольная доля нафтеновых углеводородов в сырье (табл. 3.28).

Количество нафтеновых углеводородов, которое превратилось в ароматические углеводороды, равно:

$$n_{\text{Hal}} = n_{\text{сн}1} - a_{\text{Hl}1} = 526 - 98 = 428$$
 кмоль/ч

n_{сн1} — количество нафтеновых углеводородов в сырье гле (табл. 3.28).

Константа скорости реакции превращения нафтеновых углеводородов в парафиновые. При температуре сырья T_{вх1} = 803 К и $\frac{1000}{T_{\text{BX}, 1}} = 1,245$ из графика (рис. 3.14) найдем:

$$k_2 = 2,398 \cdot 10^{-15}$$
 кмоль/(ч · Па² · кг катализатора)

Константа химического равновесия реакции превращения нафтеновых углеводородов в парафиновые. При температуре T_{вх1} = = 803 К по уравнению (10) имеем:

$$k_{\rm p2} = 98,1^{-1} \cdot 10^{-3} e^{\frac{4\,450}{803}-7,12} = 0,00209 \cdot 10^{-3} \,\,\Pi a^{-1}$$

Величина $k_{p2} < 1$ указывает на преобладание обратной реакции — превращение парафиновых углеводородов в нафтеновые.

Увеличение количества нафтеновых углеводородов в результате реакции превращения парафиновых углеводородов в нафтеновые. Подставив числовые значения величин в уравнение (6), вычислим относительное увеличение количества нафтеновых углеводородов в реакторе в результате второй реакции:

$$\frac{dN_{\text{H12}}}{dv_{R1}} = 2,398 \cdot 10^{-15} \cdot 119 \cdot 10^3 \cdot 2682 \cdot 10^3 - \frac{2,398 \cdot 10^{-15}}{0,00209 \cdot 10^{-3}} \cdot 153 \cdot 10^3 = 0,5894 \cdot 10^{-3} \text{ кмоль/(ч \cdot кг катализатора)}$$

Разделяя переменные и интегрируя, получим долю парафиновых углеводородов, подвергнутых превращению в результате второй реакции:

$$N_{\rm H12} = 0,5894 \cdot 10^{-3} \cdot 8,53 = 0,0050$$

Количество нафтеновых углеводородов после проведения первой и второй реакций:

$$n_{\text{H12}} = (y'_{\text{CH1}} - N_{\text{H11}} + N_{\text{H12}})n_{\text{c1}} =$$

= (0,3820 - 0,3108 + 0,0050) · 1 377 = 105 кмоль/ч

Количество парафиновых углеводородов, превращенных в нафтеновые:

$$n_{\rm HII} = n_{\rm HI2} - n_{\rm HII} = 105 - 98 = 7$$
 кмоль/ч

Константа скорости реакции гидрокрекинга нафтеновых углеводородов. При $T_{\text{вх1}} = 803$ К и $\frac{1000}{T_{\text{вх. 1}}} = 1,245$ из графика (рис. 3.15) найдем $k_3 = 0,1$ кмоль/(ч-кг катализатора).

Уменьшение количества нафтеновых углеводородов в результате реакции гидрокрекинга. Подставив числовые значения величин в уравнение (7), определим относительное уменьшение количества нафтеновых углеводородов в реакторе в результате третьей реакции:

$$-\frac{dN_{H13}}{dv_{R1}} = 0,1 \frac{119 \cdot 10^3}{3.43 \cdot 10^6} = 0,00347 \text{ кмоль/(ч \cdot кг катализатора)}$$

Разделяя переменные и интегрируя, получим долю нафтеновых углеводородов, подвергнутых гидрокрекингу:

$$-N_{H13} = 0,00347v_{R1} = 0,00347 \cdot 8,53 = 0,0296$$

Количество нафтеновых углеводородов, которое осталось после проведения первых трех реакций:

$$n_{\text{H13}} = (y'_{\text{CH1}} - N_{\text{H11}} + N_{\text{H12}} - N_{\text{H13}}) n_{\text{C1}} =$$

= (0,3820 - 0,3108 + 0,0050 - 0,0296) · 1 377 = 64,1 кмоль/ч

261

Количество нафтеновых углеводородов, которое подвергнуто гидрокрекингу:

$$n_{\rm Hr1} = n_{\rm H12} - n_{\rm H13} = 105 - 64, 1 = 40,9$$
 кмоль/ч

Уменьшение количества парафиновых углеводородов в результате реакции гидрокрекинга. По уравнению (8) вычислим относительное уменьшение количества парафиновых углеводородов в реакторе в результате четвертой реакции:

 $-\frac{dN_{\Pi 1}}{dv_{R1}}=0,1$ $\frac{153\cdot 10^3}{3.43\cdot 10^6}=0,00446$ кмоль/(ч · кг катализатора)

При этом следует иметь в виду, что константы скоростей реакций гидрокрекинга нафтеновых и парафиновых углеводородов равны $k_3 = k_4 = 0,1$ кмоль/(ч·кг катализатора).

Доля парафиновых углеводородов, подвергнутых гидрокрекингу:

$$-N_{\pi 1} = 0,00446v_{R1} = 0,00446 \cdot 8,53 = 0,0381$$

Количество парафиновых углеводородов питания, которое осталось после реакции гидрокрекинга:

$$n_{\text{п14}} = (y'_{\text{сп1}} - N_{\text{п1}}) n_{\text{с1}} = (0,4910 - 0,0381) \cdot 1377 = 623,8$$
 кмоль/ч

где y'_{cn1} — мольная доля парафиновых углеводородов в сырье реактора (табл. 3.28).

Количество парафиновых углеводородов, которое подверглось гидрокрекингу и превратилось в газ, равно:

$$n_{\rm nr1} = n_{\rm n1} - n_{\rm n14} = 676, 2 - 623, 8 = 52, 4$$
 кмоль/ч

Материальный баланс реакций в реакторе. На основе рассчитанного количества прореагировавшего сырья и стехиометрических уравнений (1)—(4) в табл. 3.32 сделан расчет материального баланса реакций.

Таблица 3,32

Количество компонентов, вступивших в реакцию, кмоль/ч	Количество продуктов реакции, кмоль/ч
$\frac{1}{428} C_n H_{2n}$ $7C_n H_{2n+2}$	$\begin{vmatrix} 428 & C_n H_{2n-6} + 428 \cdot 3H_2 \\ 7C_n H_{2n} + 7H_2 \end{vmatrix}$
$40,9C_nH_{2n} + 40,9\frac{n}{3}H_2$	$40.9 \frac{n}{15} (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12})$
$52,4C_nH_{2n+2} + 52,4 \frac{n-3}{3}H_2$	$52,4 \frac{n}{15} (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12})$

Из табл. 3.32 следует, что в результате гидрокрекинга получается углеводородный газ, который обогатит циркулирующий газ. Количество углеводородного газа, образовавшегося в реакторе, при n = 7,7 равно:

$$(40,9+52,4) \frac{7,7}{15} (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12}) =$$

= 47,9 (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12})

Состав газа, покидающего реактор. Состав газа, покидающего реактор (табл. 3.33), рассчитаем на основе данных табл. 3.26, 3.28, 3.29 и 3.32. Этот расчет необходим для составления материального баланса реактора.

Таблица	3.33
, aomaqu	0.00

¥

Компоненты	Приход, кмоль/ч	Расход, кмоль/ч
$C_nH_{2n-6} \dots C_nH_{2n} \dots C_nH_{2n+2} \dots C_nH_{2n+2} \dots C_nH_{2n+2} \dots C_nH_{2n+2} \dots \dots$	174,8 526,0 676,2 1377,0	174,8 + 428 = 602,8 526,0 - 428 + 7 - 40,9 = 64,1 676,2 - 7 - 52,4 = 616,8 1283,7
Циркулирую- щий газ		77 77-3
H ₂	11 840,0	$11840 + 428 \cdot 3 + 7 - 40,9 \frac{7,7}{3} - 52,4 \frac{7,7-3}{3} = 12943,7$
$\begin{array}{ccccc} CH_4 & \ldots & \ldots & \ldots & \ldots \\ C_2H_6 & \ldots & \ldots & \ldots & \ldots \\ C_3H_8 & \ldots & \ldots & \ldots & \ldots \\ C_4H_{10} & \ldots & \ldots & \ldots & \ldots \\ C_5H_{12} & \ldots & \ldots & \ldots \end{array}$	551,0 688,0 415,6 137,7 137,7	551,0 + 47,9 = 598,9 688,0 + 47,9 = 735,9 415,6 + 47,9 = 463,5 137,7 + 47,9 = 185,6 137,7 + 47,9 = 185,6
Сумма	13 770,0	15 113,2
Всего	15 147,0	16 396,9

Материальный баланс реактора. Материальный баланс реактора составляется для определения выхода продуктов риформинга.

Таблица 3.34

Компоненты	Молекуляр- ная масса <i>М_і</i>	Количество <i>п</i> і, кмоль/ч	Содержание $y'_{11i} = \frac{n_i}{\sum_{MOЛ. ДОЛИ} n_i}$	M _i y' _{r1t}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 30 44 58 72	12 943,7 598,9 735,9 463,5 185,6 185,6	0,8570 0,0396 0,0486 0,0306 0,0121 0,0121	1,72 0,63 1,46 1,35 0,70 0,87
Сумма	-	15 113,2	1,0000	6 , 73 ≈ 6 , 7

Средняя молекулярная масса водородсодержащего газа на выходе из реактора рассчитана в табл. 3.34.

Средние молекулярные массы углеводородов C_nH_{2n-6} , C_nH_{2n} и C_nH_{2n+2} , покидающих реактор, не будут равны соответствующим числовым значениям величин на входе в реактор. Рассчитаем новые числовые значения средних молекулярных масс указанных углеводородов.

Количество обогащенного циркулирующего газа на выходе из реактора (табл. 3.34):

15113,2 · 6,7 = 101 200 кг/ч

Таблица 3,35

₩ Компоненты	Количество n _i , кмоль/ч	Содержание $y'_{i} = \frac{n_{i}}{\sum_{\text{мол. долн}} n_{i}}$.	Средияя молекуляриая масса ^М і	Количество G _i =n _i M _i , кг/ч
Приход С _n H _{2n-6} С _n H _{2n} С _n H _{2n+2} H ₂ С _n H _{2n+2} * С _y MMa	174,8 526,0 676,2 11840,0 1930,0 15147,0	0,0114 0,0347 0,0446 0,7820 0,1273 1,0000	101,8 107,8 109,8 6,5 —	17 950 57 250 74 800 89 500 239 500
Расход С _n H _{2n-6} С _n H _{2n} C _n H _{2n+2} H ₂ С _n H _{2n+2} * Сумма	602,8 64,1 616,8 12943,7 2169,5 16396,9	0,0368 0,0033 0,0376 0,7900 0,1323 1,0000	103,3 109,3 111,3 6,7	62 350 7 140 68 810 101 200 239 500

Из материального баланса реактора следует, что количество углеводородов, покидающих реактор, равно разности между количеством всего газового потока и количеством обогащенного водородсодержащего газа:

239 500 - 101 200 = 138 300 кг/ч

Напишем уравнение материального баланса для углеводородов, покидающих реактор:

 $138\,300 = 602,8C_nH_{2n-6} + 64,1C_nH_{2n} + 616,8C_nH_{2n+2}$

С учетом данных табл. 3.26 это уравнение принимает вид:

 $138\,300 = 602,8(14n - 6) + 64,1 \cdot 14n + 616,8(14n + 2)$

После вычисления найдем, что углеродное число равно n = 7,82. Принятое ранее при расчете количества образовавшегося газа n = 7,7 не могло привести к существенной погрешности в расчетах. Числовые значения молекулярных масс углеводородов, покидающих реактор:

 $M_{a} = 14n - 6 = 14 \cdot 7,82 - 6 = 103,3$ $M_{H} = 14n = 14 \cdot 7,82 = 109,3$ $M_{n} = 14n + 2 = 14 \cdot 7,82 + 2 = 111,3$

Тепловой баланс первого реактора. Основные реакции (1)—(2) риформинга протекают с поглощением тепла. Перепад температуры в реакторах зависит от группового углеводородного состава сырья и от температуры реакции. В первом реакторе перепад температуры может достигать 35—80 К, во втором 8—40 К и в третьем 0—17 К [118, с. 105; 121; 127; 133; 134].

Уравнение теплового баланса реактора в общем виде:

$$Q_1 = Q_2 + Q_3 + Q_4$$

Левая часть уравнения учитывает приход тепла с сырьем и циркулирующим газом (в кВт).

Правая часть уравнения учитывает расход тепла (в кВт): Q_2 — на реакции риформинга; Q_3 — с продуктами реакций и циркулирующим газом; Q_4 — потери в окружающую среду.

Рассчитаем энтальпию газового потока на входе в аппарат. Предварительный расчет показывает, что ввиду не очень высокого давления и значительного разбавления водородом поправка на давление величины энтальпии не требуется. Состав потока (табл. 3.24, 3.25 и 3.35) в мольных долях пересчитаем в массовые доли. Данные по энтальпии при температуре $T_{\rm вх1} = 803$ К для водорода, метана, этана, пропана, бутана и пентана можно найти в справочной литературе [21, 58]. Для ароматических $C_n H_{2n-6}$, нафтеновых $C_n H_{2n}$ и парафиновых $C_n H_{2n+2}$ углеводородов сырья числовые значения энтальпии определяются по таблице (см. Приложение 3). При этом возникает необходимость расчета относительной плотности углеводородов при температуре 288 К по известной величине их молекулярной массы [44, с. 37, 39]. Найденные значения относительной плотности углеводородов даны в табл. 3.36.

	Относительна	я плотность р ²⁸⁸ 288
Углеводороды	на входе в реактор	на выходе из реактора
Ароматические Нафтеновые Парафиновые	0,718 0,731 0,733	0,722 0,733 0,737

Таблица 3,36

Молеку- Ко.	Количе- ство	Содержание		Содержание <i>М.ц</i> ,	Энтальпия, кДж/кг		
Компоненты	масса М _i	n _i , кмоль/ч	$y_i = \sum_{\text{мол. доли}} n_i$,	^M i ^y i	$y_i = \frac{1 - 1}{M_{CM}},$ масс. доли	$q_{T_i}^{\Gamma}$	${}^{q}{}^{\mathbf{r}}_{T_{i}}{}^{y}{}_{i}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 30 44 58 72 101,8 107,8 109,8 -	11 840,0 551,0 668,0 415,6 137,7 137,7 174,8 526,0 676,2 15147,0	0,7820 0,0363 0,0454 0,0274 0,0091 0,0091 0,0114 0,0347 0,0446 1,0000	1,56 0,58 1,36 1,21 0,53 0,66 1,16 3,74 4,88 15,68 ≈ ≈ 15,7	0,0999 0,0371 0,0870 0,0770 0,0337 0,0418 0,0742 0,2387 0,3106 1,0000	7700 1618 1434 1405 1400 1392 1713 1704 1703 	769,0 59,9 124,8 108,2 47,2 58,2 127,0 407,5 528,8 2230,6

Расчет энтальпии питающей смеси приведен в табл. 3.37.

Таблица З.37

Тепловой эффект реакции рассчитать, пользуясь законом Гесса, нельзя из-за незнания детального химического состава сырья и продуктов реакции. Поэтому воспользуемся формулой [124, с. 90]:

$$q_{\rm p} = -335b$$

где b -- выход водорода в расчете на исходное сырье, масс.%.

Из материального баланса реактора (табл. 3.35) следует, что в результате риформинга получен водород в количестве:

или

$$G_{\rm H_2} = 1103,7 M_{\rm H_2} = 1103,7 \cdot 2 = 2207,4$$
 кг/ч

Тогда

$$b = \frac{2207.4 \cdot 100}{150\ 000} = 1,473 \text{ macc. }\%$$

а тепловой эффект реакции

Тепловой эффект реакции платформинга лежит в пределах 356—838 кДж на 1 кг исходного сырья [135].

Тепловой баланс реактора с учетом принятой величины теплопотерь в окружащую среду в количестве $Q_4 = 0,01Q_1 = 0,01 \cdot 5,34 \cdot 10^6 = 5,34 \cdot 10^6$ кДж/ч приведен в табл. 3.38.

Величина Q₃ равна

$$Q_3 = 239\,500 q_{T_{\rm Bbix. \, I}}^{\rm r}$$

Из теплового баланса реактора имеем (см. табл. 3.38): $Q_3 = Q_1 - Q_2 - Q_4 = 148,3 \cdot 10^3 - 20,5 \cdot 10^3 - 1,48 \cdot 10^3 = 126.3 \cdot 10^3 \text{ кBr}$

Тогда

 $q_{T_{\text{вых. 1}}}^{r} = \frac{126,3 \cdot 10^{3} \cdot 3600}{239\,500} = 1900 \text{ кДж/кг}$

Таблица 3,38

Потоки	Темпера тура, К	Количество, кг/ч	Энтальпия, кДж/кг	Количество тепла, кВт
Приход				
Q_1	$T_{\text{BX. I}} = 803$	239 500	2230,6	$148,3 \cdot 10^{3}$
Сумма	-	239 500	-	148,3 · 10 ³
Расход				
Q,			493,2	20,5 · 10 ³ *
Q_3	Т _{вых. 1}	239 500	$q_{T_{\text{Bbl}X,1}}^{\Gamma}$	Q_3
Q_4	Прини	мается	-	1,48 · 10 ³
Сумма	_	239 500		148,3 · 10 ³
* Из расчета на 150 000 кг/ч	сырья реактор	,)a.		

Для определения числового значения температуры $T_{\text{вых. 1}}$ потока, покидающего реактор, необходимо рассчитать состав смеси на выходе из реактора и построить вспомогательный график зависимости $q_{T_{\text{вых. 1}}}^{r} = f(T_{\text{вых. 1}}).$

Состав газа, покидающего реактор, рассчитан на основе данных табл. 3.33 и представлен в табл. 3.39.

Таблица 3,39

Компоненты	Молеку- лярная масса М _і	Количество <i>п_i,</i> кмоль/ч	Содержание $y'_{i} = \frac{n_{i}}{\sum_{MOЛ. ДОЛИ} n_{i}}$.	M _i y'	Содержание $y_i = \frac{M_i y'_i}{M_{CM}},$ масс. доли
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 30 44 58 72 103,3 109,3 111,3	12 943,7 598,9 735,9 463,5 185,6 185,6 602,8 64,1 616,8 16 396,9	0,7893 0,0366 0,0499 0,0283 0,0113 0,0113 0,0368 0,0039 0,0376 1,0000	$1,58 \\ 0,58 \\ 1,35 \\ 1,25 \\ 0,65 \\ 0,81 \\ 3,80 \\ 0,43 \\ 4,19 \\ 14,64 \approx 14,6$	0,1079 0,0400 0,0921 0,0851 0,0447 0,0556 0,2585 0,0304 0,2857 1,0000

Для построения вспомогательного графика зависимости $q_{T_{\text{вых. 1}}}^{r} = f(T_{\text{вых. 1}})$ зададимся двумя ориентировочными числовыми значениями температуры: 713 К и 743 К. Значения энтальпии при этих температурах рассчитаны в табл. 3.40.

Таблица З	3.40
-----------	------

		Энтальпия, кДж/кг			
Содержание Компоненты ^у і	713 K		743 K		
	масс. доли	<i>q</i> _{<i>T</i>} ^r _{<i>i</i>}	q_T_iy_i	^q ^r _t	$q_{T_i}^{\mathbf{r}} y_i$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,1079 0,0400 0,0921 0,0851 0,0447 0,0556 0,2585 0,0304 0,2857 1,0000	6374 1274 1120 1098 1095 1090 1408 1402 1399	687,0 51,0 103,1 93,4 49,2 61,6 364,0 42,6 400,0 1851,9	6818 1383 1223 1196 1193 1186 1504 1500 1497	735,2 55,3 112,5 101, 8 53,6 65,9 388,8 45,6 427,8 1986,5

Вспомогательный график $q_{T_{BЫX, 1}}^r = f(T_{BЫX, 1})$, построенный по данным табл. 3.40, представлен на рис. 3.16. Из него найдем, что энтальпии $q_{T_{BЫX, 1}}^r = 1\,900$ кДж/кг соответствует температура $T_{BЫX, 1} = 724$ К.

> Перепад температуры в первом реакторе равен

> $\Delta T_1 = T_{\text{BX, I}} - T_{\text{Bblx, I}} = 803 - 724 = 79 \text{ K}$

Оптимальное снижение температуры процесса в первом реакторе составляет 40—50 К, во втором 20—25 К и в третьем 7—10 К. В данном случае с целью сокращения расчетов второго и третьего реакторов принято максимальное значение перепада температуры.

Основные размеры реактора. Диаметр реактора рассчитаем так, чтобы перепад давления $\Delta \pi_{c \pi. l}$ в слое катализатора не превышал допустимого значения [$\Delta \pi_{c \pi. l}$].

На укрупненных установках применяют реакторы с радиальным вводом сырья [118, с. 116]. Схема к расчету размеров реактора с радиальным вводом дана на рис. 3.17. Аппарат представляет собой сосуд с внутренним перфорированным стаканом 3,

Рис. 3.16. График зависимости $q_{T_{\text{вых. 1}}}^{r} = f(T_{\text{вых. 1}}).$

куда загружают катализатор 2. Газосырьевая смесь поступает через ввод 8 в кольцевой зазор между футеровкой 10 и стаканом 3, проходит в радиальном направлении через слой катализатора и выводится через перфорированную трубу 7.

Величину [Δл_{сл.1}] для реактора примем по данным укрупнен- *8* ной установки (табл. 3.41):

$$[\Delta \pi_{c.n.1}] = 0.5 \frac{0.158 \cdot 10^6}{n_p} =$$

= 0.5 $\frac{0.158 \cdot 10^6}{3} = 26\,300 \,\Pi a =$
= 0.0263 \cdot 10^6 \ \Pi a

где 0,5 — доля гидравлического сопротивления слоя в общем гидравлическом сопротивлении реактора.

Последующим расчетом принятое значение должно быть полтверждено.

Для расчета величины $\Delta \pi_{c.n...}$ воспользуемся формулой [62, с. 63]:

$$\frac{\Delta \pi_{\mathrm{c.r. 1}}}{H_{\mathrm{1}}} = \frac{255 \left(1 - \lambda\right)^{1.35}}{\lambda^{0.29}} \cdot \frac{w^2 \rho_{\mathrm{cM}}}{d_{\mathrm{2}}} \left(\frac{v_{\mathrm{cM}}}{d_{\mathrm{2}}w}\right)^{0.35}$$

где $\frac{\Lambda\pi_{cn.1}}{H_1}$ — потери напора на 1 м высоты (толщины) слоя катализатора в реакторе, Па/м; λ — порозность слоя; w — скорость фильтрования, м/с; ρ_{cm} плотность газов, кг/м³; v_{cm} — кинематическая вязкость, м²/с; d_3 эквивалентный диаметр частиц катализатора, м.

1-корпус; 2-катализатор; 3-перфорированый стакан с сеткой; 4-сетка; 5шарики фарфоровые; 6-штуцер для эжекции газов; 7-перфорированная труба; 8-штуцер для входа сырья; 9-штуцер для выхода продуктов реакции; 10-футеровка.

Порозность слоя катализатора при допущении упорядоченного расположения частиц катализатора равна:

$$\lambda = \frac{v_{\rm m}}{v_{\rm ky6}}$$

где $v_{\rm m}$ — объем шара, эквивалентный объему частицы катализатора цилиндрической формы, м³; $v_{\rm куб}$ — объем куба, описанного вокруг шара, м³.

Установка Гидравлическое сопротивление реакторов, 106 Па Каталитического риформинга 0,435 Комбинированная установка — секция риформинга . . 0,52 Укруппенная установка — секция риформинга 0,158

Таблица 3.41

Цилиндрические частицы алюмоплатинового катализатора риформинга имеют диаметр 2—3 мм и высоту 4—5 мм. Если принять диаметр цилиндрика равным d = 0,003 м и высоту равной H = 0,005 м, то

 $v_{\rm m} = \frac{\pi d^2}{4} H = \frac{3.14 \cdot 0.003^2}{4} \cdot 0.005 = 35.35 \cdot 10^{-9} \,\,{\rm m}^3$

Сторона куба, описанного вокруг шара, равна эквивалентному *d*₂ диаметру этого шара:

$$d_{9} = \sqrt[3]{\frac{6v_{\text{III}}}{\pi}} = \sqrt[3]{\frac{6\cdot 35.35\cdot 10^{-9}}{3.14}} = 4.06\cdot 10^{-3} \text{ M}$$

Числовое значение порозности при $v_{\rm куб} = d_{\rm s}^3$:

$$\lambda = \frac{35,35 \cdot 10^{-9}}{(4,06 \cdot 10^{-3})^3} = 0,524$$

Скорость радиального фильтрования газовой смеси в наиболее узком сечении у сетки трубы:

$$w = \frac{v_{\rm cek}}{F_{\rm c}}$$

где v_{cek} — объем газов, проходящих через свободное сечение реактора, м³/с; F_c — площадь сетки у трубы (см. рис. 3.17), м².

Величину vсек найдем по формуле:

$$v_{\rm cek} = \frac{22,4GT_{\rm cp.\ 1} \cdot 0.1 \cdot 10^6 Z}{3\,600M_{\rm cp} \cdot 273\pi_{\rm cp.\ 1}}$$

где G — количество газовой смеси в реакторе (табл. 3.35), кг/ч; $T_{\rm cp.1}$ — средняя температура в реакторе, К; Z = 1 — коэффициент сжимаемости газа, значительно разбавленного водородом; $M_{\rm cp}$ — средняя молекулярная масса газовой смеси (табл. 3.39); $\pi_{\rm cp.1}$ — среднее давление в реакторе, Па.

Средняя температура в реакторе равна:

$$T_{\text{cp. 1}} = \frac{T_{\text{BX, 1}} + T_{\text{BbIX, 1}}}{2} = \frac{803 + 724}{2} = 763,5 \text{ K}$$

Среднее давление в реакторе примем равным:

$$\pi_{cp.\ 1} = \frac{\pi_1 + \pi_1 - [\Delta \pi_{c\pi.\ 1}]}{2} =$$
$$= \frac{3,43 \cdot 10^6 + 3,43 \cdot 10^6 - 0.0263 \cdot 10^6}{2} = 3,42 \cdot 10^6 \ \Pi a$$

Тогда

$$v_{\rm cer} = \frac{22.4 \cdot 239\,500 \cdot 763.5 \cdot 0.1 \cdot 10^{6} \cdot 1}{3\,600 \cdot 14.6 \cdot 273 \cdot 3.42 \cdot 10^{6}} = 8,25 \text{ m}^{3}/\text{c}$$

Площадь сетки у трубы:

$$F_{\rm c} = \pi D_{\rm c} H_{\rm c}$$

где D_c — диаметр сетки у трубы, м; H_c — высота сетки, м. Примем диаметр реактора $D_{p1} = 2,4$ м, диаметр сетки $D_c =$

= 0,5 м. Высоту сетки вычислим по формуле:

$$H_{\rm c} = H_{\rm c...} - 0.4$$

где $H_{\text{сл. 1}}$ — высота слоя катализатора в реакторе, м. Высота слоя катализатора в стакане:

$$H_{\mathbf{c}\pi,\mathbf{i}} = \frac{v_{\mathbf{K}\mathbf{i}}}{F}$$

где F — площадь кольцевого сечения между стаканами, м². Величину F найдем следующим образом:

$$F = \frac{\pi \left[(D_{p1} - 2\delta - 2 \cdot 0.02)^2 - D_c^2 \right]}{4} = \frac{3.14 \left[(2.4 - 2 \cdot 0.04 - 2 \cdot 0.02)^2 - 0.5^2 \right]}{4} = 3,88 \text{ M}^2$$

Тогда

$$H_{\text{cn. t}} = \frac{19.6}{3.88} = 5,06 \text{ m}; \quad H_{\text{c}} = 5,06 - 0,4 = 4,66 \text{ m}$$

а площадь сетки у трубы

$$F_{\rm c} = 3,14 \cdot 0,5 \cdot 4,66 = 7,31 \,{\rm M}^2$$

Подставив числовые значения величин в формулу для расчета скорости фильтрации, получим:

$$w = \frac{8,25}{7,31} = 1,13$$
 M/C

Плотность газовой смеси на выходе из реактора:

$$\rho_{\rm cm} = \sum \rho_i y_i'$$

где ρ_i — плотность компонентов газовой смеси, кг/м³; y'_i — содержание компонентов в газовой смеси (табл. 3.35), мол. доли (объемн. доли).

Плотность компонентов газовой смеси при средней температуре $T_{\rm cp.\,I} = 763$ К в реакторе:

$$\rho_i = \frac{M_i \pi_{\rm cp.\,1} 273}{22,4 \cdot 0.1 \cdot 10^6 T_{\rm cp.\,1}}$$

где M_i — средние молекулярные массы компонентов (табл. 3.35). Результаты расчета плотности даны в табл. 3.42.

Компоненты	Содержание У _і , мол. доли	Плотность <i>Ф_і.</i> кг/м ³	ρ _i y _i , κr/м ³
$ \begin{array}{c} C_n H_{2n-6} \\ C_n H_{2n} \\ C_n H_{2n} \\ C_n H_{2n+2} \\ \end{array} $	0,0368 0,0033 0,0376	57,70 60,90 62,00	2,124 0,201 2,332
$ \begin{array}{c} H_2\\ C_nH_{2n+2} \end{array} \right\} \cdot \cdot \cdot \cdot \cdot \left \begin{array}{c} \\ \end{array} \right $	0,9223	3,73	3,440
Сумма	1,0000	-	8,097

Таблица 3.42

Кинематическую вязкость газовой смеси в нашем случае вычислим по формуле Манна [21, с. 65]:

$$\mathbf{v}_{\rm CM} = \frac{1}{\frac{y_1'}{v_1} + \frac{y_2'}{v_2} + \dots + \frac{y_n'}{v_n}}$$

где y'_1, y'_2, \ldots, y'_n — содержание компонентов в газовой смеси, покидающей реактор, мол. доли; v_1, v_2, \ldots, v_n — кинематическая

Рис. 3.18. Зависимость динамической вязкости паров углеводородов от молекулярной массы при T = 273 К.

вязкость компонентов при средней температуре в реакторе, м²/с.

Кинематическая вязкость водорода, метана, этана, пропана, бутана и пентана при температуре $T_{\rm cp.\ 1} = 763$ К дана в табл. 3.43 [21, с. 56, 57]. Кинематическая вязкость углеводородов $C_n H_{2n-6}$, $C_n H_{2n}$ и $C_n H_{2n+2}$ при температуре $T = T_{\rm cp.\ 1}$ рассчитывается по формуле:

$$v_T = \frac{\mu_T}{\rho_T}$$

где μ_T — динамическая вязкость, Па·с; ρ_T — плотность углеводородов (табл. 3.42), кг/м³.

Динамическая вязкость углеводородов [21, с. 53]:

$$\mu_T = \mu_{273} \frac{273 + C}{T + C} \left(\frac{T}{273}\right)^{1.5}$$

где μ_{273} — динамическая вязкость углеводорода при температуре 273 К, Па·с; $T = T_{cp.1}$ — температура' (средняя) в реакторе, К; $C = 1,22 T_{кип}$; $T_{кип}$ — температура кипения углеводорода, К.

Динамическую вязкость μ_{273} углеводородов по известной величине их средней молекулярной массы M_i можно определить по рис. 3.18, а температуру кипения — по рис. 3.19 [21, с. 15].

Без ущерба для точности расчета кинематической вязкости углеводородов C_nH_{2n-6}, C_nH_{2n} и C_nH_{2n+2} можно принять величины

Рис. 3.19. Номограмма для определения характеристик топлива по двум заданным параметрам.

их динамической вязкости при температуре $T_{\rm cp.\ 1} = 763$ К одинаковыми и равными $\mu_{763} = 16\cdot 10^{-6}$ Па·с.

Результаты расчетов кинематической вязкости углеводородов даны в табл. 3.43.

Таблица 3.43

Компоненты	Мольная доля у _і (табл. 3.39)	Кинематическая вяз- кость при температуре $T_{\rm cp.1}$ =763К, 10^{-6} м ² /c	$\frac{v'_i}{v_i \cdot 10^6}$
$\begin{array}{c} H_2 & \dots & \dots \\ CH_4 & \dots & \dots \\ C_2H_6 & \dots & \dots \\ C_3H_8 & \dots & \dots \\ C_4H_{10} & \dots & \dots \\ C_5H_{12} & \dots & \dots \\ C_nH_{2n}-6 & \dots & \dots \\ C_nH_{2n}+2 & \dots & \dots \end{array}$	0,7893 0,0366 0,0499 0,0283 0,0113 0,0113 0,0113 0,0368 0,0039 0,0376	$522,90\\ 88,83\\ 45,32\\ 27,53\\ 19,73\\ 15,22\\ 0,277\\ 0,263\\ 0,258$	0,001510 0,000411 . 0,000988 0,001025 0,000573 0,000743 0,132800 0,013300 0,145600
Сумма	1,0000	-	0,29695 · 10 ⁵

Кинематическая вязкость газовой смеси, согласно формуле Манна и данных табл. 3,43, равна

$$v_{\rm cm} = \frac{1}{0.29695 \cdot 10^6} = 3,368 \cdot 10^{-6} \, \, {\rm m}^2/{\rm c}$$

Подставив в формулу для расчета потери напора числовые значения величин, получим:

$$\frac{\Delta \pi_{\text{c.r. 1}}}{H_1} = \frac{255 \left(1 - 0.524\right)^{1.35}}{0.524^{0.29}} \cdot \frac{1.13^2 \cdot 8.097}{4.06 \cdot 10^{-3}} \left(\frac{3.308 \cdot 10^{-6}}{4.06 \cdot 10^{-3} \cdot 1.13}\right)^{0.35} = 28\ 800\ \text{Ta/M}$$

Толщина слоя катализатора в стакане (рис. 3.17):

$$H_1 = \frac{D_{\text{p1}} - 2\delta - 2 \cdot 0.02 - D_{\text{c}}}{2} = \frac{2.4 - 2 \cdot 0.04 - 2 \cdot 0.02 - 0.5}{2} = 0.89 \text{ M}$$

Потеря напора в слое катализатора:

$$\Delta \pi_{c.n.1} = 28\,800 \cdot 0,89 = 25\,600 \, \Pi a$$

Полученная числовая величина $\Delta \pi_{cr. 1} = 25\,600$ Па не превышает [$\Delta \pi_{cr. 1}$] = 26 300 Па. При получении $\Delta \pi_{cr. 1} > [\Delta \pi_{cr. 1}]$ необходимо уменьшить толщину слоя катализатора, что достигается уменьшением диаметра D_{p1} аппарата.

Полная высота реактора равна (рис. 3.17):

$$H_{n1} = H_{cn.1} + 0.2 + D_{p1} + 0.225 + D_{p1} + 0.425 =$$

= 5.06 + 0.2 + 2.4 + 0.225 + 2.4 + 0.425 = 10.71 M

Далее рассчитывают диаметры всех штуцеров и по соответствующим нормалям выбирают их окончательные размеры.

3. Расчет второго реактора

Материальный баланс реактора. Материальный баланс реактора рассчитывается на основе уравнений (5)—(8). Температуру в начале процесса можно подобрать так, чтобы во

Қомпоненты	Количество л _{с2і} (табл. 3,35). кмоль/ч	Содержание $y'_{c2l} = \frac{n_{c2l}}{\sum n_{c2l}}$ мол доли
C _n H _{2n - 6}	602,8	0,4694
$\begin{array}{c} C_n H_{2n} \\ C_n H_{2n+2} \\ C_n H_{2n+2} \\ \end{array}$	64,1 616,8	0,0499 0,4807
Сумма	1283,7	1,0000

Таблица 3,44

втором реакторе было практически исчерпано нафтеновое сырье. Давление во втором реакторе обычно ниже, чем в первом реакторе, на величину $\Delta \pi_1 = (0,15 \div 0,30) \cdot 10^6$ Па. Примем величину давления во втором реакторе, равной

 $\pi_2 = \pi_1 - \Delta \pi_1 = 3.43 \cdot 10^6 - 0.30 \cdot 10^6 = 3.13 \cdot 10^6$ Ta

Состав смеси, подвергаемой риформингу в реакторе, приведен в табл. 3.44.

Расчет парциальных давлений компонентов газовой загрузки реактора представлен в табл. 3.45.

Компоненты	Содержание (табл. 3,35), мол. доли	Парциальное давление $p_2 = \pi_2 y'_i = 3.13 \cdot 10^6 y'_i.$ 103Па
$ \begin{array}{c} C_{n}H_{2n-6} & \dots & \\ C_{n}H_{2n} & \dots & \\ C_{n}H_{2n+2} & \dots & \\ H_{2} & \dots & \\ C_{n}H_{2n+2}^{*} & \dots & \\ \end{array} $	0,0368 0,0033 0,0376 0,7900 0,1323	115,25 11,15 117,7 2472 413,9

Таблица 3.45

Константа скорости реакции ароматизации. При температуре T_{вх. 2} = 793 К по рис. 3.13 имеем:

 $k_1 = 290,5 \cdot 10^{-9}$ кмоль/(ч · Па · кг катализатора)

Константа химического равновесия реакции ароматизации. При T_{вх. 2} = 793 К по уравнению (9) найдем:

$$k_{\rm pl} = 9,81 \cdot 10^{12} e^{46,15 - \frac{25\,600}{793}} = 10,17 \cdot 10^{20} \,\,\,\Pi a^3$$

Уменьшение количества нафтеновых углеводородов в результате реакции ароматизации. Подставив числовые значения величин в уравнение (5), получим:

$$-\frac{dN_{\text{H21}}}{dv_{R2}} = 290,5 \cdot 10^{-9} \cdot 11\,150 - \frac{290,5 \cdot 10^{-9} \cdot 115,25 \cdot 10^{3}(2\,472 \cdot 10^{3})^{3}}{10,17 \cdot 10^{20}} =$$

= 0,002718 кмоль/(ч · кг катализатора)

или

$$-N_{\rm H21} = 0,002718v_{R2}$$

Величина v_{R2} равна:

$$v_{R2} = \frac{G_{\kappa_2}}{n_{c2}} = \frac{23\,520}{1283.7} = 18,3$$
 кг катализатора/(кг · ч) сырья

Доля нафтеновых углеводородов, подвергнутых ароматизации: $-N_{H21} = 0,002718 \cdot 18,3 = 0,0498$

Величина N_{н21} отличается на 0,2% от величины y'_{cH2} — содержания нафтеновых углеводородов в питании реактора. Если изменить

количество катализатора в реакторе так, чтобы получить $N_{\rm H21} = y'_{\rm cH2}$, то для второй и третьей реакций теоретически не останется сырья и они не будут протекать. При этом необходимо найти новое значение величины $v'_{\rm P2}$:

$$v'_{R2} = \frac{y'_{CH2}}{N_{H21}} = \frac{0.0499}{0.002718} = 18,36$$
 кг катализатора/(кмоль ч) сырья

Количество катализатора в реакторе:

$$G'_{\rm K2} = v'_{R2}n_{\rm c2} = 18,36 \cdot 1283,7 = 23\,600$$
 Kg

Необходимо увеличить количество катализатора во втором реакторе за счет третьего на 23 600 — 23 520 = 80 кг.

Количество нафтеновых углеводородов, которое останется после реакции ароматизации:

$$n_{\rm H21} = (y'_{\rm cH2} - N_{\rm H21}) n_{\rm c2} = (0,0499 - 0,0499) \cdot 1283,7 = 0$$
 кмоль/ч

Константа скорости реакции гидрокрекинга парафиновых углеводородов. При температуре $T_{\text{вх. 2}} = 793$ К по рис. 3.15 найдем:

 $k_4 = 0,0714$ кмоль/(ч · кг катализатора)

Уменьшение количества парафиновых углеводородов в результате реакции гидрокрекинга. Подставив числовые значения величин в уравнение (8), найдем:

$$-\frac{dN_{n2}}{dv'_{R2}} = 0,0714 \frac{117.7 \cdot 10^3}{3,13 \cdot 10^6} = 0,002685 \text{ кмоль/(Ч · кг катализатора)}$$

или

$$-N_{n2} = 0,002685v'_{R2} = 0,002685 \cdot 18,36 = 0,0492$$

Количество парафиновых углеводородов, которое осталось после реакции гидрокрекинга:

$$n_{n24} = (y'_{cn2} - N_{n2})n_{c2} = (0,4807 - 0,0492) \cdot 1283,7 = 553,5$$
 кмоль/ч

Количество парафиновых углеводородов, которое превратилось в газ:

$$n_{\rm nr2} = n_{\rm n2} - n_{\rm n24} = 616,8 - 553,5 = 63,3$$
 кмоль/ч

Дальнейший расчет материального баланса реактора представлен в табл. 3.46—3.49.

Таблица 3.46

Количество компонентов, вступивших в реакцию, кмоль/ч	Количество пролуктов реакции, кмоль/ч
$64, 1C_n H_{2n} 63, 3C_n H_{2n+2} + 63, 3 \frac{n-3}{3} H_2$	$64,1C_{n}H_{2n-6} + 64,1 \cdot 3H_{2}$ $63,3 \frac{n}{15} (CH_{4} + C_{2}H_{6} + C_{3}H_{8} + C_{4}H_{10} + C_{5}H_{12})$

Таблица 3**,4**7

Компоненты	Приход, кмоль/ч	Расход. кмоль/ч
С _n H _{2n-6}	602,8 64,1 616,8	602.8 + 64.1 = 666.9 - 616.8 - 63.3 = 553.5
H ₂	12943,7 598.9 735.9 463,5 185,6 185,6 185,6 15113,2 16396,9	$12943 + 64, 1 \cdot 3 - 63, 3 \frac{7,82 - 3}{3} = 13034, 3$ $598,9 + 33 = 631, 9$ $735,9 + 33 = 768, 9$ $463,5 + 33 = 496, 5$ $185,6 + 33 = 218, 6$ $185,6 + 33 = 218, 6$ $15368, 8$ $16589, 2$

Таблица 3.48

Компоненты	Молеку- лярная масса М _і	Количество <i>п_і,</i> кмоль/ч	Содержание $y'_{r2i} = \frac{n_i}{\sum n_i},$ мол. доли	<i>M_iy</i> ' _{r2i}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 30 44 58 72 —	13034,3 631,9 768,9 496,5 218,6 218,6 15368,8	0,8475 0,0411 0,0501 0,0323 0,0145 0,0145 1,0000	$1,70 \\ 0,66 \\ 1,50 \\ 1,42 \\ 0.84 \\ 1,04 \\ 7,16 \approx 7,2$

Количество углеводородного газа, образовавшегося в реакторе при допущении, что n = 7,82, равно:

 $63,3 \frac{7,82}{15} (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12}) =$ = 33 (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12})

При этом количество обогащенного циркулирующего газа на выходе из аппарата равно (табл. 3.49):

Количество углеводородов, покидающих реактор:

239 500 - 101 700 = 137 800 кг/ч

Компоненты	Количество <i>п_l,</i> кмоль/ч	Содержание $y'_{l} = \frac{n_{l}}{\sum n_{i}},$ мол. доли	Средняя молекулярная масса <i>М_і</i>	Количество $G_i = n_i M_i,$ кг/ч
Приход				
$C_{n}H_{2n-6}$	602,8	0,0368	103,3	62 350
$C_n H_{2n}$	64,1 616.8	0,0033	109,3	7 140
$\begin{array}{c} \mathbf{C}_{n}^{1}\mathbf{C}_{n+2} \\ \mathbf{H}_{2} \\ \mathbf{C}_{n}\mathbf{H}_{2n+2} \\ \mathbf{H}_{2n+2} \\ \mathbf{H}_{2$	12943,7 2169,5	0,7900 } 0,1323 }	6,7	101 200
Сумма	16396,9	1,0000	-	239 500
Расход				
$C_{n}H_{2n-6}$	666,9	0,0402	109,3	72 900
$C_{n}H_{2n+2}$	553,5	0,0341	117,3	64 900
$\begin{array}{c} H_2 \\ C_n H_{2n+2} \\ \end{array} $	13034,3 2334,5	0,7850 0,1407	7,2	101 700
Сумма	16589,2	1,0000		239 500

Уравнение материального баланса для углеводородов:

или

 $137\,800 = 666,9C_nH_{2n-6} + 553,5C_nH_{2n+2}$

или

 $137\,800 = 666,9(14n-6) + 553,5(14n+2)$

откуда после преобразования и вычисления найдем n = 8,23.

Потоки	Температура, К	Количество, кг/ч	Энтальпия, кДж/кг	Количество тепла. кВт
Приход				
Q_1	$T_{\rm BX,2} = 773$	239 500	2218,6	147,64 • 103
Сумма	-	239 500	_	147,64 · 10 ³
Расход				
Q_2	_		43,8	1,68 · 10 ³ *
Q_3	<i>Т</i> _{вых.2}	239 500	q_T^{Γ}	Q3
Q_4	Прини	мается	² Bых.2	1,476 · 103
Сумма	_	239 500		$3,156 \cdot 10^3 + Q_3$
	1	l	!	I

Таблица 3.50

* Из расчета на 138 300 кг/ч сырья.

Средние молекулярные массы углеводородов:

$$M_{a} = 14n - 6 = 14 \cdot 8,23 - 6 = 109,3$$
$$M_{n} = 14n + 2 = 14 \cdot 8,23 + 2 = 117,3$$

Тепловой баланс реактора. Методика расчета теплового баланса второго реактора не отличается от методики расчета первого реактора. Тепловой баланс второго реактора приведен в табл. 3.50.

Из теплового баланса реактора имеем:

$$Q_3 = Q_1 - (Q_2 + Q_4) = 147,64 \cdot 10^3 - (1,68 \cdot 10^3 + 1,476 \cdot 10^3) = 144,48 \cdot 10^3 \text{ KBT}$$

Тогда

ſ

$$q_{T_{Bbix,2}}^{r} = \frac{144.48 \cdot 10^{3} \cdot 3600}{239500} =$$
$$= 2\,170 \text{ k} \text{ K} \text{ K} \text{ K} \text{ K} \text{ K}$$

Для определения температуры потока, покидающего реактор, необходимо воспользоваться зависимостью $q_{T_{\text{вых. 2}}}^{r} = f(T_{\text{вых. 2}})$, которая показана на рис. 3.20. Энтальпии $q_{T_{\text{вых. 2}}}^{r} = 2\,170$ кД

рис. 3.20. Энтальпии $q_{T_{\text{BMX, 2}}}^r = 2\,170$ кДж/кг соответствует температура $T_{\text{BMX, 2}} = 790$ К.

Перепад температуры во втором реакторе равен:

$$\Delta T_2 = T_{\text{BX},2} - T_{\text{BUX},2} = 793 - 790 = 3 \text{ K}$$

Основные размеры реактора. Диаметр реактора. Во втором реакторе принята радиальная схема подачи сырья. Методика расчета диаметра второго реактора не отличается от методики расчета диаметра первого реактора. Приведем основные результаты расчета по определению диаметра реактора:

$$\Delta \pi_{cn. 2} = 0.5 \frac{0.158 \cdot 10^6}{n_p} = 0.5 \frac{0.158 \cdot 10^6}{3} = 0.0263 \cdot 10^6 \Pi a$$

$$T_{cp} = \frac{T_{BX. 2} + T_{BbIX. 2}}{2} = \frac{793 + 790}{2} \approx 792 \text{ K}$$

$$\pi_{cp. 2} = \frac{\pi_{p2} + \pi_{p2} - [\Delta \pi_{cn. 2}]}{2} =$$

$$= \frac{3.13 \cdot 10^6 + 3.13 \cdot 10^6 - 0.0263 \cdot 10^6}{2} = 3.117 \cdot 10^6 \Pi a$$

$$v_{cek} = \frac{22.4 \cdot 239500 \cdot 792 \cdot 0.1 \cdot 10^6 \cdot 1}{3600 \cdot 15 \cdot 273 \cdot 3.117 \cdot 10^6} = 9.06 \text{ M}^3/c$$

279

Примем $D_{p2} = 3,0$ м и $D_c = 0,5$ м (см. рис. 3.17). Тогда $F = \frac{3.14 \left[(3,0 - 2 \cdot 0.04 - 2 \cdot 0.02)^2 - 0.5^2 \right]}{4} = 6,3$ м² $v_{\kappa 2} = \frac{23\,600}{600} = 39,35$ м³; $H_{cn.2} = \frac{39,35}{6,3} = 6,25$ м $H_c = 6,25 - 0,4 = 5,85$ м; $F_c = 3,14 \cdot 0,5 \cdot 5,85 = 9,18$ м² $w = \frac{9,06}{9,18} = 0,99$ м/с $\frac{\Delta \pi_{cn.2}}{H_2} = \frac{255 \left(1 - 0.524\right)^{1.35}}{0.524^{0.29}} \cdot \frac{0.99^2 \cdot 7.368}{4,06 \cdot 10^{-3}} \left(\frac{3.995 \cdot 10^{-6}}{4,06 \cdot 10^{-3} \cdot 0.99}\right)^{0,35} = 17\,900$ Па/м $H_2 = \frac{3,0 - 2 \cdot 0.04 - 2 \cdot 0.02 - 0.5}{2} = 1,19$ м $\Delta \pi_{cn.2} = 17\,900 \cdot 1,19 = 0,0213 \cdot 10^6$ Па (< 0,0263 \cdot 10^6 Па)

Полная высота реактора (см. рис. 3.17):

$$H_{n2} = H_{cn.2} + 0.2 + D_{p2} + 0.225 + D_{p2} + 0.425 =$$

= 6.25 + 0.2 + 3.0 + 0.225 + 3.0 + 0.425 = 13.1 м

Далее определяют диаметры всех штуцеров и по соответствующим нормалям выбирают их размеры.

4. Расчет третьего реактора

Материальный баланс реактора. В реакторе протекает реакция гидрокрекинга парафиновых углеводородов. Температуру в начале процесса примем равной температуре, при которой поток покидает второй реактор $T_{\text{вх. 3}} = T_{\text{вых. 2}} = 790$ К. Давление в третьем реакторе примем равным:

$$\pi_3 = \pi_2 - \Delta \pi_2 = 3,13 \cdot 10^6 - 0,13 \cdot 10^6 = 3 \cdot 10^6 \ \Pi a$$

Состав смеси, подвергаемой риформингу в реакторе, приведен в табл. 3.51.

Компоненты	Количество <i>п_{сзі}</i> (табл. 3.49). кмоль/ч	Содержание $y'_{c3i} = \frac{n_{c3i}}{\sum n_{c3i}}.$ мол. доли
$C_n H_{2n-6} \dots C_n H_{2n+2} \dots$	666,9 553,5	0,5464 0,4536
Сумма	1220,4	1,0000

Таблица 3,51

Расчет парциальных давлений компонентов газовой загрузки реактора дан в табл. 3.52.

Компоненты	Содержание у' (табл. 3.49), мол. доли	Парциальное давление $p_i = \pi_3 y'_3 = 3 \cdot 10^6 y'_i$, 103 Па
$\begin{array}{c} C_{n}H_{2n-6} & \cdots & C_{n}H_{2n+2} & \cdots & H_{2n+2} & \cdots & H_{2} & \cdots & C_{n}H_{2n+2} & \cdots & C_{n}H_{2n+2} & \cdots & C_{2} \end{array}$	0,0402 0,0341 0,7850 0,1407 1,0000	120,6 102,3 2354 423,1 3000

Таблица 3.52

Константа скорости реакции гидрокрекинга. При температуре *Т*_{вх. 3} = 790 К по рис. 3.15 имеем:

 $k_4 = 0,06178$ кмоль/(ч · кг катализатора)

Уменьшение количества парафиновых углеводородов в результате реакции гидрокрекинга. Подставив числовые значения величин в уравнение (8), найдем:

$$-\frac{dN_{n3}}{dv_{R3}} = 0,06178 \frac{102.\cdot 3\cdot 10^3}{3\cdot 10^6} = 0,002108 \text{ кмоль/(ч \cdot кг катализатора)}$$

или

$$-N_{n3} = 0,002108v_{R3}$$

Величина v_{R3} для третьего реактора равна:

$$v_{R3} = \frac{G'_{K3}}{n_{C3}} = \frac{46\,960}{1220,4} = 38,5$$
 кг катализатора/(кмоль · ч) сырья

при этом

$$G'_{\kappa 3} = G_{\kappa 3} - 80 = 47\ 040 - 80 = 46\ 960\ \kappa r$$

Доля парафиновых углеводородов, подвергнутых гидрокрекингу:

$$-N_{n3} = 0,002108 \cdot 38,5 = 0,0812$$

Количество парафиновых углеводородов, которое останется после гидрокрекинга, равно

$$n_{n34} = (y'_{cn.3} - N_{n3}) n_{n3} = (0,4536 - 0,0812)$$
 1220,4 = 454 кмоль/ч

Количество парафиновых углеводородов, которое превратилось в газ:

$$n_{
m nr3}$$
 = $n_{
m n3}$ — $n_{
m n34}$ = 553,5 — 454 = 99,5 кмоль/ч

Дальнейший расчет материального баланса реактора приведен в табл. 3.53—3.56.

Количество компонентов, вступивших в реакцию, кмоль/ч	Количество продуктов реакции, кмоль/ч

$$99,5C_nH_{2n+2} + 99,5 \frac{n-3}{3}H_2$$

99,5
$$\frac{n}{15}$$
 (CH₄ + C₂H₆ + C₃H₈ + C₄H₁₀ + C₅H₁₂)

Таблица 3.54

Компоненты	Приход, кмоль/ч	Расход, кмоль/ч
С _n H _{2n-6} С _n H _{2n+2} Сумма Циркулирующий	666,9 553,5 1220,4	666,9 553,5 — 99,5 — 454,0 1120,9
H_2	13034,3 631,9 768,9 496,5 218,6 218,6 15368,8 16589,2	$13034,3 - 99,5 \frac{8,23 - 3}{3} = 12860,8$ $631,9 + 54,6 = 686,5$ $768,9 + 54,6 = 823,5$ $496,5 + 54,6 = 551,1$ $218,6 + 54,6 = 273,2$ $218,6 + 54,6 = 273,2$ $15468,3$ $16589,2$

Таблица 3.55

Компоненты	Молеку лярная масса <i>М_і</i>	Количество n _i , кмоль/ч	Содержание $y'_{\Gamma 3i} = \frac{n_i}{\sum n_i}$. мол. долн	$M_i y'_{r3i}$
H	2	12860.8	0,8314	1.66
СН4	16	686,5	0,0444	0,71
C_2H_6	30	823,5	0,0533	1,60
C_3H_8	44	551,1	0,0357	1,57
$C_{4}H_{10}$	58	273,2	0,0176	1,02
C_5H_{12}	72	273,2	0,0176	1,27
Сумма		15468,3	1,0000	7,83≈7,8

Количество углеводородного газа, образовавшегося в реакторе, при n = 8,23 равно:

 $99,5 \frac{8,23}{15} (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12}) = 54,6 (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12})$

Таблица 3.56

Компоненты	Количество n _i , кмоль/ч	Содержание $y'_{i} = \frac{n_{i}}{\sum n_{i}},$ мол. доли	Средняя молекулярная масса <i>М_і</i>	Количество G _i =n _i M _i , кг/ч
Приход				
$\begin{array}{c} C_n H_{2n-6} \dots \dots \dots \\ C_n H_{2n+2} \dots \dots \dots \\ H_2 \dots \dots \dots \dots \\ H_2 \dots \dots \dots \dots \\ C_n H_{2n+2}^* \dots \dots \dots \end{array}$	666,9 553,5 13034,3 2334,5	0,0402 0,0341 0,7850 } 0,1407 {	109,3 117,3 7,2	72 900 64 900 101 700
Сумма Расход	16589,2	1,0000		239 500
$C_n H_{2n-6} \dots C_n H_{2n+2} \dots H_2 \dots \dots H_2 \dots \dots H_2 \dots \dots$	666,9 454,0 12860,8 2607,5	0,0402 0,0276 0,7750 \ 0,1572 }	109,3 101,3 7,8	72 900 46 000 120 600
Сумма	16589,2	1,0000		239 500

Количество обогащенного циркулирующего газа на выходе из реактора равно (табл. 3.56):

 $(12860,8 + 2607,5) \cdot 7,8 = 120\,600 \text{ KG/y}$

Количество углеводородов, покидающих реактор:

239 500 — 120 600 == 118.900 кг/ч

Средняя молекулярная масса парафиновых углеводородов (табл. 3.56):

$$M_{\rm m} = \frac{239\,500 - 72\,900 - 120\,600}{454} = 101,3$$

Тепловой баланс реактора. На примере расчета третьего реактора покажем другой подход к расчету теплового баланса реактора риформинга.

Уравнение теплового баланса для третьего реактора (см. стр. 265):

$$Q_1 = Q_2 + Q_3 + Q_4$$

Температура входа потока в третий реактор равна температуре выхода потока из второго реактора, поэтому

$$Q_1 = Gq_{T_{\text{Bblx},2}}^r = 239\,500 \cdot 2\,170 = 520 \cdot 10^6 \text{ K} \text{Дж/ч} = 144,4 \cdot 10^3 \text{ KBT}$$

Величину Q₂ найдем следующим образом:

$$Q_2 = G_{\rm c} c_p \, \Delta T_3$$

283

где G_c — количество сырья, кг/ч; c_p — теплоемкость газа, поступающего в реактор, кДж/(кг·К); ΔT_3 — перепад температуры потока в реакторе, К.

Количество сырья (табл. 3.56):

 $G_{\rm c} = 72\ 900 + 64\ 900 = 137\ 800\ {\rm kg/m}$

Теплоемкость газа, поступающего в реактор [135]:

 $c_p = c_{pc} + c_{pr}$

где c_{pc} — теплоемкость сырья, кДж/(кг·К); c_{pr} — теплоемкость циркулирующего газа, приведенная к теплоемкости сырья,

Рис. 3.21. Зависимость теплоемкости сырья риформинга от температуры $(c_p \equiv c'_{pc})$

кДж/(кг · К). Теплоемкость сырья [135]:

$$c_{p c} = c'_{p c} c_1 c_2$$

где c'_{pc} — теплоемкость сырья в зависимости от его температуры (рис. 3.21), кДж/(кг · K); c_1 , c_2 — поправки на теплоемкость в зависимости от относительной плотности ρ_{288}^{288} и характеристического фактора k сырья реактора (рис. 3.19).

Предварительным расчетом найдено, что относительная плотность сырья реактора равна ρ_{288}^{288} =0,74,а средняя молекулярная масса M=112,9. Тогда k=11,8 (рис. 3.19).

При температуре $T_{\text{вх. 3}} = 790$ К по рис. 3.21 имеем: $c'_{p c} = 3,61$ кДж/(кг · K); $c_1 = 1$; $c_2 = 0,976$.

Таким образом

$$c_{pc} = 3,61 \cdot 1 \cdot 0,976 = 3,52 \text{ K} \ \text{K}/(\text{Kr} \cdot \text{K})$$

Теплоемкость циркулирующего газа зависит от кратности его циркуляции n_r и плотности сырья при 288 К (рис. 3.22).

Плотность сырья при 288 К:

$$\rho_{288} = 1\,000\rho_{288}^{288} = 1\,000\cdot 0,74 = 740$$
 кг/м³

Отношение

$$\frac{n_{\rm r}}{\rho_{288}} = \frac{1\,500}{740} = 2,03$$

Содержание водорода в циркулирующем газе H₂ = 78,5 объемн.% (табл. 3.56).

Теплоемкость циркулирующего газа:

$$c_{pr} = c'_{pr} c_{ir}$$

где $c'_{\rho r}$ — теплоемкость циркулирующего газа в зависимости от отношения $\frac{n_r}{\rho_{288}}$ и концентрации водорода в газе.

Рис. 3.22. Средняя массовая теплоемкость водородсодержащего газа, приведенная к теплоемкости сырья.

Из рис. 3.22 имеем:

 $c'_{p r} = 4,41 \text{ KJ} \text{K/(Kr} \cdot \text{K}); \quad c_{1r} = 1,02$

Тогда

а теплоемкость газа, поступающего в реактор

$$c_p = 3,52 + 4,5 = 8,02$$
кДж/(кг · K)

Величину ΔT_3 рассчитаем по скорости изменения температуры в реакторе [119, с. 78]:

$$\frac{dT}{dv_{R3}} = \frac{dN_{II3}}{dv_{R3}} \cdot \frac{q_{\rm p}}{N_{\rm of m.} c_p}$$

285

где q_p — тепловой эффект реакции, кДж/кг; N_{obm} — общее количество газа, поступающего в реактор, кмоль/ч; c_p — теплоемкость газа, поступающего в реактор, кДж/(кмоль·К).

Величины тепловых эффектов реакций даны в табл. 3.57 [119].

Уравнение реакции	Тепловой эффект реакций, кДж/кмоль Н ₂
$C_n H_{2n} \rightleftharpoons C_n H_{2n-6} + 3H_2 \dots G_n H_{2n} + H_2 \rightleftharpoons C_n H_{2n+2} \dots$	±32 180 * ±20 020 *
$C_{n}H_{2n} + \frac{n}{3}H_{2} \rightarrow \frac{n}{15}(CH_{4} + C_{2}H_{6} + C_{3}H_{8} + C_{4}H_{10} + C_{5}H_{12}) \dots$	23 530
$C_n H_{2n+2} + \frac{n-3}{3} H_2 - \frac{n}{15} (CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + C_5H_{12})$	-25610
* Знак плюс – при прямой реакции.	

Таблица 3**.**57

Для пересчета величины c_p в кДж/(кмоль·К) надо определить среднюю молекулярную массу M газового потока, поступающего в реактор (табл. 3.56):

 $M = 0,0402 \cdot 109,3 + 0,0341 \cdot 117,3 + (0,7850 + 0,1407) \cdot 7,2 = 15,1$ Тогда

$$c_{p} = 8,02 \cdot 15,1 = 121 \text{ кДж/(кмоль \cdot K)}$$
$$\frac{dT}{dv_{R3}} = 0,002108 \frac{\frac{8,23 - 3}{3} (-25\,610)\,99.5}{16589,2 \cdot 121} = 0,0047 \text{ (кмоль/ч) сырья \cdot K/кг катализатора}$$
$$\Delta T_{3} = 0,0047v_{R3} = 0,0047 \cdot 38,5 = 0,18 \text{ K}$$

Таблица 3.58

Потоки	Гемпература, К	Количество, кг/ч	Энтальпия, кДж/кг	Количество тепла, кВт
Приход				
Q_1	$T_{BX.3} = 790$	239 500	2 170	144,4 • 10 ³
Сумма	-	2 3 9 500		144,4 • 10 ³
Расход				
Q ₂			_	0,0492 · 10 ³
Q_3	T _{вых. 3}	239 500	q_T^r	Q_3
Q_4	Прини	мается		1,44 · 103
Сумма	_	239 500	-	144,4 · 10 ³

Количество тепла, которое выделяется при гидрокрекинге парафиновых углеводородов:

Величина теплопотерь:

$$Q_4 = 0.01Q_1 = 0.01 \cdot 144.4 \cdot 10^3 = 1.44 \cdot 10^3$$
 KBT

Тогда из теплового баланса реактора имеем (табл. 3.58):

$$Q_3 = Q_1 - Q_2 - Q_4 = 144.4 \cdot 10^3 - 0.0492 \cdot 10^3 - 1.44 \cdot 10^3 = 142.9 \cdot 10^3 \text{ KBr}$$

Величина энтальпии продуктов реакции при температуре *Т*_{вых.3} равна:

$$q_{T_{\text{Bbix. 3}}}^{r} = \frac{Q_{3}}{G} = \frac{142.9 \cdot 10^{3} \cdot 3^{2} 600}{239 500} = 21\overline{47} \text{ K} \text{K} \text{K} \text{K} \text{K}$$

Построив вспомогательный график (рис. 3.20) при двух ориентировочных значениях температур 783 К и 793 К, по величине энтальпии $q_{T_{\text{вых. 3}}}^{r} = 2147 \text{ кДж/кг}$ найдем температуру выхода потока из третьего реактора $T_{\text{вых. 3}} = 783$ К.

Перепад температуры в реакторе равен

$$\Delta T_3 = T_{\text{BX, 3}} - T_{\text{Bblx, 3}} = 790 - 783 = 7 \text{ K}$$

Расхождение с полученным ранее числовым значением $\Delta T_3 =$ = 0,18 К объясняется неточностью графических построений (рис. 3.20) и принятием большого значения $Q_{\rm II}$. Однако значение $\Delta T_3 =$ 7 К является реальным и потому пересчета не делаем.

Рис. 3.23. Схема к расчету основных размеров реактора:

1-корпус; 2-катализатор; 3-фарфоровые шарики; 4-люк для выгрузки катализатора; 5-люк; 6-штуцер для эжекции газов; 7-штуцер для выхода сырья; 8-штуцер для выхода продуктов реакции; 9-футеровка.

Основные размеры реактора. Диаметр реактора. По степени использования реакционного объема реакторы с радиальным потоком несколько уступают аксиальным реакторам. Схема аксиального реактора, изображенная на рис. 3.23, не требует пояснений. Однако перепад давления в реакторах аксиального типа примерно в 2—2,5 раза больше, чем в реакторах с радиальным вводом сырья [118, с. 119]. Покажем особенность опреления диаметра реактора аксиального типа.

Величину [$\Delta \pi_{c.r.3}$] примем для реактора установки риформинга равной (табл. 3.41):

$$[\Delta \pi_{cn.3}] = 0.5 \frac{0.435 \cdot 10^6}{n_p} = 0.5 \frac{0.435 \cdot 10^6}{3} = 72500 \text{ Translation}$$

Далее

$$T_{\rm cp. 3} = \frac{T_{\rm BX. 3} + T_{\rm BHX. 3}}{2} = \frac{790 + 783}{2} \approx 787 \text{ K}$$
$$\pi_{\rm cp. 3} = \frac{\pi_{\rm p3} + \pi_{\rm p3} - [\Delta \pi_{\rm c.r. 3}]}{2} = \frac{3 \cdot 10^6 + 3 \cdot 10^6 - 72500}{2} = 2,96 \cdot 10^6 \text{ \Pia}$$
$$v_{\rm cek} = \frac{22.4 \cdot 239500 \cdot 787 \cdot 0.1 \cdot 10^6}{3600 \cdot 15.1 \cdot 273 \cdot 2.96 \cdot 10^6} = 9,38 \text{ m}^3/\text{c}$$

Приняв величины $D_{p3} = 4,6$ м, $D_{\tau p} = 0,35$ м (рис. 3.23), вычислим площадь поперечного сечения реактора, через которую проходит газ:

$$F = \frac{\pi \left(D_{p3}^2 - D_{\tau p}^2 \right)}{4} = \frac{3.14 \left(4.6^2 - 0.35^2 \right)}{4} = 16.5 \text{ m}^2$$

Тогда

$$v_{\kappa3} = \frac{G'_{\kappa3}}{600} = \frac{46\,960}{600} = 77,25 \text{ m}^3$$
$$H_{cn.3} = \frac{v_{\kappa3}}{F} = \frac{77,25}{16.5} = 4,68 \text{ m}$$
$$w = \frac{9,38}{16,5} = 0,57 \text{ m/c}$$

Допустимая скорость потока в аксиальных реакторах составляет 0,4—0,6 м/с [118, с. 165]. Как видно, скорость движения газового потока в реакторе находится в допустимых пределах.

Определим $\Delta \pi_{cn.3}$:

$$\frac{\Delta \pi_{\text{c.n. 3}}}{H_{\text{c.n. 3}}} = \frac{255 \left(1 - 0.524\right)^{1.35}}{0.524^{0.29}} \cdot \frac{0.57^2 \cdot 6.788}{4.06 \cdot 10^{-3}} \cdot \left(\frac{4.84 \cdot 10^{-6}}{4.06 \cdot 10^{-3} \cdot 0.57}\right)^{0.35} = 7\ 100\ \Pi a$$

$$\Delta \pi_{\text{c.n. 3}} = 7\ 100H_{\text{c.n. 3}} = 7\ 100 \cdot 4.68 = 33\ 200\ \Pi a \quad (< 72\ 500\ \Pi a)$$

Высота реактора. Полная высота аппарата равна (см. рис. 3.23):

$$H_{n3} = D_{p3} - 0.4 + H_{cn.3} + 0.2 + D_{p3} + 0.1 =$$

= 4,6 - 0.4 + 4,68 + 0.2 + 4,6 + 0.1 = 13,78 M

Далее определяют диаметры штуцеров и по соответствующим нормалям выбирают их размеры.

288
КОЖУХОТРУБЧАТЫЙ РЕАКТОР ПОЛИМЕРИЗАЦИИ

Рассчитать реактор полимеризации бутан-бутиленовой фракции (рис. 3.24) в присутствии катализатора (фосфорная кислота на кизельгуре) при следующих исходных данных: производитель-

ность реактора по сырью $G_c = 25\,000$ кг/ч; состав сырья приведен в табл. 3.59; температура на входе в реактор $T'_1 = 463$ K; давление в реакторе $\pi = 3,43 \cdot 10^6$ Па (35 ат).

Применение процесса полимеризации, его теория, технология и аппаратурное оформление достаточно подробно рассмотрены в литературе [5, 83, 86, 89, 103, 112, 136, 137].

Ниже приводится технологический расчет кожухотрубчатого реактора для каталитической полимеризации бутан-бутиленовой фракции с целью получения полимербензина.

Исходными данными для расчета являются следующие: производительность реактора по сырью, состав сырья, рабочие условия — температура и давление в реакторе, фракционный состав полимербензина (по промышленным или лабораторным данным). глубина превращения (конверсии) олефинов при полимеризации (по опытным данным). производительность реакционного

Рис. 3.24. Реактор полимеризации.

объема по сырью (объемная скорость питания), выбираемая по промышленным данным.

Таблица 3.59

Компоненты	C ₃ H ₈	<i>u30</i> -C ₄ H ₈	н-С ₄ Н ₈	C₄H₁₀	C ₅ H ₁₂	Сумма
Содержание масс. %	1,9	10,7	24,5	61,9	1,0	100,0

Задачей расчета реактора полимеризации является определение количества продуктов полимеризации, основных размеров аппарата, числа аппаратов, количества тепла, отводимого из зоны реакции, количества хладагента, необходимого для снятия тепла.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РЕАКТОРА ПОЛИМЕРИЗАЦИИ

1. Составляют материальный баланс процесса полимеризации. Расчет ведется по следующей схеме:

a) по известному часовому количеству и массовому составу исходного сырья рассчитывают мольный состав сырья, массовые и мольные часовые количества его компонентов;

б) по разгонке полимербензина находят его среднюю температуру кипения, а затем среднюю молекулярную массу и плотность (если она неизвестна из опытных данных);

в) по глубине превращения олефинов находят абсолютное количество полимербензина;

г) рассчитывают массовый и мольный составы продуктов реакции и их массовые и мольные часовые количества.

Все расчеты сводятся в таблицу материального баланса.

2. Составляют тепловой баланс реактора.

Из теплового баланса реактора определяют количество тепла, отводимого в течение 1 ч из зоны реакции. Расчет проводят по такой схеме:

a) определяют энтальпии сырья (на входе в реактор) и продуктов реакции (на выходе из реактора) с учетом давления в реакционной зоне;

б) принимают по опытным данным или рассчитывают по правилам термодинамики тепловой эффект полимеризации, а затем определяют часовое количество тепла, выделяющегося при образовании полимербензина;

в) из уравнения теплового баланса реактора находят количество тепла, отводимого из зоны реакции при помощи хладагента.

Все расчеты сводят в таблицу теплового баланса.

3. Определяют размеры реактора и количество реакторов.

Расчет проводят в таком порядке:

а) находят часовой объем сырья, поступающего в реактор;

б) определяют объем реакционного пространства;

в) принимая диаметр и длину трубок реактора и зная объем реакционного пространства, находят необходимое число трубок;

г) принимая число трубок в одном реакторе и зная общее число трубок, находят число реакторов (ближайшее большее целое число);

д) рассчитывают внутренний диаметр реактора;

е) конструктивно принимают высоту корпуса реактора.

4. Определяют количество хладагента. Для этого:

a) рассчитывают поверхность теплообмена одного реактора, зная размеры трубок и их число;

б) рассчитывают коэффициент теплопередачи от газов, движущихся в трубах, заполненных гранулированным катализатором, к кипящей воде, проходящей в межтрубном пространстве аппарата;

в) зная тепловую нагрузку поверхности теплообмена всех реакторов, величину их поверхности теплообмена и коэффициент теп-

лопередачи, из уравнения теплопередачи находят температурный напор в аппарате; по температурному напору и температуре газов в трубках определяют температуру хладагента, т. е. температуру кипящей воды; по температуре кипящей воды находят давление ее насыщенного пара и теплоту испарения (по таблицам);

г) по количеству отводимого из реакционной зоны тепла и теплоте испарения воды находят количество насыщенного водяного пара, образующегося в одном реакторе;

д) принимая по практическим данным долю воды, испаряющейся в корпусе (межтрубном пространстве) реактора, находят количество конденсата, которое следует подавать в один реактор за 1 ч.

5. Определяют диаметры штуцеров для ввода сырья, вывода продуктов реакции, ввода и вывода конденсата водяного пара и по существующим нормалям принимают их окончательные размеры.

РАСЧЕТ

1. Материальный баланс полимеризации

Результаты разгонки промышленного полимербензина, полученного при давлении 3,43 · 10⁶ Па, возьмем из литературных данных [138, с. 303] и сведем в табл. 3.60.

Таблица 3,60

Выкипает, объемн. %	н. к.	10	30	50	70	90	к. к
Температура, К	305	334	366	378	398	457	488

Найдем среднюю температуру кипения полимербензина:

$$T_{\rm cp} = \frac{T_{\rm H.\ K} + T_{10} + T_{30} + T_{50} + T_{70} + T_{90} + T_{\rm K.\ K}}{7} = \frac{305 + 334 + 366 + 378 + 398 + 457 + 488}{7} = 391 \text{ K}$$

По формуле Воинова определим молекулярную массу полимербензина:

$$M_{\text{n. 6}} = 52,63 - 0,246T_{\text{cp. }t} + 0,001T_{\text{cp. }t}^2 = 52,63 - 0,246 \cdot 391 + 0,001 \cdot 391^2 = 109$$

На основе данных табл. 3.59 можно рассчитать количество и состав сырья, поступающего в реактор. Для определения количеств и составов продуктов, выходящих из реактора, необходимо знать глубину превращения олефинов. При расчете промышленных реакторов следует пользоваться опытными данными. По литературным данным [139, стр. 353], при полимеризации смеси

углеводородов глубина превращения отдельных компонентов сырья равна (в масс. %):

Результаты расчетов, т. е. материальный баланс полимеризации при принятых средних величинах глубины превращения компонентов, приведены в табл. 3.61.

Таблица 3.61

		Приход				.в. %		Pac	ход	
	рная	*	колич	ество	*	acc.	колич	ество	*	*
Қомпоненты	Молекуля масса M _i	c _i , macc,	КГ/Ч	н/чгом х	с', мол. 5	Глубина п шения. м.	КГ/Ч	т _† . кмоль/ч	x_i , macc.	х', мол.
С ₃ Н ₈ изо-С ₄ Н ₈ н-С ₄ Н ₈ С ₄ Н ₁₀ С ₅ Н ₁₂ Полимербензин Сумма	44 56 56 58 72 109	1,9 10,7 24,5 61,9 1,0 100,0	475 2 665 6 125 15 475 250 	10,8 47,8 109,5 266,5 3,5 	2,46 10,92 25,00 60,85 0,77 100,0	100 95 — — —	475 310 15 475 250 8 490 25 000	10,80 5,50 266,50 3,50 77,70 364,00	1,90 1,24 61,90 1,00 33,96 100,00	2,96 1,51 73,27 0,96 21,30 100,00

2. Тепловой баланс реактора

Уравнение теплового баланса реактора в общем виде:

$$Q_1 + Q_p = Q_2 + Q_n + Q_o$$

Левая часть уравнения отвечает приходу тепла (в кВт): Q₁ — с сырьем; Q_p — при образовании полимербензина.

Правая часть уравнения отвечает расходу тепла (в кВт): Q_2 — с продуктами реакции; Q_{π} — потери тепла в окружающую среду; Q_0 — с хладагентом.

Энтальпии паров сырья и продуктов реакции определяем по формуле:

$$q_T = q_T^{\mathrm{n}} - \Delta q$$

где q_T — энтальпия потока при его температуре и давлении $\pi = 3,43 \cdot 10^6$ Па, кДж/кг; q_T^n — энтальпия потока при его температуре и атмосферном давлении (приложение 3), кДж/кг; Δq — поправка на энтальпию паров, кДж/кг.

Обычно температура на выходе из реактора на 8—10 К выше температуры на входе в реактор [82, с. 218]; примем, что в нашем случае эта разница составляет 9 К. Тогда температура продуктов на выходе $T'_1 = 463 + 9 = 472$ К.

Для определения энтальпии потока при его температуре и атмосферном давлении необходимо знать относительную плотность

при температуре 288 К. Величину относительной плотности потоков можно рассчитать по формулам, имеющимся в литературе [44, с. 37, 39]. При этом нужно знать среднюю молекулярную массу сырья и продуктов реакции.

По данным табл. 3.61 определяем средние молекулярные массы сырья и продуктов реакции.

$$M_{c} = \sum M_{i}c_{i}' = 44 \cdot 0.0246 + 56 \cdot 0.1092 + 56 \cdot 0.25 + 58 \cdot 0.6085 + 72 \cdot 0.0077 \approx 57$$

Продукты реакции:

$$M_x = \sum M_i x_i' = 44 \cdot 0,0296 + 56 \cdot 0,0151 + 58 \cdot 0,7327 + 72 \cdot 0,0096 + 109 \cdot 0,213 = 68,5$$

Зная среднюю молекулярную массу сырья $M_c = 57$, найдем его относительную плотность по формуле Мамедова [44, с. 36]:

$$\rho_{277}^{293} = \frac{0.590M - 6.479}{0.693M + 7.581}$$

при этом

$$\rho_{288}^{288}\approx\rho_{277}^{293}+5\alpha$$

Здесь а — средняя температурная поправка относительной плотности на один *K*, вычисляемая по формуле Кусакова:

 $\alpha = 0,001828 + 0,00132\rho_{277}^{293}$

Величину средней молекулярной массы углеводородов следует подставлять в формулу Мамедова с округлением до целого числового значения.

После вычислений получим:

3) при M_{п. 6} = 109, ρ_{288}^{238} = 0,700.

Для определения энтальпий сырья и продуктов реакции при их температурах и давлении $\pi = 3,43 \cdot 10^6$ Па необходимо знать поправки Δq на энтальпию паров.

Эти поправки равны:

$$\Delta q = \frac{4,187T\Phi}{M}$$

где T — температура потока, К; Φ — коэффициент, зависящий от приведенных и критических параметров соответствующего потока, определяется по графику [21, с. 118]; M — средняя молекулярная масса потока.

Приведенные температуры сырья и продуктов реакции:

$$T_r = \frac{T_1'}{T_{\rm KP}}$$

где для сырья $T'_1 = 463$ К; для продуктов реакции $T''_1 = 472$ К $T_{\kappa\rho}$ — соответственно критические температуры сырья и продуктов реакции.

Критические температуры сырья и продуктов реакции находим по формуле [44, с. 79]:

$$T_{\rm kp} = 355, 1 + 0.97a - 0.00049a^2$$
$$a = (1.8T_{\rm s} - 359)\rho_{288}^{283}$$

где T_s — среднемолекулярная температура кипения сырья и продуктов реакции, К; $\rho_{288}^{288} = 0,580$ — для сырья, $\rho_{288}^{288} = 0,618$ — для продуктов реакции и $\rho_{288}^{288} = 0,700$ — для полимербензина.

Среднемолекулярные температуры кипения сырья и продуктов реакции определяем по правилу аддитивности:

$$T_s = \sum T_i x'_i$$

где T_i — температура кипения *i*-го компонента, K; x'_i — мольная доля этого компонента.

Результаты расчетов по этому уравнению приведены в табл. 3.62. Из нее следует, что среднемолекулярная температура кипения сырья (при нормальном давлении) равна —272,18 К, а продуктов реакции +296,9 К.

Таблица 3.62

	Состав x _i , мол. доли		Температура кипения	$x'_i T_i$		
Компоненты	сырья	продуктов реакция	Г _і . Қ	для сырья	для продуктов реакции	
С ₃ H ₈	0,0246 0,1092 0,2500 0,6085 0,0077 	0,0296 	$\begin{array}{r} -230,9\\ -266,75\\ +276,72\\ -272,5\\ +309,07\\ +118,00\\ -\end{array}$	$-1,037 \\ -0.682 \\ +0,930 \\ -0,304 \\ +0,270 \\ - \\ -0,823$	$-1,247 \\ -0,056 \\ -0,367 \\ +0,337 \\ +25,120 \\ +23,903$	
Средняя температура кипения, <i>К</i>		-		-272,18	+296,9	

Данные по определению критических и приведенных температур представлены в табл. 3.63.

Таблица 3.63

	Темпе	ратура	Давление		
Потоки	критическая	приведенная	критическое	приведенное	
	Т _{кр} , К	Т _г	Р _{кр} ·10 ⁻⁶ , Па	^п 1	
Сырье	426	1,09	3,63	0,95	
Продукты реакции	460,3	1,02	3,35	1,02	

Приведенные давления сырья и продуктов реакции находим по формуле:

$$\pi_{\rm r} = \frac{\pi}{P_{\rm KP}}$$

где $\pi = 3,43 \cdot 10^6$ Па; $P_{\kappa p}$ — соответственно критические давления сырья и продуктов реакции, определяемые по графику [21, с. 31] в зависимости от средних молекулярных масс потоков.

Результаты расчетов критических и приведенных давлений также приведены в табл. 3.63.

Расчет величин Δq для сырья и продуктов реакции дан в табл. 3.64.

Таблица 3,64

Потоки	M _i	<i>т</i> , қ	Φ	ΤΦ	<i>Δq</i> , кДж/кг
Сырье	57,0	463	2,45	1135	83,3
	68,5	472	4,60	2162	132,8

Данные по определению q_т для сырья и продуктов реакции представлены в табл. 3.66.

Для составления теплового баланса реактора необходимо знать величину теплового эффекта реакции. Процесс полимеризации протекает с выделением примерно 837—1215 кДж тепла на 1 кг полимербензина [89, с. 271]. Можно также рассчитать тепловой эффект реакции по закону Гесса. Теплота сгорания [140, с. 28] полимеризующихся *н*-C₄H₈ и *изо*-C₄H₈, а также образующегося C₈H₁₆ приведены в табл. 3.65.

Таблица	3,65
---------	------

Углеводороды	Теплота сгорания при 298 К, кДж/моль
н-C4H8	2720 2706 5355

Тепловой эффект при полимеризации бутилена по схеме

$$2(\mu - C_4 H_8) \rightarrow C_8 H_{16}$$

 $q_{p1} = 2 \cdot 2720 - 5355 = 85 \ кДж/моль$

а при полимеризации изобутилена по схеме

$$2 (u30-C_4H_8) \rightarrow C_8H_{16}$$
$$q_{p2} = 2 \cdot 2706 - 5355 = 57 \text{ кДж/моль}$$

На образование 8490 кг полимербензина расходуется 5815 кг н-С₄Н₈ и 2675 кг изо-С₄Н₈ (табл. 3.61) или соответственно 68,5, 31,5 мол.%. Средний тепловой эффект реакции полимеризации: $q_{\rm p} = 85 \cdot 0.685 + 57 \cdot 0.315 = 76.1 \ \text{кДж/моль}$

В пересчете на 1 кг полимербензина:

$$q_{\rm p} = \frac{76.1 \cdot 1000}{M_{\rm fr. 6}} = \frac{76.1 \cdot 1000}{109} = 696$$
 кДж/кг

Примем с учетом опытных данных $q_p = 837$ кДж/кг. Тогда количество тепла, выделившегося при образовании полимербензина:

$$Q_{\rm p} = \frac{G_{\rm n.6} \, q_{\rm p}}{3600} = \frac{8490 \cdot 837}{3600} = 1976 \, \, \rm \kappa B\tau$$

где G_{п. б} — количество образовавшегося полимербензина, кг/ч.

Количество тепла Q_o, которое необходимо отводить при помощи хладагента, определяем из уравнения теплового баланса реактора:

$$Q_{\rm o} = Q_{\rm 1} + Q_{\rm p} - (Q_{\rm 2} + Q_{\rm n})$$

Результаты подсчета величины Q₀ приведены в табл. 3.66.

Таблица 3,66

	Коли-	Темпера-	Энтальпи	я, кДж/кг	Обозна-	Коли- чество тепла, кВт	
Потоки	чество, кг/ч	тура, К	при атмосфер- ном давлении	при давлении π=3,43.106 Па	теплолого потока		
Приход							
Сырье	25 000	463	775	691,7	Q_1	4 805	
реакции	—	-	-	-	$Q_{\rm p}$	1 976	
Сумма	25 000	-	—	—		6 781	
Расход		ļ					
Продукты реак- ции Потери тепла Хладагент	25 000 Прини По ра	475 маются зности	786 —	653,2 —	$Q_2 Q_{\pi} Q_{ m o}$	4 534 200 2 047	
Сумма	25 000	-	-	—		6 781	

3. Размеры реактора и количество реакторов

Внутренний диаметр $D_{\rm B}$ реактора, представляющего собой кожухотрубчатый теплообменник, определяется с учетом размещения трубок в решетке (рис. 3.25) по треугольнику (или шестиугольнику):

$$D_{\rm B} = S(b-1) + d_{\rm H} + 2\kappa$$

где S — расстояние между осями трубок, м; b — число трубок, расположенных на диагонали наибольшего шестиугольника; $d_{\rm H}$ — наружный диаметр трубок, м; κ — кольцевой зазор между крайними

трубками и корпусом, принимаемый по конструктивным соображениям не менее 0,006 м.

При компоновке труб в пучке принимается шаг трубок $S = (1,3 \div 1,5) d_{\rm H}$. Вертикальные трубчатые реакторы полимеризации имеют 127 или 187 трубок диаметром 0,05—0,06 м и длиной 6—9 м [137].

Примем трубки наружным диаметром $d_{\rm H} = 0,06$ м, внутренним диаметром $d_{\rm B} = 0,05$ м и длиной l = 9 м. Также примем расстояние между осями трубок $S = 1,3d_{\rm H} = 1,3\cdot0,06 = 0,078$ м, а число трубок Z = 187.

Число трубок, расположенных на диагонали наибольшего шестиугольника, определим по формуле:

$$b = 2a - 1$$

где *а* — число трубок на стороне наибольшего шестиугольника.

Связь между числом трубок на стороне наибольшего шестиугольника и общим числом трубок Z дается соотношением:

$$Z = 3a(a-1) + 1$$

откуда при Z == 187 получим:

$$a = 8; \quad b = 2 \cdot 8 - 1 = 15$$

Тогда

$$D_{\rm B} = 0,078 (15 - 1) + 0,06 + 2\kappa =$$

= 1,152 + 2\kappa

Рис. 3.25. Схема размещения трубок в решетке.

Округлив внутренний диаметр аппарата до величины $D_{\rm B} = 1,2$ м, найдем $\kappa = 0,024$ м.

Высота корпуса в промышленных реакторах при длине трубок l = 9 м составляет $H_{\rm K} \approx 11$ м.

Определим объемное количество сырья, поступающего в реактор в 1 ч, по формуле:

$$v_{\rm c} = \frac{G_{\rm c}}{\rho_{\rm c}}$$

где G_c — производительность реактора по сырью, кг/ч; ρ_c — плотность сырья в жидком виде при $T'_1 = 463$ К кг/м³.

Таким образом

$$v_{\rm c} = \frac{25\,000}{404} = 61,8$$
 M³/4

Объем реакционного пространства найдем по соотношению:

$$v_{\text{peaky}} = \frac{v_{\text{c}}}{n_p}$$

1/210 Зак. 100

где n_v — объемная скорость (объемное количество сырья, приходящееся на единицу объема катализатора в единицу времени), $M^3/(M^3 \cdot q)$.

Оптимальное значение объемной скорости лежит между 3—5,5 м³/(м³ · ч) из расчета на жидкое сырье. Стремлением получить целое расчетное число реакторов объясняем принятие $n_v = 4,67 \text{ M}^3/(\text{M}^3 \cdot \text{ч})$.

Тогда

$$v_{\text{реакц}} = \frac{61.8}{4.67} = 13.23 \text{ M}^3$$

Необходимое число трубок:

$$n_{\rm Tp} = \frac{v_{\rm peaku}}{v_{\rm Tp}}$$

где *v*_{тр} — объем внутреннего пространства одной трубки, равный

$$v_{\rm Tp} = \frac{\pi d_{\rm B}^2}{4} l = \frac{3.14 \cdot 0.05^2}{4} \cdot 9 = 0.01767 \,{\rm m}^3$$

Следовательно

$$n_{\rm rp} = \frac{13.23}{0.01767} = 748$$

Определяем число реакторов:

$$N = \frac{n_{\rm Tp}}{Z} = \frac{748}{187} = 4$$

4. Количество хладагента

Чтобы не допустить перегрева и снижения активности катализатора, в межтрубное пространство вводится водяной конденсат, который, частично испаряясь, снимает избыточное тепло реакции. Необходимое количество водяного конденсата:

$$G_{\mathrm{B. K}} = \frac{G_{\mathrm{B. R}}}{0.2}$$

где $G_{\rm B,\,\pi}$ — количество водяного пара, образующегося в реакторе, кг/ч; 0,2 — принятая, исходя из практических данных, доля испаряемого водяного конденсата.

Количество водяного пара, образующегося в реакторе:

$$G_{\rm B.n} = \frac{3600Q_{\rm o}}{Nr}$$

где г - теплота парообразования насыщенного водяного пара.

Для определения величины *r* необходимо знать температуру кипения воды в межтрубном пространстве:

$$T_{\kappa} = T_{\rm cp} - \Delta T$$

где $T_{\rm cp}$ — средняя температура в зоне реакции, K; ΔT — разность между средней температурой в зоне реакции и температурой кипения воды в межтрубном пространстве, К. Средняя температура в зоне реакции равна:

$$T_{\rm cp} = \frac{T_1' + T_1''}{2} = \frac{463 + 472}{2} = 468 \text{ K}$$

Разность между средней температурой потока газов, движущихся в трубах и температурой кипения воды в межтрубном пространстве определяется по формуле:

$$\Delta T = \frac{1000Q_{\rm o}}{NkF_1} = \frac{q}{k}$$

где k — коэффициент теплопередачи, $Bt/(M^2 \cdot K)$; F_1 — поверхность теплообмена одного реактора, M^2 , q — удельная тепловая нагрузка, Bt/M^2 .

Коэффициент теплопередачи:

$$k = \frac{1}{\frac{1}{\frac{1}{\alpha_1} + \frac{\sigma_1}{\lambda_1} + \frac{\sigma_{\text{cr}}}{\lambda_{\text{cr}}} + \frac{\sigma_2}{\lambda_2} + \frac{1}{\alpha_2}}$$

где α_1 — коэффициент теплоотдачи от газов, движущихся через слой гранулированного катализатора в трубках, к стенкам трубок, Вт/(м²·K); $\frac{\sigma_1}{\lambda_1} = 0,0006 (M^2 \cdot K)/BT$ — тепловое сопротивление загрязнения внутренней поверхности трубок, — принимается как для светлых нефтепродуктов (Приложение 5): $\delta_{cT} = 0,005 \text{ M} -$ толщина стенки трубы; $\lambda_{cT} = 58,2 \text{ BT/(M}\cdot K) -$ коэффициент теплопроводности стальных трубок; $\frac{\sigma_2}{\lambda_2} = 0,000073 (M^2 \cdot K)/BT$ — тепловое сопротивление загрязнения наружной поверхности трубок, принимается как величина, средняя для водяного конденсата и водяного пара (Приложение 5); α_2 — коэффициент теплоотдачи к кипящей воде, $BT/(M^2\cdot K)$.

Процессу теплообмена в неподвижном слое частиц посвящено значительное число работ [71, с. 273; 141—144], результаты которых значительно отличаются. Известно, что коэффициент теплопередачи в полимеризаторах трубчатого типа составляет 116— 232 Вт/(м²· K) при температуре кипения воды на 10—15 К ниже средней температуры реакции [103, с. 327]. Рассчитаем коэффициент теплоотдачи α_1 по эмпирической зависимости Бика [71, с. 273]:

$$\alpha_1 = uc_p (2.58 \operatorname{Re}^{-2/3} \operatorname{Pr}^{-2/3} + 0.094 \operatorname{Re}^{-1/6} \operatorname{Pr}^{-3/6})$$

где *u* — массовая скорость реагирующей смеси, отнесенная к единице поперечного сечения трубок реактора, кг/(м²·c); *c_p* — средняя теплоемкость реагирующей смеси, Дж/(кг·K); Re — критерий Рейнольдса; Pr — критерий Прандтля.

Массовая скорость реагирующей смеси

$$u = \frac{4G}{3600NZ\pi d_{\rm B}^2} = \frac{4 \cdot 25\,000}{3600 \cdot 4 \cdot 187 \cdot 3,14 \cdot 0,05^2} = 4,71 \text{ Kr/(M}^2 \cdot \text{c})$$

Среднюю теплоемкость реагирующей смеси рассчитаем по известному составу продуктов реакции (табл. 3.61). При этом данные о теплоемкости углеводородов берутся из справочников, а теплоемкость полимербензина может быть рассчитана по формуле:

Расчет средней теплоемкости реагирующей смеси приведен в табл. 3.67.

	COCTAR X	Теплоемкость, Дж/(кг·К)		
Қомпоненты	мол. доли	c _{pi}	$c_{pi}x'_i$	
С ₃ Н ₈	0,0296 0,0151 0,7327 0,0096 0,2130 1,0000	2015 1895 2027 2023 2233	59,6 28,6 1486,0 19,4 475,4 2069,0	

Таблица 3,67

Критерий Рейнольдса:

$$\operatorname{Re} = \frac{w d_{y}}{v}$$

где w — скорость газа в свободном сечении трубы (фиктивная скорость газа), м/с; $d_{\rm H}$ — диаметр гранул катализатора, м; v — кинематическая вязкость газа, м²/с.

Скорость газа в свободном сечении трубы:

$$w = \frac{4v_{\rm cek}}{NZ\pi d_{\rm B}^2}$$

Здесь v_{сек} — объемный расход газа, м³/с:

$$v_{\rm cek} = \frac{22.4G_{\rm c}T_{\rm cp}z_{\rm cm} \cdot 0.1 \cdot 10^6}{3600M_{\rm cp} \cdot 273\pi}$$

где $z_{\rm cm}$ — коэффициент сжимаемости газа; $M_{\rm cp}$ — средняя молекулярная масса газа в реакторе.

При средней приведенной температуре в реакторе $T_{r cp} = \frac{1.09 + 1.02}{2} \approx 1,05$ и среднем приведенном давлении $\pi_{cp} = \frac{0.95 + 1.02}{2} \approx 0,99$ коэффициент сжимаемости $z_{cm} = 0,6$ [44, с. 83].

Средняя молекулярная масса газа в реакторе:

$$M_{\rm cp} = \frac{M_{\rm c} + M_x}{2} = \frac{57 + 68.5}{2} \approx 62.8$$

Тогда:

$$v_{\text{сек}} = \frac{22.4 \cdot 25\ 000 \cdot 468 \cdot 0.6 \cdot 0.1 \cdot 10^6}{3\ 600 \cdot 62.8 \cdot 273 \cdot 3.43 \cdot 10^6} = 0,073 \text{ m}^3/c$$
$$w = \frac{4 \cdot 0.073}{4 \cdot 187 \cdot 3.14 \cdot 0.05^2} = 0,05 \text{ m/c}$$

Для нешарообразных гранул катализатора диаметр $d_{\rm q}$ принимают равным диаметру шара поверхностью, равной средней поверхности гранул катализатора [8, с. 135]:

$$d_{\rm q} = \frac{V\overline{F_{\rm q}}}{\pi}$$

где F_ч — поверхность гранулы катализатора, м².

Гранулы катализатора имеют форму цилиндриков диаметром *d* = 0,04 м и высотой *h* = 0,006 м.

Тогда

$$F_{q} = \pi \, dh + 2 \, \frac{\pi d^{2}}{4} = \pi d \left(h + \frac{d}{2} \right) =$$

$$= 3,14 \cdot 0,004 \left(0,006 + \frac{0,004}{2} \right) = 0,0001 \, \text{m}^{2}$$

$$d_{q} = \frac{\sqrt{0,0001}}{3,14} = 3,2 \cdot 10^{-3} \, \text{m}$$

Кинематическую вязкость газа примем при $T_{\rm cp} = 468$ К равной кинематической вязкости бутана: $v = 7 \cdot 10^{-6}$ м²/с.

Подставив в формулу для критерия Рейнольдса числовые значения величин, получим:

$$\operatorname{Re} = \frac{0.05 \cdot 3.2 \cdot 10^{-3}}{7 \cdot 10^{-6}} = 23$$

Для потока, проходящего через трубы, заполненные катализатором Re = 7 ÷ 200 [143].

Критерий Прандтля:

$$\Pr = \frac{c_p \mu}{\lambda}$$

где $c_p = 2069 \ \mbox{Дж/(кг·K)}$ — средняя теплоемкость реагирующей смеси; μ — динамическая вязкость, $\Pi a \cdot c$; λ — коэффициент теплопроводности газа, $BT/(M \cdot K)$.

Динамическая вязкость реагирующей смеси:

$$\mu = \nu \rho$$

где о -- плотность газа, равная

$$\rho = \frac{G_{\rm c}}{v_{\rm cek}} = \frac{25\,000}{3\,600 \cdot 0.073} = 95,1 \text{ Kr/M}^3$$

Тогда

ī

$$\mu = 7 \cdot 10^{-6} \cdot 95, l = 665, 5 \cdot 10^{-6} \Pi a \cdot c$$

301

Примем коэффициент теплопроводности газа в реакторе при $T_{\rm cp} = 468$ К приблизительно равным коэффициенту теплопроводности бутана $\lambda = 0.0365$ Вт/(м·К).

Подставив в формулу для критерия Прандтля числовые значения величин, получим:

$$\Pr = \frac{2069 \cdot 665.5 \cdot 10^{-6}}{0.0365} = 37,8$$

Таким образом

$$\alpha_1 = 4,71 \cdot 2069 (2,58 \cdot 23^{-i_3} \cdot 37,8^{-i_4} + 0,094 \cdot 23^{-i_5} \cdot 37^{-i_6}) = 326,5 \text{ Br}/(M^2 \cdot K)$$

Коэффициент теплоотдачи к кипящей воде рассчитаем по формуле:

$$a_2 = 0,352\pi^{0,176}q^{0,7}$$

где $\pi = 3,43 \cdot 10^6$ Па — давление в реакторе; q — удельная тепловая нагрузка, Вт/м².

Поверхность теплообмена одного реактора равна:

$$F_1 = \pi d_{\rm p} l Z = 3,14 \cdot 0,05 \cdot 9 \cdot 187 = 264,5 \,{\rm M}^2$$

Тогда

$$q = \frac{1000 Q_{\rm o}}{NF_1} = \frac{1000 \cdot 2047}{4 \cdot 264.5} = 1936 \text{ Bt/m}^2$$

Подставив в формулу для расчета коэффициента а₂ числовые значения величин, получим:

$$\alpha_2 = 0,352 (3,43 \cdot 10^6)^{0,176} \cdot 1936^{0,7} = 993 \text{ Bt/(M}^2 \cdot \text{K})$$

Коэффициент теплопередачи равен:

$$k = \frac{1}{\frac{1}{\frac{1}{326,5} + 0,0006 + \frac{0,005}{58,2} + 0,000073 + \frac{1}{993}}} = 207,2 \text{ Br/(M}^2 \cdot \text{K})$$

Разность между средней температурой потока газов в трубках и температурой кипения воды в межтрубном пространстве равна:

$$\Delta T = \frac{1936}{207,2} = 9.4 \text{ K} \approx 10 \text{ K}$$

Температура кипения воды:

$$T_{\rm K} = 468 - 10 = 458$$
 K

Насыщенному водяному пару такой температуры соответствует давление $\pi_{\pi} = 1,13 \cdot 10^6$ Па и теплота парообразования r = 1996 кДж/кг.

Количество водяного пара:

$$G_{\rm b.\ fi} = \frac{3600 \cdot 2047}{4 \cdot 1996} = 923 \ {\rm kg/m}$$

Количество водяного конденсата:

$$G_{\text{B. K}} = \frac{923}{0,2} = 4615 \text{ KG/y}$$

Далее следует подсчитать диаметр штуцеров для ввода и вывода газа и конденсата водяного пара и принять их окончательные размеры по существующим нормалям.

ГОРИЗОНТАЛЬНЫЙ РЕАКТОР АЛКИЛИРОВАНИЯ

Рассчитать горизонтальный реактор каскадного типа для алкилирования изобутана бутан-бутиленовой фракцией в присутствии серной кислоты.

Производительность реактора 15000 кг/ч сырья, состав которого приводится в табл. 3.68.

таолица з б

Показато ти	Компоненты						
	C ₃ H ₆	C3118	C ₄ H ₈	u30-C4H10	н-С4Н ₁₀	C ₅ H ₁₂	Сумма
Молекулярная масса. Количество: кг/чмасс. %	42 90 0,6	44 240 1,6	56 4195 28	58 5515 36,8	58 4765 31,8	72 195 1,2	

Особенности работы и конструктивное оформление горизонтального секционированного (каскадного) реактора алкилирования рассмотрены в литературе [5, 83, 89, 112, 136, 145]. Научные основы секционирования реакционных аппаратов изложены в книге [146].

Исходными данными для расчета являются производительность реактора по исходному сырью, состав сырья, а также принимаемые на основе промышленных или лабораторных данных: температура реакции, мольное отношение изопарафин/олефин, объемное отношение катализатор/углеводороды в реакционной системе, число секций в реакторе и снижение концентрации катализатора в каж-дой секции.

Задачей расчета реактора является определение выходов алкилата и тепловых нагрузок каждой секции, давления в системе, размеров реактора и мешалки, мощности электродвигателя.

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РЕАКТОРА

1. Определяют часовое количество изобутана, подаваемое в реактор.

2. Определяют состав сырья, подаваемого в реактор, с учетом изобутана.

3. При расчете секций реактора принимают: а) пропилен, пропан, *н*-бутан, пентан в реакцию не вступают; б) вся масса олефинов (алкенов) вступает в реакцию алкилирования, образуя соответствующее количество алкилата.

4. Расчет первой секции.

а. Принимают температуру реакции, одинаковую для всех секний.

б. Определяют количество углеводородного сырья, подаваемого в каждую из секций, в том числе и в первую. Исходное сырье в каждую секцию подается в равных количествах. В первую секцию

Рис. 3.26. Горизонтальный реактор алкилирования: 1-смеситель; 2-насос; 3-конденсатор; 4-отстойник кислоты; 5-аккумулятор алкилата.

поступает весь циркулирующий изобутан и вся масса серной кислоты (рис. 3.26).

По плотности компонентов загрузки при принятой температуре реакции находят часовой объем каждого из них и суммарный объем.

Принимают в рекомендуемых пределах объемное отношение катализатор/углеводороды и определяют часовой объем кислоты и ее массу.

Состав загрузки первой секции дается в таблице.

в. Рассчитывают количество образовавшегося в первой секции алкилата и количество свежего изобутана, не вошедшего в реакпию.

г. Определяют углеводородный• состав потока, покидающего первую секцию и приводят его в таблице.

д. Определяют тепловую нагрузку первой секции.

Для этого по экспериментальным данным принимают теплоту реакции, а также, полагая, что тепло реакции алкилирования составляет примерно 80% от тепловой нагрузки секции, рассчитывают последнюю.

е. Определяют давление в секции и принимают его одинаковым для всего реактора. Давление находят по уравнению изотермы жидкой фазы, записанному для системы, находящейся в первой секции. При этом серную кислоту следует считать практически нелетучим компонентом.

ж. Рассчитывают количество углеводородов, испаряющихся в секции за счет тепла реакции алкилирования. Наряду с известными методами расчета однократного испарения, с целью некоторого упрощения, можно принять, что весь теплосъем в секции будет происходить за счет полного испарения пропан-пропиленовой фракции и частичного испарения изобутана. Из уравнения теплового баланса процесса однократного испарения определяют количество испаряющегося изобутана.

з. На основе промышленных данных принимают величину объемной скорости питания секции олефинами и, зная часовой объем последних, находят объем кислоты в секции. Затем определяют объем углеводородов в секции и суммарный объем смеси.

и. По объему смеси кислоты и углеводородов в секции и часовому объему всей ее загрузки определяют продолжительность контакта в первой секции.

к. Задаваясь коэффициентом заполнения, находят полный объем первой секции. Принимают длину секции и рассчитывают диаметр реактора. Если он получается нестандартным, берут ближайшее большее стандартное его значение.

5. Расчет второй секции.

а. Определяются массовое и объемное количества компонентов загрузки для второй секции и суммарная величина загрузки с учетом изменения плотности серной кислоты от ее концентрации.

Рассчитывается отношение объемов кислоты и углеводородов в секции.

б. Находят тепловую нагрузку секции и количество испаряющихся в ней углеводородов. Определения ведутся так же, как для первой секции.

в. Находят время пребывания смеси (продолжительность контакта), объем кислоты, объем углеводородов и объемную скорость питания для второй секции.

6. Расчеты третьей, четвертой и пятой секций делаются по аналогии с расчетом второй секции.

7. Составляется (в виде таблицы) материальный баланс всего реактора.

8. Определяется мольное отношение изобутан/олефин для каждой секции реактора.

9. Определяют объемное количество смеси на выходе из последней секции реактора и, задаваясь временем отстоя, находят объем, а затем длину отстойной зоны.

10. Определяют общую длину реактора и его объем. Если длина аппарата получается чрезмерно большой, следует сократить длину секции или увеличить объемную скорость питания, не выходя за пределы рекомендуемых величин.

11. Выбирают тип мешалки и определяют ее основные размеры. Находят обычными методами мощность электроприводов смесите лей и кислотного насоса.

PACHET

Для получения относительно большего количества высококачественного алкилата и нормальной работы реактора требуется избыток изобутана. Поэтому мольное отношение изобутан/олефин (бутилен) необходимо поддерживать в пределах от 6:1 до 10:1 [82, стр. 236]. Чем выше это отношение, тем выше выход алкилата. Примем отношение изобутан/олефин равным 9:1. Тогда количество изобутана, которое необходимо подать в реактор:

$$G_{\rm H} = 9G_{\rm o} \frac{M_{\rm H}}{M_{\rm o}}$$

где G_0 — количество олефина (бутилена) в исходном сырье, кг/ч; $M_{\rm u}$, M_0 — молекулярная масса, соответственно, изобутана и олефина.

Получим:

$$G_{\mu} = 9 \cdot 4195 \frac{58}{56} = 39\,120 \text{ kr/y}$$

Состав сырья, подаваемого в реактор, с учетом избыточного изобутана приведен в табл. 3.69.

Таблица 3,69

_			Ko	мпоненты	поненты 130-С4H10 И-С4H10 С5H1			
Показатели	C₃H₀	C ₃ H ₈	C ₄ H ₈	изо-С ₄ Н ₁₀	<i>н</i> -С ₄ Н ₁₀	C ₅ H ₁₂	Сумма	
Количество: кг/ч	90 0,165	240 0,494	4 195 8,63	39 120 80,5	4 765 9,81	195 0,401	48 605 100	

Алкилирование осуществляется в реакторе, реакционная зона которого состоит из пяти (N = 5) последовательных и равных по размерам секций. Реактор совмещен с отстойной зоной для кислоты (рис. 3.26). Исходное сырье (табл. 3.68) подается в секции параллельно и в равных количествах, а циркулирующие изобутан и катализатор — последовательно. Во вторую и последующие секции вместе с катализатором и циркулирующим изобутаном подаются продукты реакции и непрореагировавшие углеводороды.

На основе промышленных данных [112, с. 198] примем для первой секции реактора отношение объемов подаваемых в нее кислоты и углеводородов $\alpha = 1,2$. Как будет показано в расчете это отношение от секции к секции будет увеличиваться.

В процессе алкилирования применяется 97%-ная серная кислота, которая отрабатывается до 90%-ной концентрации, считая на моногидрат — H₂SO₄. В табл. 3.70 приведено принятое в расчете снижение концентрации кислоты по секциям реактора.

306 ·

Таблица 3.70

Секции	Снижение концентрации кислоты, % H2SO4	Средняя концентрация, % Н₂SO4
1	97-96 = 1	96,5
2	96-94,5 = 1,5	95,25
3	94,5-93 = 1,5	93,75
4	93-91,5 = 1,5	92,25
5	91,5-90 = 1,5	90,75

В промышленной практике реакция алкилирования изопарафинов олефинами осуществляется при температуре 275-283 К [104, с. 85]. Примем в нашем случае температуру реакции T = 278 К. Будем считать, что углеводороды и кислота загружаются в реактор также при температуре T = 278 К. В дальнейшем при расчете всех секций реактора будем полагать, что: 1) пропилен, пропан, *н*-бутан и пентан, находящиеся в сырье, в реакцию не вступают, поэтому их количества в процессе остаются неизменными; 2) вся масса олефинов вступает в реакцию алкилирования, образуя соответствующее количество алкилата.

1. Расчет первой секции

Материальный баланс. Согласно схеме работы реактора (рис. 3.26), во все его пять секций исходное сырье (табл. 3.68) поступает параллельными и равными потоками. Поэтому в первую секцию подается всего изобутана:

$$G_{\text{HI}} = G_{\text{H}} - \frac{4}{5} G_{\text{HC}} = 39\,120 - \frac{4}{5}\,5515 = 34\,708\,\text{ km/m}$$

где G_{ис}=5515 кг/ч-масса изобутана в исходном сырье (табл. 3.68).

Количество поступающего в первую секцию циркулирующего изобутана:

$$G_{\mu\mu} = G_{\mu} - \frac{G_{\mu}}{5} = 34\ 708 - \frac{5515}{5} = 33\ 605\ \text{kr/y}$$

или

 $G_{\text{Hull}} = G_{\text{H}} - G_{\text{Hc}} = 39\ 120 - 5515 = 33\ 605\ \text{Kr/y}$

Состав загрузки первой секции реактора дается в табл. 3.71.

Так как плотность серной кислоты зависит от концентрации, то в дальнейшем при определении ее объема следует пользоваться графиком (рис. 3.27) [49, с. 503] и табл. 3.70.

Определим состав углеводородной массы, выходящей из первой секции. Согласно уравнению основной реакции алкилирования

$$u_{30}-C_4H_{10}+C_4H_6=C_8H_{18}$$

Таблица 3.71

	Плотность			0	
Компоненты загрузки	278 К, кг/м ⁸	^M i	кг/ч	м ³ /ч	кмоль/ч
С ₃ H ₆	627,3 597,9 642 575,3 575,3 595 641 1820 	42 44 56 58 58 58 72 	18 48 839 1103 33 605 953 39 36 605 138 502 175 107	0,0287 0,0803 1,3 1,92 58,4 1,61 0,061 63,4 76,1 139,5	0,43 1,09 15 19 579,4 16,5 0,54 631,96 —

в нее вступает 15 кмоль/ч олефина и такое же число кмоль/ч свежего изобутана (табл. 3.71). Поэтому выход алкилата составит*

Рис. 3.27. График для определения плотности кислоты. $G_{an.1} = 839 + 15 \cdot 58 =$ = 839 + 870 = 1709 kr/y

При этом количество свежего изобутана, не вошедшего в реакцию (отработанного)

 $G_{\text{Hol}} = 1103 - 870 = 233 \text{ KG/y}$

или

$$G'_{\rm HO} = 19 - 15 = 4$$
 кмоль/ч

В табл. 3.72 приведен состав углеводородов, покидающих первую секцию.

Тепловая нагрузка первой секции. Все внешние и внутренние

материальные потоки реактора, по ранее принятому условию, имеют температуру T = 278 К, поэтому тепловую нагрузку секции, без ущерба для точности расчета, принимаем равной теплу, которое выделяется в процессе алкилирования. Тепло основной реакции алкилирования по литературным данным [104, с. 90] составляет 75—85% тепловой нагрузки секции. Приняв, что тепло основной реакции алкилирования составляет 80% тепловой на-

* Выход алкилата можно рассчитать и так:

$$G_{a.n. 1} = 15 \cdot 114 = 1710 \text{ kr/y}$$

где 15— количество бутилена, кмоль/ч; 114— средняя молекулярная масса алкилата.

Незначительное расхождение в расчетах выхода алкилата объясняется округлением числовых значений молекулярных масс.

Таблица 3,72

١

Компоненты	.,)	Costan	
	Mi	кг/ч	м ³ /ч	кмоль/ч	мол. %
С ₃ H ₆	42 44 58 58 58 72 114	18 48 233 33 605 953 39 1 709 36 605	0,0287 0,0803 0,405 58,4 1,61 0,061 2,39 * 62,98	0,43 1,09 4 579,4 16,5 0,54 15 616,96	0,07 0,18 0,65 93,95 2,64 0,09 2,42 100
• Плотность алкилата принята [7, с. 223].	равной	плотности	октана пр	ои 278 Қ р⊧	=715 кг/м ⁹

грузки секции Q1 получим:

$$0,8Q_1 = G_{aл. 1}q_p$$

или

$$Q_1 = \frac{G_{a...1}q_p}{0.8} = \frac{1709 \cdot 1050}{0.8} = 2,25 \cdot 10^6 \text{ кДж/ч} = 623 \text{ кBT}$$

где $G_{an.1} = 1709$ кг/ч — количество алкилата, получаемого в первой секции (табл. 3.72); $q_p = 1050$ кДж/кг алкилата — теплота основной реакции алкилирования [145, с. 201].

Давление в первой секции. Давление при температуре реакции T = 278 К рассчитаем по уравнению изотермы жидкой фазы:

$$\pi = \sum_{i=1}^{7} P_i x'_i + P_{\kappa}$$

где P_i — давление насыщенных паров чистых углеводородов при T = 278 К, — определяется по диаграмме Кокса или таблицам [7, 145]; x'_i — мольные доли углеводородных компонентов (табл. 3.72); $P_{\rm K}$ — давление насыщенного пара серной кислоты (при T = 278 К принимается равным нулю, так как температура ее кипения при нормальном давлении значительно выше 573 К).

Имеем:

$$\pi = 658 \cdot 0,0007 + 540 \cdot 0,0018 + 180 \cdot 0,946 + 122 \cdot 0,264 + + 30,2 \cdot 0,0009 + 0,55 \cdot 0,0242 = 175 \cdot 10^3 \ \Pi a$$

Во всех остальных секциях принимается такое же давление. Количество углеводородов, испаряющихся в первой секции. Пары, уходящие из секции, находятся в равновесии с испаряющейся жидкостью. Их состав может быть определен по каждому компоненту из уравнения равновесия фаз

$$y_i' = \frac{P_i}{\pi} x_i'$$

в котором все величины правой части известны. Получим:

$$y'_{C_{3}H_{6}} = \frac{\frac{658 \cdot 10^{3} \cdot 0,0007}{175 \cdot 10^{3}}}{175 \cdot 10^{3}} = 0,0026$$
$$y'_{C_{3}H_{1}} = \frac{\frac{540 \cdot 10^{3} \cdot 0,0018}{175 \cdot 10^{3}}}{175 \cdot 10^{3}} = 0,0055$$
$$y'_{uso-C_{4}H_{15}} = \frac{\frac{180 \cdot 10^{3} \cdot 0,946}{175 \cdot 10^{3}}}{175 \cdot 10^{3}} = 0,970$$
$$y'_{H-C_{4}H_{15}} = \frac{\frac{122 \cdot 10^{3} \cdot 0,0264}{175 \cdot 10^{3}}}{175 \cdot 10^{3}} = 0,000153$$
$$y'_{a,n} = \frac{0,55 \cdot 10^{3} \cdot 0,0242}{175 \cdot 10^{3}} = 0,000075$$

Проверка:

 $\sum y'_i = 0,0026 + 0,0055 + 0,970 + 0,0182 + 0,000153 + 0,000075 = 0,997 \approx 1$

По найденным концентрациям компонентов в парах и теплотам испарения чистых компонентов при T = 278 К [7] находим по правилу аддитивности теплоту испарения r'_m смеси паров. Весь рас-

Қомпоненты	у _і , мол. доли	r' _l , кДж/кмоль	r'i'i, кДж/кмоль
С ₃ H ₆ С ₃ H ₈ <i>изо</i> -С ₄ H ₁₀ <i>и</i> -С ₄ H ₁₀ С ₅ H ₁₂ Алкилат (C ₈ H ₁₈)	0,0026 0,0055 0,970 0,0182 0,000153 0,000075 ≈1	15 600 16 200 20 400 22 000 27 400 42 300	$ \begin{array}{c} 40,5\\89\\19700\\400\\4,2\\3,2\\r'_{m} = 20237\end{array} $

Tabauna	2 73
таолица	3.13

чет сведен в табл. 3.73. Зная теплоту испарения смеси r'_m и тепловую нагрузку секции Q_1 , определим количество паров углеводородов, образующихся в первой секции:

$$V_{m1} = \frac{Q_1}{r'_m} = \frac{2 \cdot 25 \cdot 10^6}{20237} = 111$$
 кмоль/ч

Количества каждого компонента в парах найдем по формуле: $V'_i = V'_{m_1} y'_i$

Получим:

$$V'_{C_{3}H_{6}} = 111 \cdot 0,0026 = 0,29 \text{ кмоль/ч}$$

 $V'_{C_{3}H_{4}} = 111 \cdot 0,0055 = 0,61 \text{ кмоль/ч}$
 $V'_{u_{30}-C_{4}H_{10}} = 111 \cdot 0,970 = 108 \text{ кмоль/ч}$
 $V'_{H^{-}C_{4}H_{10}} = 111 \cdot 0,0182 = 2,02 \text{ кмоль/ч}$
 $V'_{C_{3}H_{12}} = 111 \cdot 0,000153 = 0,017 \text{ кмоль/ч}$
 $V'_{an} = 111 \cdot 0,000075 = 0,0083 \text{ кмоль/ч}$

Проверка:

$$V'_{mi} = \sum V'_i = 0,29 + 0,61 + 108 + 2,02 + 0,017 + 0,0083 = 110,95 \approx 111$$
кмоль/ч

Анализируя сделанные расчеты, нетрудно видеть, что практически весь теплосъем в первой секции осуществляется за счет испарения изобутана. Поэтому без большой ошибки количество испаряющегося изобутана можно определить из приближенного уравнения теплового баланса испарения

$$Q_{1} = V'_{1C_{3}H_{6}}r'_{C_{3}H_{6}} + V'_{1C_{3}H_{8}}r'_{C_{3}H_{4}} + V'_{1u30}-C_{4}H_{10}r'_{u30}-C_{4}H_{10}$$

в котором количества паров пропилена и пропана считают равными количествам этих углеводородов в сырье.

Таким образом

$$V'_{1 u_{30}-C_4H_{10}} = \frac{Q_1 - V'_{1C_3H_6}r'_{C_3H_6} - V'_{1C_3H_8}r'_{C_3H_8}}{r'_{u_{30}-C_4H_{10}}} = \frac{2,25 \cdot 10^6 - 0,43 \cdot 15\,600 - 1,09 \cdot 16\,200}{20\,400} = 109 \text{ кмоль/ч}$$

или

$$V_{1_{u30}-C_4H_{10}} = 109 \cdot 58 = 6322 \text{ kr/y}$$

Этот результат очень близок к полученному выше.

Можно также определить количества испаренных в секции углеводородов методом Трегубова [5, с. 174]. При этом за исходный должен быть принят мольный состав углеводородов, выходящих из секции (табл. 3.72).

Результаты такого расчета будут очень близки к полученным выше.

Объем кислоты и углеводородов в первой секции. Следует различать время пребывания ингредиентов в секции реактора и продолжительность реакции. Последняя в проточных аппаратах определяется объемной скоростью питания реактора сырьем и находится опытным путем. При алкилировании изопарафинов олефинами под объемной скоростью понимают объемное количество олефинов, подаваемое в 1 ч на единицу объема катализатора, находящегося в секции (истинная реакционная зона). Известно, что с уменьшением объемной скорости понижается сортность алкилата. Из практики эксплуатации алкилирующих установок известно [104, с. 85], что объемная скорость находится в пределах 0,1—0,6 ч⁻¹. Примем для нашего случая объемную скорость w = 0.2 ч⁻¹. Тогда объем кислоты в секции:

$$V_{\kappa 1} = \frac{V_{\text{ол. 1}}}{w_1}$$

где $V_{\text{ол. 1}} = 1,3 \text{ м}^{3/4}$ — количество олефина, подаваемого в секцию (табл. 3.71).

Получим:

$$V_{\kappa 1} = \frac{1,3}{0,2} = 6,5 \text{ m}^3$$

Зная, что отношение объема кислоты к объему углеводородов в первой секции α₁ == 1,2, найдем объем углеводородов в секции:

$$V_{y1} = \frac{V_{\kappa 1}}{\alpha_1} = \frac{6.5}{1.2} = 5.4 \text{ m}^3$$

Суммарный объем кислоты и углеводородов в секции:

$$V_1 = V_{\kappa 1} + V_{y1} = 6,5 + 5,4 = 11,9 \text{ m}^3$$

Найдем продолжительность пребывания смеси углеводородов и кислоты (время контакта) в первой секции:

$$\tau_1 = \frac{60V_1}{R_1} = \frac{60 \cdot 11.9}{139.5} = 5,15$$
 мин

где $R_1 = 139,5 \text{ м}^3/4$ — объем смеси, поступающей в первую секцию (табл. 3.71).

Размеры первой секции. В реакционных аппаратах емкостного типа, если жидкая смесь реагирующих веществ не вспенивается, степень заполнения равна $\varphi = 0.7 \div 0.85$ [37, с. 6]. Примем $\varphi = 0.7$. Тогда полный объем первой секции:

$$V_{\rm p1} = \frac{V_{\rm 1}}{\varphi} = \frac{11.9}{0.7} = 17 \,{\rm M}^3$$

Принимая длину секции *l* = 2 м, найдем диаметр аппарата:

$$D = \sqrt{\frac{4V_{\text{pl}}}{\pi l}} = \sqrt{\frac{4 \cdot 17}{3,14 \cdot 2}} = 3,3 \text{ M}$$

Принимаем D = 3,4 м.

Как указано было в начале расчета, все пять реакционных секций аппарата будут иметь одинаковые размеры: D = 3,4 м, l = 2 м.

2. Расчет второй секции

Материальный баланс. При определении загрузки второй и всех остальных секций, в целях некоторого упрощения расчета, будем полагать, что вся пропан-пропиленовая фракция в любой секции испаряется полностью, а *н*-бутан, пентан и алкилат не испаряются совсем. Возможность такой предпосылки была показана выше (см. п. 1г). С учетом сказанного и в соответствии со схемой работы реактора, количество сырья, подаваемого во вторую секцию, будет включать:

1) пятую часть исходного (олефинового) сырья (табл. 3.68);

2) не вошедший в реакцию (отработанный) изобутан свежего сырья первой секции (табл. 3.72);

3) рециркулирующий изобутан с учетом его частичного испарения в первой секции (см. п. 1г);

4) н-бутан и пентан из первой секции (табл. 3.72);

5) алкилат, полученный в первой секции (табл. 3.72);

6) серную кислоту из первой секции (табл. 3.71).

Количество рециркулирующего изобутана, поступающего во вторую секцию (табл. 3.72 и п. 2г):

 $G'_{\rm Hu, 2} = 579,4 - 109 = 470,4$ кмоль/ч

или

$$G_{\text{Hu}=2} = 470, 4 \cdot 58 = 27\ 283\ \text{Kg/m}$$

В табл. 3.74 приведены массовые и объемные количества компонентов загрузки второй секции с учетом изменения плотности серной кислоты от ее концентрации (табл. 3.70, рис. 3.27).

Таблица 3.74

•	Количество		
Қомпоненты	КГ/Ч	М ³ /Ч	
$C_{3}H_{6} + C_{3}H_{8} \dots \dots \dots \dots \dots$	66	0,1090	
C4H8	839	1,3	
<i>изо</i> •С₄Н ₁₀ (свежий)	1103	1,92	
изо-С ₄ Н ₁₀ (отработанный)	233	0.405	
изо-С.Н., (рециркулят)	27 283	47.5	
$H-C_1H_{10}$	953 + 953	3.22	
CeH ₁₀	39 + 39	0,122	
$A_{\rm ЛКИ, Лат}$ (C ₀ H ₁₀)	1709	2,39	
	138 509	76.5	
	100 002	10,0	
Сумма	171 719	133,47	

Из табл. 3.74 следует, что отношение объемов катализатора и углеводородов во второй секции равно:

$$\alpha_2 = \frac{76,5}{133,47 - 76,5} = \frac{1,35}{1}$$

По сравнению с первой секцией это отношение повысилось за счет некоторого сокращения объема углеводородов и снижения плотности кислоты.

Количество алкилата, образующегося во второй секции, будет таким же, как в первой:

$$G_{a\pi,2} = 839 + 870 = 1709 \text{ KG/y}$$

11 Зак. 100

Количество свежего изобутана, не вошедшего в реакцию (отработанного), равно:

$$G_{\text{HO},2} = 1103 - 870 = 233 \text{ Kr/y}$$

В табл. 3.75 приведен состав углеводородов, покидающих вторую секцию.

Таблица	3.75
---------	------

	Количество		
Компоненты	кг/ч	м ⁸ /ч	кмоль/ч
С ₃ H ₆ + С ₃ H ₈	$\begin{array}{r} 66\\ 233+233\\ 27283\\ 953+953\\ 39+39\\ 1709+1709\\ 33217\end{array}$	0,109 0,810 47,5 3,22 0,122 4,78 56,54	1,52 8 470,4 33 1,08 30 544

Тепловая нагрузка секции. Вычисляется так же, как и для первой секции:

$$Q_2 = \frac{G_{a.n.2}q_p}{0.8} = \frac{1709 \cdot 1050}{0.8} = 2,25 \cdot 10^6 \text{ кДж/ч} = 623 \text{ кВт}$$

где $G_{an,2} = 1709 \text{ кг/ч} - \text{количество алкилата, полученного во второй секции (табл. 3.75).}$

Количество углеводородов, испаряющихся во второй секции. При допущении, которое сделано при тепловом расчете первой секции, найдем количество изобутана, испаренного во второй секции:

$$V'_{2изо-C_4H_{10}} = \frac{Q_2 - V'_{2C_3H_6}r'_{C,H_6} - V'_{2C_3H_8}r'_{C_3H_8}}{r'_{u3o-C_4H_{10}}} = \frac{2,25 \cdot 10^6 - 0,43 \cdot 15\,600 - 1,09 \cdot 162}{20\,400} = 109 \text{ кмоль/ч}$$

или

 $V_{2\mu_{30}-C_4H_1} = 109 \cdot 58 = 6322 \text{ kg/m}$

Время пребывания смеси углеводородов и кислоты во второй секции. Полный объем второй секции такой же, как и первой: $V_{p2} = V_{p1} = 17 \text{ м}^3$. При степени заполнения $\varphi = 0,7$ объем смеси углеводородов и кислоты будет равен:

$$V_2 = \varphi V_{p2} = 0,7 \cdot 17 = 11,9 \text{ M}^3$$

Время пребывания смеси (продолжительность контакта) во второй секции:

$$\tau_2 = \frac{60V_2}{R_2}$$

314

где $R_2 = 133,47$ м³/ч — объем смеси, поступающей во вторую секцию (табл. 3.74).

Получим:

$$\tau_2 = \frac{60 \cdot 11,9}{133,47} = 5,4$$
 мин

Объемная скорость подачи олефинов. Объем кислоты во второй секции:

$$V_{\kappa 2} = \frac{76,5 \cdot 5,4}{60} = 6,85 \text{ m}^3$$

Объем углеводородов:

$$V_{y2} = V_2 - V_{\kappa 2} = 11,9 - 6,85 = 5,05 \text{ m}^3$$

Объемная скорость подачи олефинов:

$$w_2 = \frac{V_{\text{o.r. 2}}}{V_{\text{K2}}} = \frac{1.3}{6.85} = 0.19 \text{ y}^{-1}$$

3. Расчет третьей секции

Все определения ведутся по аналогии с расчетом второй секции. Массовые и объемные количества компонентов загрузки даны в табл. 3.76

	Количество		
Компоненты		кг/ч	м ³ /ч
С ₃ H ₆ + С ₃ H ₈	• • • • •	$\begin{array}{r} 66\\ 839\\ 1103\\ 233+233\\ 20961\\ 953+953+953\\ 39+39+39\\ \end{array}$	0,109 1,3 1,92 0,810 36,5 4,83 0,183
Алкилат	:	1709 + 1709 138 502	4,78 78
Сумма		168 331	128,43

Таблица 3,76

Отношение объемов катализатора и углеводородов в третьей секции:

$$\alpha_{3} = \frac{78}{128,43-78} = \frac{1,55}{1}$$

$$G_{an.3} = 839 + 870 = 1709 \text{ кг/ч}$$

$$G_{HO.3} = 1103 - 870 = 223 \text{ кг/ч}$$

$$Q_{3} = \frac{1709 \cdot 1050}{0,8} = 2,25 \cdot 10^{6} \text{ кДж} = 623 \text{ кBr}$$

$$V'_{3\mu30} \cdot C_{4}H_{1} = 109 \text{ кмоль/ч}$$

11*

или

$$V_{3\mu30} \cdot C_{4}H_{10} = 109 \cdot 58 = 6322 \text{ Kr/m}$$

$$V_{p3} = 17 \text{ M}^{3}$$

$$V_{3} = 0,7 \cdot 17 = 11,9 \text{ M}^{3}$$

$$\tau_{3} = \frac{60 \cdot 11,9}{128,43} = 5,6 \text{ MHH}$$

$$V_{\kappa3} = \frac{78 \cdot 5,6}{60} = 7,28 \text{ M}^{3}$$

$$V_{y3} = 11,9 - 7,28 = 4,62 \text{ M}^{3}$$

$$w_{3} = \frac{1,3}{7,28} = 0,18 \text{ m}^{-1}$$

4. Расчет четвертой секции

Определения ведутся по прежней схеме. Массовые и объемные количества компонентов загрузки даны в табл. 3.77

	Количество	
Компоненты	кг/ч	м ³ /ч
С ₃ H ₆ + С ₃ H ₈	$\begin{array}{r} 66\\ 839\\ 1103\\ 233+233+233\\ 14639\\ 953+953+953+953\\ 39+39+39+39\\ 1709+1709\\ 138502\\ 164943\end{array}$	$0,109 \\ 1,3 \\ 1,92 \\ 1,215 \\ 25,4 \\ 6,44 \\ 0,244 \\ 7,2 \\ 78,5 \\ 122,3 \\$

Таблица 3.77

Отношение объемов катализатора и углеводородов в четвертой секции: 1 70

$$\alpha_4 = \frac{78,5}{122,3-78,5} = \frac{1,78}{1}$$

$$G_{a.n.4} = 839 + 870 = 1709 \text{ кг/ч}$$

$$G_{к.0.4} = 1103 - 870 = 233 \text{ кг/ч}$$

$$Q_4 = 2,25 \cdot 10^6 \text{ кДж/ч} = 623 \text{ кBT}$$

$$V'_{4из0}\text{-}C_4\text{H}_{10} = 109 \text{ кмоль/ч}$$

или

$$V_{4u30-C_{4}H_{10}} = 6322 \text{ Kr/H}$$

$$V_{p4} = 17 \text{ M}^{3}$$

$$V_{4} = 0,7 \cdot 17 = 11,9 \text{ M}^{3}$$

$$\tau_{4} = \frac{60 \cdot 11,9}{122,3} = 5,9 \text{ MHH}$$

$$V_{\kappa 4} = \frac{78,5 \cdot 5,9}{60} = 7,7 \text{ M}^{3}$$

$$V_{y4} = 11,9 - 7,7 = 4,2 \text{ M}^{3}$$

$$w_{4} = \frac{1,3}{7,7} = 0,17 \text{ H}^{-1}$$

5. Расчет пятой секции

Массовые и объемные количества компонентов загрузки даны в табл. 3.78.

	Количество				
Компоненты	к г/ч	м ⁸ /ч			
С ₃ H ₆ + С ₃ H ₈	$\begin{array}{r} 66\\ 839\\ 1103\\ 233+233+233+233\\ 8317\\ 953+953+953+953+953+953\\ 39+39+39+39+39\\ 1709+1709+1709+1709\\ 138502 \end{array}$	$\begin{array}{c} 0,109\\ 1.3\\ 1,92\\ 1.62\\ 14,5\\ 8,05\\ 0,305\\ 9,54\\ 79\end{array}$			
Сумма	161 555	116			

Таблица 3.78

Отношение объемов катализатора и углеводородов в пятой секции:

$$a_{5} = \frac{79}{116 - 79} = \frac{2,13}{1}$$

$$G_{a.r.5} = 839 + 870 = 1709 \text{ кг/ч}$$

$$G_{HO.5} = 1103 - 870 = 233 \text{ кг/ч}$$

$$Q_{5} = 2,25 \cdot 10^{6} \text{ кДж} = 623 \text{ кВт}$$

$$V_{5и30\text{-}C_{4}H_{10}} = 109 \text{ кмоль/ч}$$

317

или

$$V_{5uso-C_4H_1} = 6322 \text{ Kr/y}$$

$$V_{p4} = 17 \text{ M}^3$$

$$V_4 = 0,7 \cdot 17 = 11,9 \text{ M}^3$$

$$\tau_5 = \frac{60 \cdot 11,9}{116} = 6,2 \text{ MHH}$$

$$V_{\kappa 5} = \frac{79 \cdot 6,2}{60} = 8,15 \text{ M}^3$$

$$V_{y5} = 11,9 - 8,15 = 3,75 \text{ M}^3$$

$$w_5 = \frac{1,3}{8,15} = 0,16 \text{ y}^{-1}$$

6. Материальный баланс реактора

На основе сделанного выше посекционного расчета реактора можно составить его общий материальный баланс (табл. 3.79).

Таблица 3.79

		Сумма по				
Ποτοκμ	1	2	3	4	5	реактору. кг/ч
Приход						
$C_3H_6 + C_3H_8$ C_1H_8 <i>изо</i> - C_4H_{10} (свежий) <i>изо</i> - C_4H_{10} (отрабо-	66 839 1 103	66 839 1 103	66 839 1 103 ₋	66 839 1 103	66 839 1 103	330 4 195 5 515
танный)	-	233	466	699	932	-
лят)	33 605 953 39 138 502	27 283 1 906 78 138 502	$20\ 961\ 2\ 859\ 117\ 138\ 502$	14 639 3 812 156 138 502	8 317 4 765 195 138 502	33 605 4 765 195 138 502
Сумма	175 107	171 719	168 331	164 943	161 555	187 107
Расход						
$C_{3}H_{6} + C_{3}H_{8}$ (nap) <i>u30</i> - $C_{1}H_{13}$ (отработа-	66	66	66	66	66	330
танный)	233	466	699	932	1 165	1 165
лят)	27 283	20 961	14 639	8 317	1 995	1 995
ный). н-С.Н ₁ э С ₅ Н ₁ з Алкилат Катализатор	322 953 39 1 709 138 502	6 322 1 906 78 3 418 138 502	6 322 2 859 117 5 127 138 502	6 322 3 812 156 6 836 138 502	6 322 4 765 195 8 545 138 502	31 610 4 765 195 8 545 138 502
Сумма	175 107	171 719	168 331	164 943	161 555	187 107

318

7. Отношение изобутан/олефин (бутилен)

Выше отмечалось, что мольное отношение изобутан/олефин должно быть высоким. В´табл. 3.80 приведены эти отношения по каждой секции и в целом по реактору. Мольные количества изобутана подсчитываются по его массовым количествам, поступающим в каждую из секций (табл. 3.79).

Номер секции	Количество		
	изо-С4H10	C ₄ H ₈	изобутен/олефин
1 2 3 4 5 По реактору	600 500 390 284 180 675	15 15 15 15 15 75	40 33,3 26 19 12 9

Таблица 3.80

Как следует из табл. 3.80, в секциях горизонтального реактора поддерживается повышенное отношение изобутан/олефин по сравнению с рекомендусмым 6:1 или 10:1 для вертикальных реакторов. Это приводит к уменьшению выхода побочных продуктов реакции и к относительному снижению расхода циркулирующего изобутана.

8. Размеры реактора

Объем отстойной зоны реактора. В этой зоне происходит разделение выходящих из пятой секции реактора углеводородов и серной кислоты.

Зная массовые количества жидких компонентов, покидающих пятую секцию (табл. 3.79) и их плотности, найдем объемное количество смеси. Оно составит $R_{m5} = 104.8 \text{ м}^3/\text{ч}$. Принимая время отстоя $\tau_p = 60$ мин и степень заполнения $\varphi = 0.7$, найдем объем зоны отстоя:

$$V_{\rm po} = \frac{R_{m5}\tau_{\rm o}}{60\varphi} = \frac{104.8\cdot60}{60\cdot0.7} = 148 \,\,{\rm m}^3$$

Тогда длина зоны будет:

$$L_{\rm o} = \frac{4V_{\rm po}}{\pi D^2} = \frac{4 \cdot 148}{3,14 \cdot 3,4^2} = 16,3 \text{ M}$$

Объем реактора. Найдем общую длину цилиндрической части реактора:

$$L_{\rm u} = L_{\rm p} + L_{\rm o} = 5 \cdot 2 + 16,3 = 26,3$$
 M

где $L_p = Nl - длина$ реакционной зоны.

Объем цилиндрической части реактора (практически равный его объему) будет равен:

$$V_{\rm p} = \frac{\pi D^2}{4} L_{\rm u} = \frac{3.14 \cdot 3.4^2}{4} \cdot 26.3 = 238 \text{ m}^3$$

9. Элементы конструктивного оформления смесителя

Перемешивание сырья и кислоты осуществляется в проточном смесителе для создания турбулентного движения потоков (рис. 3.28).

Рис. 3.28. Схема работы секции горизонтального реактора алкилирования.

В нефтеперерабатывающей промышленности с этой целью применяются пропеллерные мешалки (рис. 3.29).

Такие мешалки проектируются на основе экспериментальных данных. В табл. 3.81 и на рис. 3.29 приведены соотношения размеров обычно применяемых пропеллерных мешалок [147, с. 298].

Таблица 3.81

Оснозные размеры	Соотношение размероз		
Диаметр емкости или длина секции. Диаметр мешалки Высота расположения мешалки над дном Глубина погружения мешалки	Dили $ld_{\rm M} = (0,5 \div 0,2) D\cdot \qquad h_{\rm M} = (0,5 \div 1,0) d_{\rm M}H_{\rm O} - h_{\rm M} = (2 \div 4) d_{\rm M}$		

Примем диаметр мешалки равным

$$d_{\rm M} = 0,5l = 0,5 \cdot 2 = 1$$
 M

Высота расположения мешалки:

$$h_{\rm M} = 0.5 d_{\rm M} = 0.5 \cdot 1 = 0.5$$
 M

Глубина погружения мешалки:

$$H_{o} - h_{M} = 0.7D - h_{M} - h = 0.7 \cdot 3.4 - 0.5 - 0.11 = 1.77$$
 M

где *h* == 0,11 м — высота сегментной стрелки под L-образной перегородкой.

Число лопастей мешалки $n_3 = 3$ [147, с. 118]. Длина направляющих труб:

 $l_{\rm TD} = 1,5d_{\rm M} = 1,5 \cdot 1 = 1,5$ M

Количество труб конструктивно примем равным 8.

Для отвода паров примем в верхней части смесителя 24 отверстия диаметром 0,05 м (рис. 3.29). Для отвода смеси реаги-

Рис. 3.29. Схема смесителя:

1-пропеллерный насос; 2-трубы; 3-трубная решетка; 4-диффузор; 5-отверстия для отвода паров; 6-отверстия для отвода смеси реагирующих компонентов.

рующих компонентов в нижней части смесителя примем девять овальных отверстий шириной 0,1 м и длиной 0,3 м (рис. 3.29).

Мощность электроприводов смесителей и кислотного насоса

Методы и расчетные формулы для определения мощности, потребляемой смесителями, изложены в литературе [147].

Необходимая мощность кислотного насоса определяется в зависимости от расхода кислоты, гидравлических сопротивлений при движении ее от насоса до первой секции и к.п.д. насоса.

Для расчета мощности насосов рекомендуется пользоваться литературой [148]. Подсчитав мощности приводов, следует рассчитать диаметры штуцеров для ввода и вывода продуктов и принять их окончательные размеры по существующим нормалям.

- 1. Багатуров С. А. Теория и расчет перегонки и ректификации. М., Гостоптехиздат, 1961. 435 с.
- Фазовые равновесия легких углеводородов. Сборник переводов статей из иностранных журналов. М., Гостоптехиздат, 1958. 161 с.
- 3. Кафаров В. В. Основы массопередачи. М., «Высшая школа», 1962. 655 с.
- 4. Клименко А. П. Получение этилена из нефти и газа, М., Гостоптехиздат, 1962. 236 с.
- Скобло А. И., Трегубова И. А., Егоров Н. Н. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности. М., Гостоптехиздат, 1962. 652 с.
- 6. Бабицкий И. Ф., Вихман Г. Л., Вольфсон С. И. Расчет и конструирование аппаратуры нефтеперерабатывающих заводов. М., «Недра», 1965. 904 с.
- 7. Варгафтик Н. Б. Справочник по теплофизическим свойствам газов и жидкостей. М., Физматгиз, 1963. 708 с.
- 8. Флореа О., Смигельский О. Расчеты по процессам и аппаратам химической технологии. М., «Химия», 1971. 448 с.
- 9. Александров И. А. Ректификационные и абсорбционные аппараты. М., «Химия», 1971. 296 с.
- 10. Стабников В. Н. Ректификационные аппараты. М., «Машиностроение», 1965. 356 с.
- 11. Гурвич В. А., Сосновский Н. П. Избирательные растворители в переработке нефти. М. Л., Гостоптехиздат, 1953. 320 с.
- 12. Ястржембский А. С. Техническая термодинамика. Л., Госэнергоиздат, 1960. 496 с.
- 13. Эмирджанов Р. Т. Основы расчета нефтезаводских процессов и аппаратов. Баку, Азнефтеиздат, 1956. 423 с.
- 14. Халиф А. Л., Кельцев Н. В. Отбензинивание попутных нефтяных газов. М., Гостоптехиздат, 1955. 147 с.
- 15. Glendening A. S., Sanderson C. F. Petrol. Proces., 1949, v. 4, № 1, p. 27-30.
- 16. Смирнов А. С. Технология углеводородных газов. М., Гостоптехиздат, 1946. 544 с.
- 17. Chem. Proces. Eng., 1958, v. 39, № 2, p. 41-47.
- 18. Oil and Gas J., 1955, v. 54, № 7, p. 100-103.
- 19. Кузнецов А. А., Судаков Е. Н. Изв. вузов. Нефть и газ, 1964, № 4, с. 63-66.
- 20. Малежик И. Ф., Стабников В. Н. Изв. вузов. Пищевая технология, 1962, № 2, с. 43-46.
- 21. Дубовкин Н. Ф. Справочник по углеводородным топливам и их продуктам сгорания. М., Госэнергоиздат, 1962. 228 с.
- 22. Хамди А. М., Скобло А. И. Молоканов Ю. К. Хим. и технол. топлив и массел, 1963, № 2, с. 31—36.
- 23. Александров И. А. и др. Хим. и технол. топлив и масел, 1961, № 7, с. 38—44.
- 24. Щербина Е. Н., Тененбаум А. Э., Макарова З. В. и др. Хим. и технол. топлив и масел, 1970, № 10, с. 17—21.
- 25. Альдерс Л. Жидкостная экстракция. М., ИЛ, 1962. 258 с.
- 26. Зюлковский З. Жидкостная экстракция в химической промышленности. Л., Госхимиздат, 1963. 479 с.
- 27. Davis A. and oth. Ind. Eng. Chem., 1955, v. 47, № 2, p. 222-229,

- 28. Аминов С. Н., Мурадов Т., Зайнутдинов С. А. и др. «Нефтепереработка и нефтехимия», 1970, № 9, с. 30—32.
- 29. Прокопец М. М., Зелизный А. М., Изв. вузов. Нефть и газ, 1962, № 7, с. 51—56
- 30. Сусанов Е. Я., Новожилова Т. С., Федоров А. П. и др. Хим. пром., 1967, № 2, с. 65—69.
- 31. Гуревич И. Л., Жаке Л. Ю. Хим. и технол. топлив и масел, 1961, № 5, с. 11—15.
- 32. Ледяшова Г. Е., Дорогочинский А. З. Хим. и технол. топлив и масел, 1966, № 3, с. 33-36.
- 33. Дияров И. Н., Козлов Л. М., Буреева Р. Р. Хим. и технол. топлив и масел, 1969, № 7, с. 21—24.
- 34. Varteressian K. A., Fenske M. R. Ind. Eng. Chem., 1936, v. 28, № 8, p. 928-933.
- 35. Физер Л., Физер М. Реагенты для органического синтеза. Т. 1. Пер. с англ. Под ред. акад. И. Л. Кнунянца. М., «Мир», 1970. 446 с.
- 36. Плановский А. Н., Булатов С. И., Вертузаев Е. Д. Хим. пром., 1962, № 5, с. 58-61.
- 37. Батунер Л. М. Процессы и аппараты органического синтеза и биохимической технологии Л., «Химия», 1966. 520 с.
- 38. Голубев И. Ф., Агаев Н. А. Вязкость предельных углеводородов. Баку, Азербайджанское государственное издательство, 1964. 160 с.
- 39. Касаткин А. Г. Основные процессы и аппараты химической гехнологии. Изд. 9-е, перераб. М., «Химия», 1973. 784 с.
- Бахшиян Ц. А. Трубчатые печи с излучающими стенами топки. М., ГОСИНТИ, 1960. 192 с.
 Адельсон С. В. Технологический расчет и конструктивное оформление неф-
- Адельсон С. В. Технологический расчет и конструктивное оформление нефтезаводских печей. М. — Л., Гостоптехиздат, 1952. 239 с.
- 42. Бахшиян Ц. А. Труды Гипронефтемаш, 1969, вып. 5 (15), с. 5-10.
- 43. Григорьев В. А., Колач Т. А., Соколовский В. С. и др. Краткий справочник по теплообменным аппаратам. М. Л., Госэнергоиздат, 1962. 255 с.
- 44. Эмирджанов Р. Т. Основы технологических расчетов в нефтепереработке. М. — Л., «Химия», 1965. 544 с.
- 45. Михеев М. А. Основы теплопередачи. М., Госэнергоиздат, 1961. 237 с.
- Хоблер Т. Теплопередача и теплообменники. Л., Госхимиздат, 1961, 820 с.
 Гребер Г., Эрк С., Григулль У. Основы учения о теплообмене. М., 1958. 566 с.
- 48. Шмеркович В. М. Аппараты воздушного охлаждения для технологических установок нефтеперерабатывающих и химических заводов, М., ЦИНТИ-ХИМНефтемаш, 1967. 131 с.
- 49. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Изд. 7-е. Л., «Химия», 1970. 624 с.
- 50. Барановский Н. В., Коваленко Л. М., Ястребенецкий А. Р. Пластинчатые и спиральные теплообменники. М., «Машиностроение», 1973. 288 с.
- 51. РЖХим, 1963, сводный том, № 17, реф. 17 и 55.
- 52. Антуфьев В. М., Белецкий Г. С. Теплопередача и аэродинамическое сопротивление трубчатых поверхностей в поперечном потоке. М., Машгиз, 1948. 196 с.
- Кутателадзе С. С., Боришанский В. М. Справочник по теплопередаче. Л. — М., Госэнергоиздат, 1958. 414 с.
- 54. Бондаренко Ь И. Установки каталитического крекинга. М., 1959. 304 с.
- 55. Эмирджанов Р. Т. Примеры расчетов нефтезаводских процессов и аппаратов. Баку, Азнефтеиздат, 1957. 404 с.
 - 56. Рабинович І. Г. Расчет нефтеперегонной аппаратуры. Л. М., Гостоптехиздат, 1941. 708 с.
 - 57. Катц Д. Л и др. Руководство по добыче, транспорту и переработке природного газа. М., «Недра», 1965. 676 с.
 - 58. Теплофизические свойства веществ. Справочник. М. Л., Госэнергоиздат, 1956. 367 с.
 - 59. Новое нефтяное оборудование. М., Гостоптехиздат, 1961, 155 с.

- 60. Михеев М. А., Михеева И. М. Краткий курс теплопередачи. М. Л., Госэнергоиздат, 1960. 208 с.
- 61. Егиазаров Н. В. Методы расчета аппаратуры и оборудования нефтеперегонных заводов. Баку, Азнефтеиздат, 1935. 438 с.
- 62. Адельсон С. В. Процессы и аппараты нефтепереработки и нефтехимии. М., Гостоптехиздат, 1963, 310 с.
- 63. Герш С. Я. Глубокое охлаждение. М. Л., Госэнергоиздат, 1960, 495 с.
- 64. Котишек Я., Род В. Трубчатые печи в химической промышленности. Л., Гостоптехиздат, 1963, 147 с.
- 65. Блох А. Г. Основы теплообмена излучением. М. Л. Госэнергоиздат, 1962. 331 c.
- 66. Котельные установки. Т. 1. Под ред. М. В. Кирпичева, Э. И. Ромма, Т. Т. Усенко. М. — Л., Госэнергоиздат, 1941. 279 с.
- 67. Чиркин В. С. Теплофизические свойства материалов. М., Физматгиз, 1959. 356 c.
- 68. Вейлас С. Химическая кинетика и расчеты промышленных реакторов. М., «Химия», 1967. 414 с.
- 69. Михаил Р., Кырлогану К. Реакторы химической промышленности. Л., «Химия», 1968. 387 с.
- 70. Брайнес Я. М. Введение в теорию и расчеты химических и нефтехимических реакторов. М., «Химия», 1968. 247 с.
- 71. Арис Р. Анализ процессов в химических реакторах. Л., «Химия». 1967. 328 c.
- 72. Денбиг К. Теория химических реакторов. М., «Наука», 1968. 191 с.
- 73 Крамерс Х., Вестертерп К. Химические реакторы, расчет и управление ими. М., «Химия», 1967. 264 с. 74. Островский Г. М., Волин Ю. М. Методы оптимизации химических реакто-
- ров. М., «Химия», 1967. 248 с.
- 75. Корсаков-Богатков С. М. Химические реакторы как объекты математиче-ского моделирования. М., «Химия», 1967. 223 с.
- 76. Нагиев М. Ф. Основы разработки комплексных химических процессов и проектирования реакторов. Баку, Азербайджанское государственное издательство, 1961. 490 с.
- 77. Левеншпиль О. Инженерное оформление химических процессов. М., «Химия», 1969. 621 с.
- 78. Мухленов И. П., Анохин В. Н., Проскуряков В. А. и др. Катализ в кипящем слое. Л., «Химия». 1971. 312 с.
- 79. Нагиев М. Ф. Теория рециркуляции и повышение оптимальности химических процессов. М., «Наука», 1970. 390 с.
- 80. Кафаров В. В. Методы кибернетики в химии и химической технологии. М., «Химия», 1971. 496 с.
- 81. Рубекин Н. Ф., Козлов И. А. Системы автоматического управления каталитическими процессами платформинга и гидроочистки. Тематический обзор. М., ЦНИИТЭНефтехим, 1972. 69 с.
- 82. Суханов В. П. Каталитические процессы в нефтепереработке. М., Гостоптехиздат, 1963. 272 с.
- 83. Нагиев М. Ф. Химия, технология и расчет процессов синтеза моторных топлив. М., Изд. АН СССР, 1955. 542 с.
 84. Лукьянов П. И., Басистов А. Г. Пиролиз нефтяного сырья. М., Гостоптех-
- издат. 1962. 274 с.
- 85. Масальский К. Е., Годик В. М. Пиролизные установки. М., «Химия», 1968. 143 c.
- 86. Введенский А. А. Термодинамические расчеты нефтехимических процессов. Л., Гостоптехиздат, 1960. 576 с.
- 87. Беранек Я., Сокол Д. Техника псевдоожижения. Пер. с чешск. М., Гостоптехиздат, 1962. 160 с.
- 88. Америк Б. К. и др. Труды ГрозНИИ, 1963, вып. 12, с. 230—236.
- 89. Гойхрах И. М., Пинягин Н. Б. Химия и технология искусственного жидкого топлива. М., Гостоптехиздат, 1960 468 с.
- 90. Левинтер М. Е., Панченков Г. М., Дейнеко П. С. и др. Хим. и технол. топлив и масел, 1971, № 1, с. 16-20.
- 91. Еркин В. Н., Абаева В. Т., Агафонов А. В. и др. Научно-технический сборник, ЦНИИТЭНефтехим. Нефтепереработка и нефтехимия. 1971, № 2, с. 3--7; № 3, c. 6—19.
- 92. Gradrów Elroy M., Smith Warren M. Экспресс-информация ВИНИТИ. Серия «Химия и переработка нефти и газа», 1971, № 9, реф. 96, с. 12-15.
- 93. Романовский Б. В., Хо Ши Тхоанг, Топчиева К. В. и др. «Кинетика и катализ», 1966, т. 7, № 5, с. 841-849.
- 94. Pohlenz Jack В. Экспресс-информация ВИНИТИ. Серия «Химия и переработка нефти и газа», 1963, № 26, реф. 246, с. 3-9.
- 95. Гурвич В. Л., Смидович Е. В. Каталитический крекинг флюид за рубежом. М., ГОСИНТИ, 1960. 138 с.
- 96. Курганов В. М., Гонсалес М. А. Хим. и технол топлив и масел, 1962, № 5, c. 5—16.
- 97. Волошин Н. Д., Соняев З. Н., Морозов Б. Ф и др. Хим. и технол. топлив
- и масел, 1967, № 3, с. 20—22. 98. Маншилин В. В., Манаков Н. К., Агафонов А. В. и др. Хим. и технол. топлив и масел, 1962, № 6, с. 41-50.
- 99. Орочко Д. Н., Чернакова Г. Н. Хим. и технол. топлив и масел, 1968, № 3, c. 8—10.
- 100. Дорогочинский А. З., Казьмин Г. И. Нефтеперерабатывающие и нефтехимические заводы Мексики. М., «Химия», 1963. 167 с.
- 101. Кузнецов А. А., Кагерманов С. М., Судаков Е. Н. Расчеты процессов и аппаратов нефтеперерабатывающей промышленности. М., «Химия», 1966. 336 c.
- 102. Вукалович М. П. Термодинамические свойства воды и водяного пара. 6-е изд. М., Машгиз, 1958. 245 с.
- 103. Смидович Е. В. Технология переработки нефти и газа. Изд. 2-е, Ч. 2, М., «Химия», 1968. 375 с.
- 104. Казьмин Г. И., Гвоздецкий Л. А., Касаткин В. А. и др. Нефтеперерабатывающие заводы США. М., Гостоптехиздат, 1962. 333 с.
- 105. Алиев В. С., Рустамов М. И. Пряников Е. Н. Современное состояние и пути интенсификации процесса каталитического крекинга. Баку, Азербайджанское государственное издательство, 1966. 242 с.
- 106. Танатаров М. А., Левинтер М. Е., Галикеев Р. К. Хим. и технол. топлив и масел, 1970, № 11, с. 34—37.
- 107. Алитин А. В., Мартюшин И. Г., Гуревич Д. А. Хим. и технол. топлив и масел, 1968, № 3, с. 20-23.
- 108. Огарев А. Е., Гельперин Н. И. Хим. и технол. топлив и масел, 1968, № 3, c. 41-46.
- 109. Экспресс-информация ВИНИТИ. Серия «Химия и переработка нефти и газа», 1971, № 39, реф. 393, с. 6—10.
- 110. Падва Е. Ю., Идельчик И. Е. Хим. пром., 1968, № 11, с. 863-865.
- 111. Frantz Joseph F. Экспресс-информация ВИНИТИ. Серия «Процессы и аппараты химических производств», 1963, № 7, реф. 54, с. 10-18.
- 112. Новейшие достижения нефтехимии и нефтепереработки. Пер. с англ. Т. 1. Под ред. К. А. Кобе и Дж. Мак-Кета. М., Гостоптехиздат, 1960. 311 с.
- 113. Зейналов Ф. И. Опыт работы установки каталитического крекинга с пылевидным катализаторов в кипящем слое, М., ГОСИНТТИ, 1960. 71 с. 114. Тюряев И. Я., Буйлов А. Б. ЖПХ, 1962, т. 35, вып. 10, с. 2224—2231.
- 115. Экспресс-информация ВИНИТИ. Серия «Процессы и аппараты химических производств», 1963, № 5, реф. 40, с. 12-16.
- 116 Горбис Э. Р. Теплообмен и гидромеханика дисперсных сквозных потоков. М., «Энергия», 1970. 423 с.
- 117. Краснощеков Е. А., Сукомел А. С. Задачник по теплопередаче. М. Л., Госэнергоиздат, 1963. 224 с.
- 118. Средин В. В., Тарасенков П. М. Оборудование и трубопроводы установок каталитического риформинга и гидроочистки. Л., Гостоптехиздат, 1963. 239 с.
- 119. Smith R. B. Chem. Eng. Prog., 1959, v. 55, № 6, p. 76-80.
- 120. Vervorner M., Faatz G., Gelbin D. Chem. Techn., 1962, № 516, S. 328-333. 121. Жоров Ю. М., Панченков Г. М., Шапиро И. Я. Хим. и технол. топлив и
- масел, 1970, № 11, с. 37-41.

- 122. Файнерман В. И., Катруш Р. В., Фактурова И. Е. и др. Хим. и технол. топлив и масел, 1971, № 4, с. 32—36.
- 123. Жоров Ю. М., Панченков Г. М., Зельцер С. М. и др. Труды МИНХ и ГП им. Н. М. Губкина, вып. 74, 1967, с. 14—26.
- 124 Сулимов А. Д. Каталитический риформинг бензинов. М., «Химия», 1964. 206 с.
- 125. Маслянский Г. Н., Шипикин В. В., Панникова Р. Ф. и др. Хим. и технол. топлив и масел, 1969, № 9, с. 7—11.
- 126. Андреев Д. Я., Бельцов Б. А. Хим. и технол. топлив и масел, 1966, № 5, с. 38-41.
- 127. Маслянский Г. Н., Бурсиан Н. Р., Камушер Г. Д. и др. Хим. и технол. топлив и масел, 1961, № 8, с. 1—8.
- 128. Иванюков Д. В., Каминский Э. Ф., Маслянский Г. Н. и др. Хим. и технол. топлив и масся, 1970, № 3, с. 1—5.
- 129. Никишин А. С., Злотников Л. Е., Бухтер А. И. и др. Хим. и технол. топлив и масел, 1964, № 10, с. 1-6.
- 130. Черный Ю. И., Фейгин С. А. Хим. и технол. топлив и масел, 1968, № 9, с. 25—28.
- 131. Рубекин Н. Ф. Хим. и тех топлив и масел, 1966, № 6, с. 40-44.
- 132. Демидович Б. П., Марон А. Основы вычислительной математики. М., «Наука», 1966. 664 с.
- 133. Федоров А. П., Маслянский Г. Н., Мельникова Н. П. и др. Хим. и технол. топлив и масел, 1967, № 1, с. 9—12.
- 134. Федоров А. П., Маслянский Г. Н., Мельникова Н II. и др. Хим. и технол. топлив и масел, 1968, № 4, с. 5—8.
- 135. Средин В. В. Хим и технол. топлив и масел, 1967, № 1, с. 4-7.
- 136. Новейшие достижения нефтехимии и нефтепереработки. Пер. с англ. Т. 2. Под ред. К. А. Кобе и Дж. Мак-Кета. М., Гостоптехиздат, 1960. 278 с.
- 137. Полякова А. И., Оленев Л. М., Гараева Ф. Г. Научно-технический сборник ЦНИИТЭНефтехим, Нефтепереработка и нефтехимия, 1970, № 8, с. 7—9.
- 138. Паушкин Я. М. Каталитическая полимеризация олефинов в моторное топливо. М., Изд. АН СССР, 1955. 184 с.
- 139. Обрядчиков С. Н. Технология нефти. Ч. II, М. Л., Гостоптехиздат, 1952. 408 с.
- 140. Prosen E, Rossini F Реферативный сборник. Серия «Химия и переработка нефти». 1947, вып. 45, реф. 15, с. 27—30.
- 141. Линдин В. М., Казакова Е. А. Хим. и нефт. машиностроение, 1965, № 6, с. 23-26.
- 142. Каган А. М., Гельперин Н. И. Хим. пром., 1963, № 8, с. 60-62.
- 143. Сычева А. М., Егоров Н. Н. Хим. и технол. топлив и масел, 1964, № 5, с. 53—57.
- 144. Фальковский В. Б. ЖТФ, 1953, т. 23, вып. 12, с. 2176-2179.
- 145. Дорогочинский А. З., Лютер А. В., Вольпова Е. Г. Сернокислотное алкилирование изопарафинов олефинами. М., «Химия», 1970. 216 с.
- 146. Плановский А. Н., Гуревич Д. А. Аппаратура промышленности органических полупродуктов и красителей. Изд. 2-е. М., Госхимиздат, 1961. 504 с.
- 147. Штербачек З., Тауск П. Перемешивание в химической промышленности. Л., Госхимизлат, 1963. 416 с.
- 148. Пектемиров Г. А. Справочник инженера нефтебаз. М., Гостоптехиздат, 1962, 326 с.
- 149. Вукалович М. П., Кириллин В. А., Ремизов С. А. и др. Термодинамические свойства газов. М., Машгиз, 1953. 375 с.

ПРИЛОЖЕНИЕ 1

,

ł

Соотношения единиц СИ с другими единицами измерения

Величины	Единицы измере- ния в СИ	Соотношения между единицами измерения
Давление	Па (Н/м²)	! кГ/см ² = 98 067 Па ! м вод. ст. = 9 807 Па ! мм рт. ст. = 133,3 Па
Вязкость динамическая	Па·с [кг/(м·с)]	1 κΓ · c/M ² = 9,81 Πa · c 1 cΠ = 1 · 10 ⁻³ Πa · c
Вязкость кинематиче- ская	м²/С	$1 \text{ cCT} = 1 \cdot 10^{-6} \text{ m}^2/\text{c}$ $1 \text{ CT} = 1 \cdot 10^{-4} \text{ m}^2/\text{c}$ $1 \text{ m}^2/\text{q} = 277.8 \cdot 10^{-6} \text{ m}^2/\text{c}$
Количество тепла	Вт, кВт	1 ккал/ч == 1,163 Вт
• Теплоемкость	кДж/(кг · К)	1 ккал/(кг·К) = 4,187 кДж/(кг·К)
Теплопроводность	Вт/(м⋅Қ)	1 ккал/(м·ч·К) = 1,163 Вт/(м·К)
Теплота парообразова- ния Энтальпия	кДж/кг	1 ккал/кг = 4,187 кДж/кг
Коэффициент теплопередачи редачи Коэффициент теплоот- дачи	Вт/(м² • К)	1 ккал/(м ² ·ч·К) = 1,163 Вт/(м ² ·К)
Теплонапряжение	Вт/м²	1 ккал/(м ² ·ч) == 1,163 Вт/м ²

приложение 2 Энтальпия нефтяных жидкостей (в кДж/кг)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Относительная плотность при 288 К									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>т</i> , к	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	275	4,23	4,06	3,89	3,77	3,68	3,56	3,48	3,38		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	277	8,42	8,08	7,83	7,58	7,37	7,16	6,95	6,77		
	279	12,64	12,18	11,76	11,39	11,05	10,76	10,47	10,19		
283 21,14 20,39 19,68 19,05 18,51 17,96 17,02 20,49 285 25,41 24,49 23,664 27,63 26,80 20,00 25,20 24,58 23,95 289 34,04 32,78 31,69 30,69 29,77 28,93 28,14 27,43 291 38,35 36,97 35,71 34,58 33,55 36,30 35,30 34,42 295 47,06 45,34 43,79 42,41 41,16 39,89 38,94 37,94 297 51,46 49,57 47,90 46,35 44,97 43,71 42,54 41,47 296 65,85 53,80 52,00 50,33 64,64 58,73 57,33 53,51 52,15 301 60,25 58,03 56,10 54,30 52,88 51,20 49,82 48,58 303 64,67 62,34 60,56 64,39 62,55 60,88 69,33	281	16,87	16,24	15,70	15,20	14,74	14,36	13,98	13,61		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	283	21,14	20,39	19,68	19,05	18,51	17,96	17,50	17,04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	285	25,41	24,49	23,66	29,90	22,23	21,27	21,02	20,49		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	287	29,73	28,64	27,63	26,80	20,00	25,20	24,58	23,95		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	289	34,04	32,78	31,69	30,69	29,77	28,93	28,14	27,43		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	291	38,35	36,97	35,71	34,58	33,58	32,57	31,74	30,92		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	293	42,66	41,16	39,77	38,48	37,35	36,30	35,30	34,42		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	295	47,06	45,34	43,79	42,41	41,16	39,98	38,94	37,94		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297	51,46	49,57	47,90	46,35	44,97	43,71	42,54	41,47		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	299	55,85	53,80	52,00	50,33	48,82	47,44	46,18	45,02		
	301	60,25	58,03	56,10	54,30	52,88	51,20	49,82	48,58		
	303	64,67	62,34	60,21	58,28	56,56	54,93	53,51	52,15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	305	69,12	66,65	64,35	62,30	60,46	58,74	57,23	55,73		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	307	73,60	70,92	68,50	66,36	64,39	62,55	60,88	59,33		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	209	78,08	75,24	72,68	70,38	68,29 70,19	06,36	64,00	02,94		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	312	82,50	79,63	10,87	74,44	72,18	70,21	79.01			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	315	87,09	00,90	81,00	70,00	76,10	74,02	72,01	70,20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	317	91,01	00,20	00,29	02,00	00,09 94.07	11,00	70,70	77.50		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	310	90,17	92,00	09,01	00,07	04,07 88.00	01,73	89,00	81.99		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	301	105,75	101.40	93,70	90,77	00,09	00,00 90 47	87.13	84.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	393	100,00	101,45	102.33	94,92	92,07	03,41	90.81	88.61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	325	114 51	110,36	102,50	103.20	100,15	97 34	94 71	92.32		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	327	119,01	114.80	110,00	107,39	104,15	101.28	98.56	96.06		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	329	123.80	119.28	115.26	111.58	108 27	105,21	102 41	99,81		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	331	128,45	123 80	119.58	115,81	112.33	109,19	106.26	103 57		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	333	133.14	128,28	123.97	119,99	116 44	113.17		107.34		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	335	137.83	132.85	128.33	124.26	120.54	117.19	114.01	111.13		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	337	142.52	137.37	132.72	128,49	124.64	121.17	117.90	.114.93		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	339	147.25	141,93	137.12	132,76	128,79	125.19	121,84	118,75		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341	152,02	146,50	141.56	137,03	132,97	129,25	125,77	122,58		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	343	156,80	151,10	145,99	141,35	137,12	133,27	129,67	126,42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	345	161,57	155,71	150,43	145,66	141,31	137,33	133,64	130,28		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	347	166,38	160,35	154,91	150,01	145,49	141,43	137,62	134,15		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	349	171,20	165,00	159,43	154,33	149,72	145,49	141,60	138,03		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	351	176,01	169,65	163,96	158,68	153,95	149,59	145,62	141,92		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	353	180,91	174,30	168,52	163,12	158,18	153,78	149,68	145,84		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	355	185,77	179,03	173,08	167,43	162,45	157,84	153,66	149,76		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	357	190,63	183,72	177,60	171,83	166,72	162,03	157,68	153,70		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	359	195,52	188,45	182,13	176,26	170,99	166,22	161,74	157,65		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	361	200,46	193,18	186,65	180,70	175,30	170,36	165,80	161,61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	363	205,36	197,95	191,21	185,14	179,57	174,59	169,94	165,59		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	365	210,35	202,68	195,78	189,58	183,93	178,78	[/4,00	169,58		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	367	215,29	207,50	200,38	194,10	188,28	183,01	1/0,11	173,09		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	369	220,27	212,27	205,07	198,58	192,64	101,23	102,21	101 20		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	379	220,29	217,09	209,72	203,02	190,99	191,00	100,30	185.60		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	375	200,02	221,94	214,41	207,00	201,43	200.05	190,00	180.75		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	377	200,04	220,00	219,10	212,10	200,70	200,00	102 87	103,10		
381 = 250.54 = 241.41 = 233.25 = 225.84 = 219.14 = 212.94 = 207.25 = 201.96	370	240,00	231,00	223,03	210,07	210,22	204,32	203.06	190,02		
	381	250.54	241.41	233.25	225.84	219.14	212.94	207.25	201.96		

,

тк			Относ	ительная п	лотность и	три 288 Қ		
	0,65	0,70	0,75	0,8 0	0,85	0,90	0,95	1 1,00
383	255.66	246 35	937.08	1 930 49	1 022 52	017.05	1 111 42	1 000 07
385	260,84	251 33	207,50	230,40	200,00	217,20	111,43	206,95
387	200,04	201,00	242,70	230,09	220,01	221,61	215,66	210,24
380	200,30	200,20	247,02	239,05	232,49	215,96	219,93	214,39
209	271,00	201,17	252,34	244,30	237,02	230,40	224,20	218,54
391	270,20	200,10	257,11	248,99	241,54	234,75	228,47	222,71
393	201,40	2/1,18	261,97	253,64	246,06	239,15	232,74	226,89
395	280,03	276,20	266,83	258,37	250,66	243,59	237,10	231,09
397	291,80	281,23	271,68	263,06	255,23	247,98	241,41	235,29
399	297,10	286,29	276,58	267,75	259,79	252,46	245,72	239,52
401	302,33	291,36	281,48	272,52	264,40	256,94	250,08	243,76
403	307,60	296,43	286,38	277,29	269,00	261,42	254,43	248,01
405	312,92	301,53	291,28	282,02	273,61	265,90	258,83	252,27
407	318,62	306,64	296,22	286,84	278,26	270,43	263,22	256,54
409	323,51	311,75	301,20	291,61	282,90	274,95	267,62	260.83
411	328,87	316,90	306,14	296,43	287,59	279,47	272.02	265.13
413	334,23	322,05	311,12	301,24	292,28	284.03	276.45	269.44
415	339,59	327,20	316,15	306,10	296,97	288.55	280.89	273.78
417	345,24	332,68	321,17	310.95	301.66	293.41	285.37	278.13
419	350,39	337.62	326,19	315.81	306.39	297.77	289.81	282.49
421	355,84	342,86	331.22	320.71	311.08	302.37	294.29	286,86
423	358,81	348.09	336.28	325.61	315.89	307 02	298 81	291 25
425	366,72	353.37	341.39	330 55	320.67	311.62	303 33	295 64
427	372.16	358.64	346.46	335.49	325 44	316.27	307.86	300.06
429	377.65	363.92	351.61	340 43	330.26	320.96	312 38	304 48
431	383.18	369.28	356.76	345.37	335.07	325,65	316.94	308.00
433	388.70	374 55	361.87	350.35	330,88	330 34	321 50	313,35
435	392.55	379.91	367.02	355 38	344 78	335.03	326.11	317.84
437	399.80	385.23	372 21	360.36	3/0 6/	330.76	330.67	399,39
439	405.37	300,20	377.40	365.39	35450	344 40	235 30	396.81
441	410.98	205.00	382 51	270.41	250.35	240.06	220.02	321.20
443	416 59	401.43	287.89	370,41	264.90	349,20	244 57	225 94
445	422.07	401,40	- 203.02	373,31	260.10	353,99	344,07	340.30
447	427.85	400,00	290,04	300,34	009,19	300,73	349,22	240,00
449	433 50	412,27	390,29	300,00	374,13	303,38	300,07	240.40
451	439 15	417,70	404,40	390,39	3/9,07	368,40	300,00	349,49
453	400,10	423,20	400,04	395,86	304,00	3/3,21	365,25	334,00
455	450 58	420,05	414,12	401,01	369,00	378,03	367,98	300,00
457	456 32	404,21	419,40	400,12	394,02	382,88	3/2,0/	303,25
459	469.10	439,74	424,79	411,51	399,04	387,78	3/7,44	307,87
461	467 70	440,27	400,10	410,40	404,07	392,64	382,17	372,50
463	473 57	400,79	437,90	421,00	409,09	397,54	380,94	377,14
465	470.30	400,00	440,07	420,89	414,10	402,44	391,72	301,60
467	475,09	401,97	440,27	432,08	419,22	407,38	395,53	385,47
469	400,17	407,04	451,07	437,31	424,29	412,32	401,31	391,15
403	490,99	473,19	457,12	442,59	429,52	417,26	406,12	395,85
473	509.71	470,00	462,00	447,80	134,51	422,24	410,98	400,56
475	502,71	404,41	467,90	453,14	439,61	427,26	415,79	405,28
177	514.47	409,27	473,49	458,41	444,76	432,25	420,69	410,02
470	590.29	495,03	4/8,9/	463,73	449,91	437,19	425,55	414,77
181	520,00	501,50	484,40	469,09	455,11	442,29	430,45	419,48
101	520,24	507,19	489,91	4/4,34	460,19	447,25	435,28	424,26
400	532,27	512,84	495,44	479,70	465,38	452,32	440,18	429,05
400	544.00	518,62	500,96	485,06	470,61	457,30	445,12	433,85
407	544,20	524,44	506,53	490,46	475,85	462,45	450,06	438,67
409	556.00	52/,/0	512,06	495,90	481,08	467,52	455,04	443,50
491	220,22	535,83	517,71	501,26	486,31	472,58	459,98	448,35
493	002,25	541,73	523,32	506,70	491,59	477,77	464,96	453,21
490	208,27	547,59	528,89	512,18	496.90 l	483.17	469.99	458.08

	Относительная плотность при 288 К								
<i>Т</i> , Қ	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	
497	574.30	553.41	534.62	517,62	502,18	488,07	475,05	462,96	
499	580.42	559.32	540,27	523,11	507,49	493,22	479,95	467,87	
501	586.49	565,22	545,92	528,59	512,73	498,41	485,06	472,78	
503	592,85	571,00	551,70	534,19	518,24	503,67	490,19	477,78	
5 05	598,71	576.82	557,43	539,72	523,60	508,86	495,26	482,12	
507	604,99	582,89	563,13	545,25	529,00	514,06	500,32	407,07	
509	611,27	588,87	568,86	550,82	534,36	519,29	510 54	492,04	
511	617,13	594.78	574,60	561.05	545 91	524,52	515.65	502.62	
513	623,25	600,76	596.15	567.56	550.61	535.07	520,80	507.62	
515	629,70	606,75	501.07	573 17	556.09	540.39	525.95	512.65	
510	640.98	012,70	597 79	578 74	561.53	545.67	531,14	517,68	
521	642,20	694.84	603.61	584.44	567.02	550,98	536,29	522,74	
523	654.82	630,83	609.43	589.92	572,50	556,55	541,52	527,80	
525	004,02	000,00	615,33	595,87	578,03	561,79	546,71	532,88	
527			621,20	601,48	583,56	567,14	551,95	537,96	
529			627,06	607,17	589,08	572,50	557,18	543,07	
531	1		633,00	612,91	594,61	577,90	562,46	548,19	
533			638,95	618,64	600,18	583,35	567,69	559.47	
535			644,89	624,38	605,79	50410	579.94	563 69	
537			650,84	630,16	616.07	500 55	583 35	568 79	
539			660.81	644.68	622.62	605.12	588.87	573.98	
541	i		668.80	647.57	628,02	610.60	594.65	579,18	
040 545			674.83	653.39	633,88	616.09	599,55	584,39	
547			680.86	659.21	639,58	621,61	604,91	589,62	
549			686.89	665.07	645,27	627,14	610,31	594,86	
551		1	692,92	670,98	650,96	632,67	615,67	600,11	
553			699,03	676,84	656,66	638,19	621,11	605,38	
555			705,14	682,70	662,39	643,76	626,56	615.07	
557			711,25	688,69	668,13	649,37	627.40	691.94	
559	1		717,41	694,55	673,91	660 55	649.88	626,58	
561	1		723,52	701,83	785.46	666.20	648.33	631.91	
565			729,00	71951	691 24	671.81	653.81	637,27	
567			742 07	718.54	697.06	677.47	659,30	642,63	
569			748 22	724 48	702.88	683.12	664,82	648,00	
571			754.50	730.51	708,74	688,77	670,39	653,43	
573			760,74	736,58	714,60	693,67	675,92	658,79	
575			766,98	742,61	720,42	700,24	681,49	664,21	
577	1		773,26	748,68	726,37	705,85	687,01	675.08	
579			779,54	754,80	732,27	711,59	692,00	680 54	
581	1		785,82	760,87	738,18	717,40	703.80	686.01	
583			792,14	766,98	744,12	709.99	709,00	691 49	
585			/98,4/	770.90	756.05	734 70	715.11	696.99	
580			811 10	785 44	762.00	740.60	720.72	702,50	
591			817 60	791.60	767.94	746.42	726,41	708,03	
593			824.00	797.84	774,06	752,33	732,15	713,61	
595	1		830.41	803.99	780,04	758,10	737,80	719,16	
597			836,77	810,27	786,07	763,97	743,53	724,72	
599	1		843,26	816,47	792,10	769,79	749,23	730,28	
601			849,75	822,75	798,17	775,77	754,96	735,90	
603	1		856,20	828,99	804,24	781,63	760,70	741,00	
605			862,48	835,27	810,36	787,54	770.06	759 75	
607			869,18	1 541,59	1 816,47	/93,48	112,20	1 102,10	

Ĺ

T 12	Относительная плотность при 288 К							
1, K	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00
609			875.88	847.91	822.58	799.43	77819	758.40
611			882,16	854,19	828,74	805.46	783.90	764.06
613			888,86	860,51	834,85	810.15	789.71	769 74
615			895,56	866,96	840,96	817.35	795.58	775.49
617			902,26	873,33	847,24	823.46	801.40	781.12
619			908,54	879,69	853,44	829.49	807.22	786.84
621			915,24	886,09	859,68	835.52	813.08	792.56
623			921,93	892,50	865,87	841,46	818.98	798.27
625			928,21	898,95	872,15	847,62	824,88	804.02
627			934,91	905,40	878,39	853,73	830,83	809.79
629			941,61	911,84	884,67	859,80	836,73	815.57
631			948,31	918,33	890,95	865,79	842,68	821,37
633	i		955,01	924,82	897,23	872,03	848,66	827,18
635			961,71	931,81	903,55	878,18	854,61	833,00
037			968,41	937,89	909,83	885,22	860,60	838,84
641			975,52	944,42	916,24	890,49	866,63	844,69
642			982,22	950,99	922,60	896,69	872,70	850,55
645			988,92	957,52	928,97	902,88	878,64	856,43
647			995,62	964,14	935,37	909,08	884,71	862,32
640			998,13	970,71	941,78	915,32	890,74	868,23
651			1010,09	9//,3/	948,19	921,56	896,81	874,14
653			1010,14	903,90	954,51	927,80	902,93	880,07
655			1023,25	990,04	901,08	934,08	909,00	886,02
657			1029,95	1003.01	907,00	940,30	915,11	891,98
659			1043 77	1010.65	973,94	940,01	921,20	897,95
661			1050,89	1017,35	987.04	952,90	921,30	903,88
663			1058.00	1024.05	993 53	965.64	930 73	909,93
665			1063.95	1030.79	1000.02	971 97	945.88	910,90
667			1071.40	1037.57	1006.63	978.25	952.08	921,90
669			1078,52	1044,31	1013.54	984.74	958.32	933 82
671			1085,64	1051,18	1019,78	991,10	964.56	940.14
673			1092,76	1057,92	1026,39	997,55	970,79	946.22
0/0			1099,45	1064,70	1032,88	1003,58	977,07	952.31
670			1106,57	1071,53	1039,58	1009,44	983,31	958,42
691			1113,69	1076,01	1046,24	1016,60	989,59	964,54
683			1120,81	1085,26	1052,81	1023,17	995,91	970,68
685			1127,92	1093,55	1059,51	1029,66	1002,19	976,83
687			1135,04	1099,04	1066,21	1036,15	1008,52	982,99
689			1142,10	1105,90	10/2,91	1042,68	1014,55	989,16
691			1149,20	1112,00	1079,61	1049,21	1021,20	995,35
693			1162.64	1119,70	1066,39	1055,70	1027,57	1001,55
703			1100,04	1127,20	1093,01	1063,07	1033,55	1007,76
713			1936.98	1102,20	1120,90	1090,10	1005,62	1034,04
723			1273 21	1233 30	1101,20	1162.19	1096,07	1070,65
733			1310 51	1260,59	195,92	1103,10	1100,00	1102,64
743			1348,19	1306.07	1266.34	1931.67	1100,97	1134,92
753			1386.25	1342.96	1302 14	1266 47	1931 30	1107,07
763			1424.77	1380.22	1338.27	1301.63	1265 46	1233.80
773			1463.62	1417.86	1374 78	1337 14	1300,00	1267.55
783			1502,89	1455.92	1411.66	1372.98	1334.84	1301 55
793			1542,54	1494,31	1448.88	1409.19	1370.09	1335 88
803			1582,57	1533,08	1494.02	1445.79	1405.63	1370 55
813			1623,01	1572,27	1524,50	1482,71	1441,56	1405.55
823		ł	1663,83	1611,83	1562,39	1520,02	1477,82	1440,93

ПРИЛОЖЕНИЕ З

Энтальпия нефтяных паров (в кДж/кг)

ĺ	Относительная плотность при 288 К								
<i>Т</i> , қ	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	
323	476.00	464.23	452.47	440.70	428.85	417,26	405.49	393,77	
325	479.39	467.25	455.82	443.97	432.12	420,36	408,63	396,83	
327	482.86	471.06	459.17	447.28	435,39	423,70	411,77	399,92	
329	486.34	472.94	462,56	450,63	438,65	426,64	414,95	403,06	
331	489,81	477.88	465,95	453,51	441,92	429,98	418,09	406,20	
333	493,33	481,36	469,34	457,32	445,22	433,33	421,32	409,34	
335	496,85	484,83	472,73	460,55	448,53	436,27	424,54	412,48	
337	500,41	488,18	476,17	464,19	451,88	439,61	427,89	415,67	
339	503,97	491,82	479,64	467,46	455,2 3	442,93	430,82	418,89	
341	507,52	495,34	483,12	470,85	458,46	446,31	434,17	422,03	
343	511,13	498,86	486,59	474,28	461,80	449,66	437,52	424,96	
345	514,31	502,42	490,07	477,71	465,15	453,01	440,87	428,31	
347	518,37	505,98	493,58	481,19	468,92	456,36	444,22	431,66	
349	522,01	509,99	497,14	484,66	472,27	459,71	447,57	435,01	
351	525,65	513,18	500,66	488,14	475,62	463,06	450,50	438,30	
353	529,34	516,78	504,22	491,66	4/0,9/	400,41	403,80	441,71	
355	532,98	520,42	507,82	495,59	402,32	470,10	457,20	444,04	
357	530,71	523,69	511,38	498,73	400,09	475,52	463.00	447,99	
309	540,10	521,70	51869	502,20	405,44	470,00	467.67	454 69	
301	547.80	525.07	599.96	500,01	496 56	483.00	471.02	458.04	
265	551.65	529.00	525.00	513.01	499,90	487.34	474.36	461 39	
367	555 49	549 52	529,50	516.61	503.67	490.69	477 71	464.74	
369	559 23	546.95	533 23	520.21	507.02	494.46	481.06	468.08	
371	563.04	550.02	536.96	523,39	510.79	497.81	484.83	471.85	
373	566.85	553.79	540.64	527.54	514.14	501.16	488,18	475,20	
375	570.70	557 56	544.37	531.18	517,91	504.93	491,95	478,55	
377	574.56	561 32	548.09	534.86	521,68	508,28	495,30	481,90	
379	578,45	565.18	551,86	538.59	525,03	512,06	498,65	485,25	
381	582,59	568.99	555,63	542,27	528,79	515,40	502,00	489,02	
383	586,24	572,84	559,44	546,00	532,56	519,16	505,77	492,37	
385	590,13	576,73	563,25	549,77	536,33	522,93	509,12	496,14	
387	594,07	580,58	567,06	553,54	539,68	526,28	512,88	499,49	
389	598,04	584,48	570,87	557,31	543,45	530,05	516,65	502,84	
391	601,98	588,37	574,72	561,07	547,22	533,82	520,00	505,77	
393	606,00	592,35	578,57	564,88	550,98	537,59	523,77	510,79	
395	669,98	596,24	582,43	568,69	554,88	541,35	527,54	513,72	
397	613,91	600,22	586,32	5.2,50	500,10	544,28	530,89	500.84	
399	018,01	604,16	590,26	576,40	566.99	550.94	539,00	59461	
401	022,08	608,18	5094,19	580,25	570.03	556.01	549 10	597.06	
405	620,14	612,15	600.97	5004,14	573.80	550.79	542,19	531 79	
405	624 20	010,17	606.04	501.02	577 74	563 54	540,50	535.49	
407	638.40	624,19	610.06	505.87	581 59	567.31	553 50	539 26	
403	642 51	628.31	614.04	500.80	585.36	571.50	556.84	543.04	
413	646 65	639.37	618.06	603 74	589.33	575.27	560.61	546.38	
415	650.80	636.48	622.08	607.71	593.27	578.62	564.38	550,15	
417	654.98	640.58	626,14	611.65	597.16	582.80	568.57	533,91	
419	659.17	644.73	630.20	615.71	601.10	586,57	572,34	557,68	
421	663.36	648.87	634.26	619.69	605.08	590.76	576,10	561,45	
423	667.59	653.02	638.36	623.75	609.01	594,53	579,87	565,22	
425	671.81	657.16	642.47	627,77	612,99	598,29	583,64	568,99	
427	676,09	661.35	646,57	631,83	617,01	602,48	588,25	572,75	
429	1 680,36	665,58	650,71	635,89	621,03	606,25	591,60	576,52	

. .

Продолжение

,

	Относительная плотность при 288 К								
<i>Т</i> , К	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	
431	684 63	669 80	654.86	630.00	625.05	610.01	505.26	F00.00	
433	688.00	674.03	650.04	644 10	620,00	614.90	500 12	580,29	
435	603.90	678.96	663.03	649.00	623,07	617.07	099,10	584,48	
497	607 56	682.52	667.49	659.20	627.15	620.16	607.00	588,24	
407	097,00	696.90	007,42	002,34	641.00	022,10	607,09	592,01	
409	701,92	601.10	071,00	000,49	041,29	026,33	615.04	596,20	
441	707,15	091,12 605 49	070,00	000,08	040,00	030,11	615,04	599,97	
440	710,58	095,43	680,10	604,86	649,50	034,30	618,81	603,74	
440	715,02	099,74	684,37	669,05	653,60	638,49	623,00	607,92	
441	719,42	704,05	000,00	673,24	05/,/5	042,67	627,18	611,17	
449	723,00	700,40	692,92	0//,4/	061,69	046,87	630,53	615,46	
452	720,29	712,00	097,23	681,70	600,08	052,72	034,72	619,23	
455	732,73	717,20	701,54	685,92	670,27	054,81	639,32	623,42	
457	707,21	721,00	700,90	690,24	074,40	662.10	643,09	627,60	
450	741,09	720,99	710,20	694,51	6/8,08	003,19	647,28	631,79	
409	740,17	730,43	714,00	698,82	682,91	671.44	651,47	635,56	
462	700,09	734,07	710,90	703,13	687,18	675.00	000,60	639,74	
405	750,10	709,00	723,33	707,44	691,41	075,62	609,84	643,93	
467	759,70	740,00	727,79	711,60	695,66	694.04	667.00	647,70	
460	769.01	740,01	732,19	710,15	700,00	699.07	671.08	651,89	
405	700,91	757.25	730,07	720,51	704,30	600.54	676 17	656,07	
471	779.10	707,00	741,10	724,90	708,62	092,54	0/0,17	660,26	
475	790.76	766.44	740,00	729,30	712,93	090,81	000,30	664,45	
473	797.27	700,44	750,06	733,37	717,28		004,04	668,21	
470	709.09	775.61	754,04	738,18	721,64	705,39	000,70	672,40	
481	792,02	780.91	763.55	742,61	720,03	709,71	692,92	6/6,59	
483	801.40	784.86	769.15	747,05	730,43	714,02	097,52	680,77	
485	806.13	780.46	700,10	751,00	734,03	709.69	705,71	680.15	
487	810.89	709,40	777.99	700,00	739,20	722,00	710.09	009,10	
480	815 55	708.80	791.99	760,00	743,70	721 42	714.60	093,33	
491	820,32	903.45	786.40	700,00	740,14	701,40	719,09	097,02	
493	825.00	803,45	700,49	709,02	752,02	740.05	793.06	702,13	
495	820,87	819.87	791,14	779.70	757,10	740,55	797.67	710,73	
497	834 68	817.60	800 13	79331	766 10	744,00	731.85	714.60	
499	839 45	822 33	805.08	787.01	700,10	753 58	736.46	714,09	
50ĭ	844 31	827 10	800,00	709.59	77514	758.09	740.65	793 48	
503	849 17	831.88	814 46	792,02	770.69	762 50	744.83	726,40	
505	854.02	836 65	810 10	801 77	786.37	767.02	749 14	720,00	
507	858,88	841 46	823 92	806.46	788.88	771 50	754.04	736.46	
509	863.78	846.28	828 65	811 11	793 44	776.02	758.93	740.65	
511	868.68	851 09	833 42	815.80	798.09	780.59	762.84	745,05	
513	873.62	855,95	838 20	820.53	802.69	785 15	767 44	749,20	
515	878.56	860.85	842 97	825,22	807.34	789 71	772.05	754.04	
517	883.62	863.57	848.04	830 24	812 45	794.61	776.82	759.03	
519	888.48	870.60	852 60	834 72	816 68	798.88	780.84	762.84	
521	893.46	875.50	857.46	839 45	821.37	803 49	785.44	767 44	
523	898.44	880.44	862.31	844 27	826.06	808 14	790.05	772 05	
525	903.47	884.96	867.17	849 04	830 79	812 78	794 65	776 23	
527	908.49	890.32	872.06	853 86	835 52	817 43	799 26	780 84	
529	913.56	895.30	876.97	858.67	840 25	822 09	803 87	785 44	
531	918,63	900,29	881.87	563.49	845.02	826 77	808.47	790.05	
533	923,69	905,31	886.81	868.34	850 21	831.50	813.08	794.66	
535	928,80	910,34	891.75	873.24	854 57	83619	817.68	799 26	
537	933,91	915.36	896.69	878.10	859 38	840.92	822 29	803 45	
5'39	938,68	920,43	901,42	883.0	864.16	850.42	831.50	813.08	

	Относительная плотность при 288 К								
<i>Т</i> , К	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00	
541	045 63	026.87	008.16	880.44	870 73	851.07	833.96	814 54	
541	940,00	920,07	01163	809,44	873 01	855.90	836 10	817.68	
545	949,00	025 67	016.66	807 78	870 14	850.07	841 13	822.20	
040 547	954,51	935,07	910,00	00976	89369	864 78	845 73	826.80	
047 E 40	909,70	940,77	921,00	902,70	999 50	860.60	850.45	831,50	
549	904,09	940,94	920,71	01268	803.42	874 41	855 94	836 10	
001 652	970,12	951,05	931,77	912,00	806 44	970.97	860.01	8/0 71	
555	970,00	990,22	930,00	010,70	002 20	994 19	864 78	845 32	
557	900,00	901,37	941,99	922,73	903,30	890.00	860 59	850 34	
550	900,40	900,00	947,00	921,10	900,24	803.88	874 37	854 05	
561	006.46	971,00	952,20	932,70	910,20	808 80	870.93	850 55	
501	990,40	970,99	957,55	937,04	910,21	090,02	884.04	864 57	
-000 ECE	1001,76	982,22	962,50	942,90	923,19	903,72	899.73	860.18	
-000 E67	1007,14	987,50	967,24	940,02	920,21	900,40	802.76	874.90	
507	1012,45	992,73	972,85	955,12	933,24	913,00	808 66	878.81	
509	1017,01	998,00	977,08	900,20	930,20	910,04	003 55	883.83	
5/1	1023,21	1003,33	983,27	9.3,30	943,33	923,32	903,00	899.44	
575	1028,01	1008,64	988,50	908,53	948,39	920,01	900,40	803.46	
5/5	1034,01	1013,96	993,74	973,72	953,50	933,53	913,33	809.07	
5//	1039,42	1019,32	999,01	978,87	958,61	930,00	910,29	090,07	
5/9	1044,86	1024,68	1004,29	984,11	963,72	943,38	923,27	007 70	
581	1050,34	1030,03	1009,56	989,30	968,82	948,64	928,21	907,70	
583	1055,78	1035,44	1014,88	994,53	973,97	953,67	933,20	017 77	
585	1061,31	1040,84	1020,20	999,77	979,12	958,78	938,10	000 77	
587	1066,79	1046,28	1025,56	1005,04	984,32	965,84	945,20	007.80	
589	1072,32	1051,72	1030,92	1010,69	989,51	968,95	948,23	927,00	
591	1077,85	1057,17	1036,28	1015,63	994,70	974,10	953,25	020,40	
593	1084,05	1063,24	1041,68	1021,49	1000,52	979,80	908,00	049.45	
090 507	1088,99	1068,14	1047,04	1026,19	1005,17	984,36	903,30	042,40	
D 97	1094,56	1073,62	1052,48	1031,54	1010,40	989,40	900,40	05950	
099	1100,58	1079,15	1057,88	1035,86	1015,68	994,70	973,00	057.50	
001	1105,78	1086,00	1063,32	1042,22	1020,95	999,89	978,00	069.54	
603	1111,39	1092,29	1068,81	1047,62	1026,39	1005,12	903,11	067 57	
000	1117,04	1095,77	1074,25	1053,02	1031,54	1010,32	900,92	079.50	
607	1122,65	1101,34	1079,78	1058,42	1036,86	1015,55	994,07	077.69	
609	1128,38	1106,95	1085,26	1063,82	1042,18	1020,83	999,22	020.64	
612	1134,08	1112,56	1090,79	1069,27	1047,54	1026,10	1004,41	087.67	
013	1139,77	1118,17	1096,31		1052,90		1014.84	907,07	
010	1145,51	1123,82	1101,88	1080,15	1058,30	1030,05	1014,04	00813	
610	1151,24	1129,47	1107,45	1085,68	1063,70	1041,90	1020,03	1003 58	
-019	1156,98	1135,17	1113,65	1091,16	1069,10	1047,29	1020,20	1003,00	
-621	1162,76	1140,82	1118,63	1096,23	1074,54	1052,65	1030,04	101/89	
623	1168,54	1146,51	1124,24	1102,22	1079,94	1057,96	1035,01	1014,00	
625	1174,44	1152,33	1129,93	1107,83	1085,51	1003,45	1041,17	1020,30	
-627	1180,17	1157,52	1135,50	1113,31	1090,87	1000,72	1040,00	1024,10	
629	1185,99	1163,72	1141,15	1118,88	1096,35		1057.00	1030,10	
031	1191,86	1169,46	1146,80	1124,45	1101,88	10/9,52	1069.26	1039,00	
633	1197,72	1175,24	1152,50	1130,06	1107,37	1004,9/	1002,30	1039,03	
635	1203,58	1181,01	1158,24	1135,67	1112,89	1090,41	1072.09	1050 34	
637	1209,48	1186,83	1163,93	1141,32	1118,46	1095,85		1055 66	
639	1214,59	1196,17	1172,01	1149,24	1127,50	1100,71	1002,29	1060.31	
641	1220,62	1200,61	1174,73	1151,91	1128,88	1106,15	1000,17	1000,31	
643	1227,28	1204,38	1181,18	1158,28	1135,17	1117.00	1009,24	1071 61	
645	1233,22	1210,24	1186,96	1163,97	1140,78	1117,03	1100.00	1076.07	
647	1239,21	1216,10	1192,74	1169,67	1146,39	1123,36	1100,08	1000,97	
649	1 1245.20	1 1222.00	· 1198.56	' 1175.40	1102,04	1128,89	· 1100,0/	· 1002,00	

١

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T 1/			OTHOCH	тельная п	лотность п	ри 288 Қ		
	7, K	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00
6531257.211224.301204.371181,141157.651134.161111,101087.986551263.241239.791216.101192.651169.001146.591121.981098.496571269.311257.781221.961198.431174.691151.201127.501103.896611281.451256.921237.271210.031186.121162.421188.561144.136611281.451256.921237.571223.741239.671215.891191.861184.14131125.296761299.791281.871257.461233.421209.151185.061131.19125.296771302.591271.581225.741233.421209.751160.831136.726731318.301294.011294.481245.241220.751196.501172.971147.776771330.701306.241287.521251.641232.391207.981183.231158.466811339.781312.631287.521250.031232.25121.071818.231158.466811339.761318.611293.661268.98124.44129.531194.70177.006831349.411324.701299.67124.261207.981183.231158.666811337.751318.811286.641255.871221.99120.491175.616831349.411324.701299.67124.851220.91124.85691 </td <td>651</td> <td>1251 18</td> <td>1997.00</td> <td>1004.97</td> <td></td> <td></td> <td></td> <td>1</td> <td><u> </u></td>	651	1251 18	1997.00	1004.97				1	<u> </u>
6551233.241239.791216.241186.871163.301140.021181.691093.096571229.311245.781221.961198.431174.691151.201121.591088.496591275.381251.771227.401204.251180.381156.811133.031109.336611281.451256.921233.721210.031186.121162.421184.561114.786651293.681263.771254.571227.571203.371179.001155.261131.196671299.791275.801251.521227.571203.371179.001155.261131.19671133.011287.941263.451239.331214.931190.811166.441142.07673138.30129.011267.571225.751202.241178.561153.176771330.701306.241287.501232.391207.981183.301144.706811339.781312.391287.521263.031238.25123.751189.051164.43681139.781312.391287.521256.571232.311200.401175.616551355.69133.08130.531249.451250.601225.311290.401175.616551355.69133.031305.361307.731242.731247.731247.611248.456511365.66133.031305.361267.571247.571247.571248.591220.91	653	1257 21	1227,90	1204,37	1181,14	1157,65	1134,16	1111,01	1087,98
bit 1239,19 1216,10 1192,65 1169,00 1145,59 1121,50 1008,49 657 1227,38 1251,77 1227,40 1204,25 1180,38 1156,20 1121,30 1109,33 661 1281,45 1256,90 1233,77 1227,47 1204,25 1180,38 1156,28 1133,03 1109,33 663 1287,57 1263,74 1239,67 1215,89 1191,86 1166,24 1138,50 1125,26 1131,19 666 1305,95 1281,87 1257,46 1233,42 1209,15 1185,07 1166,44 1142,20 677 1312,10 1287,49 1263,45 1233,42 1209,15 1186,50 1172,97 1147,77 677 1330,70 130,62,44 1281,50 1225,50 1232,31 120,84 1135,16 1142,20 677 1330,70 131,81 1286,59 1244,41 121,95 1161,43 1134,77 677 1330,70 1311,81 1286,59 1232,51<	655	1263.94	1200,00	1210,24	1186,87	1163,30	1140,02	1116,49	1093,09
669 1275.38 1221,57 1227,04 1294,25 1180,33 1152,30 1103,33 1109,33 661 1281,45 1266,92 1233,72 1210,03 1166,12 1162,42 1133,03 1109,33 663 1287,57 1263,74 1239,67 1215,57 1221,71 1197,59 1173,56 1141,15 1125,29 667 1299,79 1275,80 1251,52 1227,57 1203,37 1179,00 1155,26 1131,19 671 1312,10 1287,94 1263,45 1239,33 1214,93 1190,81 1160,43 1136,72 673 1336,93 301,29 1287,52 1263,57 1202,24 1147,77 172,77 1147,77 675 1324,50 1300,01 1275,50 1232,39 1207,98 1183,13 1142,77 677 1330,70 130,64 1305,74 1280,95 1253,67 1231,90 1206,09 1181,22 681 1339,78 1314,27 1299,67 1244,61 <td>657</td> <td>1200,24</td> <td>1239,79</td> <td>1216,10</td> <td>1192,65</td> <td> 1169,00</td> <td>1145,59</td> <td>1121,98</td> <td>1098,49</td>	657	1200,24	1239,79	1216,10	1192,65	1169,00	1145,59	1121,98	1098,49
$\begin{array}{c} 0.99 & 1273.38 & 1251.77 & 1227.40 & 1204.25 & 1180.38 & 1156.81 & 1133.05 & 1103.38 \\ 0.661 & 1287.57 & 1263.74 & 1239.67 & 1215.89 & 1191.86 & 1162.42 & 1138.56 & 1114.78 \\ 0.651 & 1239.59 & 1255.80 & 1251.52 & 1221.77 & 1197.59 & 1173.56 & 1144.13 & 1120.22 \\ 0.671 & 1299.79 & 1275.80 & 1251.52 & 1223.74 & 1293.42 & 1209.15 & 1185.07 & 1160.83 & 1136.72 \\ 0.691 & 1305.95 & 1281.87 & 1257.46 & 1233.42 & 1209.15 & 1185.07 & 1160.83 & 1136.72 \\ 0.771 & 1312.10 & 1287.94 & 1263.45 & 1239.33 & 1214.93 & 1190.81 & 1166.44 & 1142.20 \\ 0.731 & 1318.30 & 1294.01 & 1269.48 & 1245.24 & 1220.75 & 1196.50 & 1166.43 & 1136.72 \\ 0.771 & 1330.70 & 1306.24 & 1281.50 & 1257.50 & 1232.39 & 1207.98 & 1183.23 & 1158.86 \\ 0.791 & 1336.93 & 1312.39 & 1287.52 & 1263.03 & 1238.25 & 123.75 & 1189.05 & 1164.43 \\ 0.81 & 1339.78 & 1318.51 & 1293.60 & 1268.94 & 1245.44 & 1219.53 & 1194.70 & 1170.00 \\ 0.633 & 1349.41 & 1324.70 & 1299.67 & 1274.96 & 1250.01 & 1225.31 & 1200.40 & 1175.61 \\ 0.645 & 1355.69 & 1330.86 & 1305.74 & 1280.56 & 1236.39 & 1234.81 & 1236.31 & 1248.68 \\ 0.649 & 1368.71 & 1343.25 & 1318.30 & 1292.63 & 1257.72 & 1242.73 & 1217.56 & 1192.48 \\ 0.691 & 1374.61 & 1349.45 & 1324.08 & 1299.63 & 1256.57 & 1231.09 & 1200.40 & 1175.61 \\ 0.691 & 1374.61 & 1349.45 & 1324.08 & 1299.63 & 1236.91 & 1223.30 & 1198.14 \\ 0.691 & 1374.61 & 1349.45 & 1342.08 & 1299.63 & 1236.91 & 1223.30 & 1198.14 \\ 0.691 & 1374.61 & 1349.45 & 1342.08 & 1299.63 & 1236.91 & 1223.82 & 1223.77 & 1242.67 & 1223.91 & 1198.14 \\ 0.691 & 1374.61 & 1349.45 & 1342.08 & 1299.63 & 1236.91 & 1223.81 & 1294.86 \\ 0.774 & 1333.66 & 1365.56 & 1331.03 & 1305.56 & 1280.37 & 1255.20 & 1229.79 & 1204.54 \\ 0.691 & 1304.84 & 1356.40 & 1335.56 & 1309.47 & 1232.86 & 1226.97 & 1224.86 \\ 0.774 & 1432.84 & 1367.64 & 1336.84 & 1372.66 & 1289.91 & 1263.52 & 1226.55 \\ 0.751 & 1445.16 & 1345.26 & 1336.33 & 1332.56 & 1288.97 & 1255.57 & 1271.70 & 1246.45 & 1226.91 \\ 0.751 & 1425.73 & 1399.69 & 1335.40 & 1372.78 & 1301.84 & 1275.72 & 1249.68 \\ 0.731 & 1422.48 & 1367.41 & 1336.59 & $	650	1209,31	1245,78	1221,96	1198,43	1174,69	1151.20	1127.50	1103.89
061 1261,45 1265,92 1233,72 1210,03 1186,12 1162,42 1138,65 1147,78 663 1287,57 1263,74 1239,67 1215,89 1191,86 1168,08 1144,13 1120,22 667 1299,79 1275,80 1251,52 1227,57 1203,37 1179,00 1155,26 1131,19 667 1294,94 1263,45 1239,33 1214,93 1190,61 1160,83 1136,72 673 1383,01 1294,01 1264,84 1257,50 1232,39 1207,98 1183,23 1147,77 675 1336,93 1312,10 1306,24 1281,50 1257,50 1232,39 1207,98 1183,23 1158,86 679 1336,93 1312,31 1286,94 1244,41 1219,53 1194,70 1176,01 683 1349,71 1330,02 131,81 1286,94 1261,82 1230,91 121,83 1184,22 681 1367,17 1366,66 130,03 1305,36 1267,72 <td>661</td> <td>12/0,38</td> <td>1251,77</td> <td>1227,40</td> <td> 1204,25</td> <td>1180,38</td> <td>1156.81</td> <td>1133.03</td> <td>1109.33</td>	661	12/0,38	1251,77	1227,40	1204,25	1180,38	1156.81	1133.03	1109.33
065 1287.57 1263.74 1290.79 1215.89 1191.66 1168.08 1144.13 1120.29 067 1299.79 1275.80 1251.52 1227.57 1203.37 1173.56 1144.13 1125.29 067 1312.10 1287.94 1263.45 1233.42 1209.15 1185.07 1166.44 1142.20 073 1318.30 1287.94 1263.45 1239.33 121.49.31 1190.63 1136.77 075 1324.50 1300.13 1275.47 1251.14 1226.57 1202.24 1178.86 1153.17 077 1330.93 1312.39 1287.95 1226.37 1237.51 1189.05 1164.43 081 1349.41 1324.70 1290.67 1274.96 1256.87 1231.09 1206.09 1181.82 1184.12 084 1348.41 1324.70 1296.57 1224.73 1217.66 1192.48 084 1368.71 1331.83 1381.01 1296.51 1233.109 1206.09 1181	001	1281,45	1256,92	1233,72	1210,03	1186.12	1162.42	1138 56	111478
bbb 1293.68 129.77 1245.57 1221.71 1197.56 1173.56 1149.65 1125.29 667 129.79 1275.80 1251.52 1227.57 1203.37 1179.00 1155.26 1131.19 671 1312.10 1287.94 1267.46 1233.42 1209.15 1185.07 1166.83 1136.72 673 1318.30 1294.01 1268.48 1245.24 1202.75 1196.50 1172.97 1147.77 677 1330.70 1306.24 1287.52 1263.03 1232.39 1207.98 1183.23 1158.86 681 1339.78 1312.39 1287.52 1263.03 1238.25 1213.75 1199.05 1164.43 683 1349.41 1324.70 1290.67 1274.86 1295.01 1295.31 1200.40 1175.61 685 1355.69 1330.86 1305.74 1280.95 1255.87 1231.09 1206.40 1172.48 1284.80 691 1374.61 1349.45 1324.08 </td <td>003</td> <td>1287,57</td> <td>1263,74</td> <td>1239,67</td> <td>1215.89</td> <td>1191.86</td> <td>1168 08</td> <td>1144 13</td> <td>1120 22</td>	003	1287,57	1263,74	1239,67	1215.89	1191.86	1168 08	1144 13	1120 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	665	1293,68	1269,77	1245.57	1221.71	1197 59	1173 56	1149.65	1120,22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	667	1299,79	1275,80	1251.52	1227.57	1203 37	1170,00	1155 96	1120,20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	669	1305,95	1281,87	1257.46	1233 42	1209.15	1185.07	1160.92	1126 79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671	1312,10	1287.94	1263 45	1239 33	1203,10	1100.91	1166 44	1130,72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	673	1318,30	1294.01	1269.48	1205,00	1214,93	1190,01	1100,44	1142,20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	675	1324.50	1300 13	1975 47	1951 14	1220,75	1190,50	11/2,9/	1147,77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	677	1330 70	1306 24	12/0,4/	1057.50	1220,57	1202,24	11/8,58	1153,17
681 1339,78 1318,51 1223,25 1213,75 1189,05 1164,43 683 1349,41 1324,70 1293,60 1268,98 1244,41 1219,53 1194,70 1170,00 685 1355,69 130,08 1305,74 1280,95 1255,87 1231,09 1206,09 1181,22 687 1361,97 1337,05 1311,81 1286,94 1261,82 1236,91 1211,83 1186,83 689 1368,71 1349,25 1318,00 1292,63 1267,72 1242,53 1223,92 123,46 691 1374,61 1349,45 1324,08 1299,00 1273,67 1248,59 1223,30 1294,54 697 1393,66 1366,25 1342,44 1317,21 1291,59 1266,21 1240,67 1215,22 691 1371,55 1348,74 1323,28 1297,57 1271,70 1246,45 1220,91 701 1406,42 1373,65 1374,82 1321,73 1295,65 1283,91 1263,35 1283,42 709 1432,18 1406,22 1373,65	679	1336 93	1312 30	1007 50	1207,00	1232,39	1207,98	1183,23	1158,86
683 1349,41 1324,70 1293,60 1268,98 1244,41 1219,53 1194,70 1170,00 685 1355,69 1330,86 1305,74 1280,95 1255,87 1231,09 1206,40 1175,61 687 1361,97 1337,05 1311,81 1286,94 1261,82 1236,91 121,83 1186,83 691 1374,61 1349,45 1318,00 1292,63 1266,772 1242,73 1217,56 1192,48 693 1381,77 1356,56 1331,03 1305,36 1280,37 1225,20 1229,30 1198,14 693 1387,30 1362,01 1336,38 1311,14 1285,60 1260,31 1234,86 1209,48 697 1400,02 1371,55 1348,74 1323,28 1297,57 1271,70 1246,45 1220,91 701 1406,43 1380,85 1354,93 130,60 1278,02 1252,27 1226,65 1286,98 1244,45 1220,91 705 1419,07 1393,49<	681	1339 78	1910 51	1287,52	1263,03	1238,25	1213,75	1189.05	1164,43
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	683	1349 41	1204 70	1293,60	1268,98	1244,41	1219,53	1194,70	1170,00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	685	1355.60	1024,70	1299,67	1274,96	1250,01	1225,31	1200,40	1175,61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	687	1361.07	1330,86	1305,74	1280,95	1255,87	1231,09	1206.09	1181,22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	690	1301,97	1337,05	1311,81	1286,94	1261.82	1236.91	1211.83	1186.83
693 134.451 134.945 1324.08 1299.00 1273.67 1248,59 1223,30 1198.14 693 1381.77 1356.56 1331.03 1305,36 1280.37 1255.20 1229,79 1204,54 697 1393,66 1362.01 1336.38 111.14 1285.60 1260.21 1240,67 1215.22 699 1400.02 1371.55 1348.74 1329.39 1303,60 1278.02 1252.27 1226,65 701 1406.43 1380.85 1354.93 1329.39 1303,60 1278.02 1252.17 1226,65 1283.97 1258.13 1322.35 1233.86 1243.90 133.46	601	1308,71	1343,25	1318.00	1292,63	1267.72	1242.73	1217.56	1192.48
695 1381.77 1356.56 1331.03 1305,36 1280.37 1205,20 1229,79 1204,54 697 1393.66 1362,01 1336,38 1311.14 1285,60 1260.31 1234,86 1209,48 699 1400.02 1371,55 1342,54 1317,21 1291,59 1266.21 1246,45 1220,91 701 1406,43 1380,85 1354,93 1329,39 1303,60 1278,02 1252,27 1226,65 703 1412,84 1387.17 1461,17 1335,55 1309,63 1283,97 1258,13 1232,35 707 1425,73 1399,69 1367,40 1341,66 1315.66 1289,91 1263,95 1238,12 707 1425,73 1399,69 1367,40 1344,66 1315,86 1287,53 1269,86 1243,90 711 1438,67 1412,58 1386,21 1360,61 1327,80 1301,84 1275,72 1249,68 713 1445,16 1425,40 1398,81 1372,60 1318,80 1287,53 1261,27 717 1457,84 <t< td=""><td>091</td><td>13/4,61</td><td>1349,45</td><td>1324.08</td><td>1299.00</td><td>1273 67</td><td>1248 59</td><td>1223 30</td><td>1198.14</td></t<>	091	13/4,61	1349,45	1324.08	1299.00	1273 67	1248 59	1223 30	1198.14
695 1387,30 1362,01 1336,38 1311,14 1280,01 1260,20 1234,86 1204,48 697 1393,66 1368,25 1342,54 1317,21 1291,59 1266,21 1240,67 1215,22 701 1400,02 1371,55 1348,74 1323,28 1297,57 1271,70 1246,45 1220,91 703 1412,34 1380,85 1354,93 1329,39 1303,60 1278,02 1252,27 1226,65 705 1419,07 1393,49 1367,40 1341,66 1315,66 1289,91 1263,95 1238,12 709 1432,18 1406,22 1379,93 1354,01 1327,80 1301,84 1275,72 1249,68 711 1438,67 1412,58 1386,21 1360,17 1333,87 1307,83 1281,62 1255,50 715 1445,165 1418,99 1392,49 1366,36 1339,98 1313,86 1287,53 1261,27 717 1457,64 1422,40 1307,83 1284,68 1287,53 1261,27 713 1445,165 1417,82	693	1381,77	1356,56	1331.03	1305.36	1280.37	1255 20	1220,00	1204 54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	695	1387,30	1362,01	1336.38	1311 14	1285.60	1260,20	1223,73	1204,04
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	697	1393,66	1368.25	1342 54	1317 21	1200,00	1200,31	1204,00	1205,40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	699	1400,02	1371.55	1349 74	1322.00	1291,09	1200,21	1240,07	1210,22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	701	1406.43	1380.85	1254.02	1220,20	1297,57	12/1,/0	1246,45	1220,91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	703	1412.84	1387 17	1461 17	1925 55	1303,60	12/8.02	1252,27	1226,65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	705	1419.07	1393 40	1401,17	1333,00	1309,63	1283,97	1258,13	1232,35
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	707	1425 73	1300.60	1307,40	1341,66	1315,66	1289,91	1263,95	1238.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	709	1432 18	1406.00	1373,65	13/4,82	1321,73	1295.65	1269,86	1243,90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	711	1438.67	1400,22	1379.93	1354,01	1327,80	1301.84	1275,72	1249,68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	713	1445.16	1412.08	1386,21	1360,17	1333,87	1307,83	1281,62	1255,50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	715	1451.65	1418,99	1392,49	1366,36	1339,98	1313,86	1287,53	1261.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	717	1451,00	1425,40	1398,81	1372,60	1346,10	1319,89	1293.43	1267.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	710	1407,84	1421,47	1405,09	1378,71	1351.92	1325.54	1298.74	1272.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	719	1407.71	1438,25	1411,45	1385.04	1358 37	1331.82	1305 32	127877
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	721	1471,32	1444,70	1417.82	1391.32	1364 52	1338.02	1311 31	1284 68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	723	1477,86	1451,19	424,22	1397.60	1370 72	1344 05	1317 20	1201,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	728	1492,43	1467,43	36.03	1409.19	1386 21	1357.82	1330,06	1203,56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	733	1510,93	1483,80	1456 30	1429 20	1401 82	1379.80	1345 60	1218 51
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	738	1527,72	1500.21	1472 50	1445 16	1417 52	1200 14	1404 49	1310,01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	743	1544,39	1516.79	1488 74	1461 10	1422.01	1090,14	1904,42	1355,09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	748	1561,30	1533.42	1505 15	1477 31	1400,01	1405,00	13/1,3/	1300,12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	753	1578.26	1550 10	1501.61	1402 51	1449,10	1421,29	1393,20	1305,23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	758	1595.34	1566 95	1529 10	1495,51	1465,13	1436,99	1408,69	1380,43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	763	1612.55	1583 01	1550,19	1509,84	1481,21	1452,82	1424,22	1395,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	768	1629.80	1600.01	1554,85	1526,26	1496,91	1468,69	1439,84	1411,12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	773	1647 21	1619.02	15/1,60	1542,75	1513,53	1484,68	1455,58	1426,44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	778	1664 67	1010,03	1588,47	1559,37	1529,94	1500,76	1471,41	1442,14
1682.26 1652.57 1622.43 1592.83 1567.45 1533.16 1503.27 1473.50 788 1699.92 1669.95 1639.59 1609.66 1579.47 1549.54 1519.35 1489.29 793 1717.68 1687.45 1656.80 1626.66 1595.71 1565.95 1535.55 1505.20 798 1735.54 1705.07 1674.13 1643.65 1612.97 1582.48 1551.80 1521.19 803 1753.52 1722.78 1691.55 1660.90 1629.88 1599.11 1568.12 1537.27 813 1782.11 1753.85 1722.49 1695.49 1663.92 1632.60 1592.74 1569.71 823 1826.37 1794.50 1762.22 1730.44 1608.33 1662.47 1563.70 1569.71	783	1699.00	1035,24	1605,54	1576,04	1546,35	1516.46	1487.28	1457.76
1039,92 1669,95 1639,59 1609,66 1579,47 1549,54 1519,35 1489,29 793 1717,68 1687,45 1656,80 1626,66 1595,71 1565,95 1535,55 1505,20 798 1735,54 1705,07 1674,13 1643,65 1612,97 1582,48 1551,80 1521,19 803 1782,51 1722,78 1691,55 1660,90 1629,88 1599,11 1568,12 1537,27 813 1782,11 1753,85 1722,49 1695,49 1663,92 1632,60 1592,74 1590,71 823 1826,37 1794,50 1762,22 1730,44 1608,33 1662,47 1592,74 1569,71	788	1002,20	1652,57	1622,43	1592,83	1567,45	1533.16	1503.27	1473.50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	702	1099,92	1669,95	1639,59	1609,66	1579.47	1549.54	1519.35	1489.29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	790	1/1/,68	1687,45	1656,80	1626.66	1595.71	1565.95	1535 55	1505.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	198	1735,54	1705,07	1674.13	1643.65	1612 97	1582 48	1551.80	1591 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	803	1753,52	1722,78	1691.55	1660 90	1629 88	1500 11	1568 19	1527 97
823 1826,37 1794,50 1762,22 1730,44 1698,33 1666,47 1697,70 1609,46	813	1782.11	1753.85	1722 49	1695 49	1663 02	1632.60	1509.74	1560 71
	823	1826,37	1794.50	1762 22	1730 44	1698 33	1666 47	1627 70	1009.71

ПРИЛОЖЕНИЕ 4

Физические свойства насыщенного водяного пара

Давле (абсолк	ение отное)	Темп тур	epa- ba	Удель- ный	Плот-	Энтальпия жидкости		пия Энтальпия сти пара		Теплога парообразо- вания	
106 ITa	ат	к	°C	объем, м ³ /кг	ьем, ность, 3/кг кг/м ³		<i>і</i> ″∙10 ^{—3} , ккал/кг	<i>и</i> 10— ³ , Дж/кг	<i>і'''</i> , ккал/кг	r · 10 ^{—3} , Дж/кг	<i>г,</i> ккал/кг
4,9 5,88 6,86 7,85 8,83 9,81 11,77 13,72 15,69 17,65 19,61 22,07	50 60 70 80 90 100 120 140 160 180 200 225	535,8 547,4 557,6 566,7 575,0 582,6 596,2 608,1 618,8 628,5 637,3 647,1	262,7 274,3 284,5 293,6 301,9 309,5 323,1 335,0 345,7 355,4 364,2 374,0	0,04007 0,03289 0,02769 0,02374 0,02064 0,01815 0,01437 0,01164 0,00956 40,00782 20,00614 0,00347	$\begin{array}{c} 24,96\\ 30,41\\ 36,12\\ 42,13\\ 48,45\\ 55,11\\ 69,60\\ 85,91\\ 104,60\\ 128,00\\ 162,90\\ 288,00\end{array}$	1143 1199 1294 1337 1377 1455 1531 1606 1684 1783 2100	272,7 286,1 298,0 308,8 319,0 328,7 347,3 365,3 365,3 383,4 401,9 425,6 501,1	2780 2763 2746 2726 2705 2684 2638 2592 2540 2483 2483 2400 2100	$\begin{array}{c} 663,4\\ 659,5\\ 655,3\\ 650,6\\ 645,6\\ 640,5\\ 629,7\\ 618,6\\ 606,3\\ 592,6\\ 572,8\\ 501,1\\ \end{array}$	1637 1565 1497 1432 1369 1306 1183 1061 934 799 617 0	390,7 373,5 357,3 341,8 326,7 311,8 282,4 253,3 222,8 190,7 147,3 0

ПРИЛОЖЕНИЕ 5

Тепловые сопротивления отложений на поверхностях теплообмена

Теплоносители	$\frac{\delta}{\lambda}$, (M ² ·K)/Br
Чистый водяной пар Мятый пар, содержащий масло Вода очищенная Вода мягкая Вода жесткая Пары органических жидкостей	0,00006 0,000086 0,000172 0,000260,00043 0,00043-0,00086 0,000086
Органические жидкости, рассолы, жидкие хладагенты	$\begin{array}{c} 0,000172\\ 0,00043-0,000515\\ 0,000315-0,0006\\ 0,00086-0,0013\\ 0,0086-0,0172\\ \geqslant 0,0086\\ 0,00035\end{array}$

ПРИЛОЖЕНИЕ 6

Пределы применения основных хладагентов и теплоносителей реакционных систем нефтеперерабатывающей промышленности

	Допусти	имые пределы
Хладагент или теплоноситель	рабочих температур в реакторах, К	давление в системе циркуляции теплоагента, Па
Аммиак	240-280	Вакуум или давление до 0,5 · 10 ⁶
Пропан	260-280	0,23 · 10 ⁶ —0,61 · 10 ⁶
Изобутан	275-280	0,25 · 10 ⁶ —0,32 · 10 ⁶
Вода и ее насыщенный пар	300—500	$0,1 \cdot 10^6 - 4,1 \cdot 10^6$
Дымовые газы	700-1300	0,1 • 106
Катализаторы-теплоносители, алюмосиликаты и др	670—850	0,15 • 106-3,1 • 106

ПРИЛОЖЕНИЕ 7

Средняя массовая теплоемкость газов при постоянном давлении С_{вт} [в кДж/(кг · К)] [149]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Т. К	O2	N ₂	CO	CO2	H ₂ O	SO2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	273	0,9148	1,0304	1,0396	0,8147	1,8594	0,6071
	300	0,9169	1,0308	1,0400	0,8286	1,8632	0,6150
	500	0,9391	1,0362	1,0484	0,9207	1,9004	0,6682
	700	0,9688	1,0500	1,0664	0,9906	1,9557	0,7122
	900	0,9960	1,0697	1,0894	1,0463	2,0181	0,7415
	1100	1,0182	1,0886	1,1120	1,0902	2,0847	0,7653
	1300	1,0371	1,1103	1,1330	1,1267	2,1445	0,7850
	1500	1,0530	1,1279	1,1514	1,1564	2,2195	
	1700	1,0664	1,1443	1,1677	1,1811	2,2827	
	1900	1,0789	1,1581	1,1815	1,2020	2,3417	
	2100	1,0902	1,1706	1,1941	1,2200	2,3978	
	2300	1,1003	1,1815	1,2045	1,2355	2,4489	

Абсорбент насыщенный 65 сл. тощий 51, 56, 58, 67 Абсорбер фракционирующий 5, 49 сл. высота 52, 72, 73 гидравлический расчет тарелок 52. 73 сл. диаметр 52, 70 сл. материальный баланс 56, 57 расчетная схема 50 составы потоков 58 сл. тепловой баланс 51, 61 сл. точки отвода абсорбента 65 сл. число тарелок 64, 65 Абсорбция 50 сл. Авогадро — Дальтона уравнение 40 сл. Андервуда уравнение 17, 18 Аппараты массообменные 5 сл. реакционные 198 сл. теплообменные 93 сл. выбор 98 коэффициенты теплоотдачи и теплопередачи 100 сл. поверхность теплообмена 104 средний температурный напор 97.98 схема 98 тепловая нагрузка 97 сл. теплоносители 99 типа «труба в трубе» 95 сл. Аэродинамическое сопротивление пучка труб 106, 118 сл. -

Багатурова уравнение 14, 15 Бакланова метод 173, 174 Баланс (ы) материальный десорбера 56 сл. пропановой колонны 8, 14 сл. реакторов 215 сл., 259 сл., 291, 292, 318 регенератора катализатора 240 сл. фракционирующего абсорбера 56, 57 экстракционной коллонны 78, 80 сл. Баланс (ы) тепловой десорбера 51, 63, 64 реакторов 214, 217 сл., 265, 279, 283 сл. регенератора катализатора 240 сл. трубчатой печи 160 фракционирующего абсорбера 51, 61 сл. экстракционной колонны 80, 85 Бахшияна формула 164 Белоконя методы 112, 137, 184, 190 сл.

Воздухораспределительная решетка 249, 250 Воинова формула 175, 291 Время пребывания катализатора в регенераторе 248 шарогазовой смеси в реакционном змеевике 210 сл. Вязкость динамическая 48 сл. кинематическая 99 сл.

Гесса закон 295 Гидравлическое сопротивление 11, 73 сл. 108, 229 сл. коэффициент 176, 177, 184 сл., 212 тарелок 73 сл., 77, 78 Грасгофа уравнение 97, 135, 137, 173 Гросса уравнение 99, 109

Давление в ректификационной колонне 6, 9 сл. насыщенных паров 9 сл. парогазовой смеси в реакционном змеевике 210, 211 под распределительной решеткой 248 приведенное 37 сырья на входе в змеевик печи 174 сл. у основания зоны отпарки 226, 248, 249 Дальтона закон 132 Десорбер 50 сл. диаметр 52, 70 сл. материальный баланс 56 сл. температурный режим 60, 61 тепловой баланс 51, 63, 64 Десорбция 5, 50 сл. Лиаграмма Кокса 124, 126, 130, 175 Кремсера 54, 55 равновесия 79, 81 Динамическая вязкость 48 сл. Закон Гесса 295 Дальтона 132 Индекс противоточности 118 Испаритель пропановой колонны 145 сл. коэффициенты теплоотдачи 148 сл. нагрузочная характеристика 146, 152 поверхность теплообмена 153 расход пара 147, 148 температурный напор 148 тепловая нагрузка 146, 147 Кинематическая вязкость 99 сл. Кипятильник («нулевая» отгонная тарелка) 27 Кокса диаграмма 124, 126, 130, 175 Колонна отгонная ректификационная 39 сл. высота 49 диаметр 47 питательная секция 46 сл. составы сырья и фаз 40 сл. энтальпия и температура сырья 46, 47 пропановая 6 сл. высота 38, 39 давление и температура 9 сл. диаметр 36 сл. испаритель 145 сл. материальный баланс 8, 14 сл. орошение 13 сл. отгонная часть 6, 7, 11, 18, 21 сл. питательная секция 6, 18, 28 сл. составы сырья и фаз 7 сл. укрепляющая часть 6, 11, 18 сл. экстракционная 78 сл. высота 81, 91, 92 диаметр 80, 86 сл. материальный баланс 80 сл. теоретические тарелки 80, 86 тепловой баланс 80, 85 Конденсатор парциальный 33 Конденсатор-холодильник 6 0 ca. 119 сл. выбор 135, 136 расчет 121 сл.

Конденсация 9 сл. Константа скорости реакции 252 сл. фазового равновесия 9, 10, 19, 27 сл., 126 сл. равновесия 252.254. химического 259 сл. Концентраций уравнение 20, 27 Коэффициент (ы) гидравлического сопротивления 176. 177, 184 сл., 212 динамической вязкости 150, 170, 194 см. также Вязкость динамическая заполнения 305 избытка воздуха 156, 185, 191, 195, 239 извлечения 52 сл. кинематической вязкости 150, 171 см. кинематическая также Вязкость местного сопротивления 74, 181 сл. оребрения 103 относительной летучести 6, 11, 19, 21 сл. полезного действия тарелки 49, 86 топки 160 трубчатых печей 154, 158, 184 сл., 201, 209 прозрачности газовой среды 168 распределения 86 сжимаемости 37. 270 сокрашения количества газа 66 сопротивления сухой тарелки 77, 78 теплоотдачи 96, 100 сл. приведенный 105, 114 сл. теплопередачи 96, 103, 106 сл. теплопроводности 99 сл. экстракции 86 Кратность циркуляции катализатора 217 Кремсера диаграмма 54, 55 Критерий Прандтля 100 сл., 193 сл. Рейнольдса 96, 100 сл., 143. 139. 193 сл. Эйлера 179 Крижилина уравнение 148 Крэга формулы 71, 72, 77, 106 Мамедова формула 138, 149, 293 Материальный баланс десорбера 56 сл. пропановой колонны 8, 14 сл. реактора алкилирования 318 каталитического риформинга 259 сл., 274 сл., 280 сл. пиролиза 215 полимеризации 291, 292 регенератора катализатора 240 сл. фракционирующего абсорбера 56, 57 экстракционной колонны 78, 80 сл.

Менделеева — Клапейрона уравнение 148 Метод (ы) Бакланонва 173, 174 Белоконя 112, 137, 184, 190 сл. «от тарелки к тарелке» 6, 18, 21 сл. подбора 17 постепенного приближения 10 сл., 51 сл., 200 Трегубова, аналитический 12, 126 Нагрузочная характеристика испарителя 146, 152 Напор потери 174 сл. температурный 148, 112, 113 Насышенный абсорбент 65 сл. Нельсона формула 173, 195 Оребрение поверхности теплообмена 103 сл. Орошение минимальное 17 сл. паровое 7 сл. полное 13 сл. холодное 7 сл. Отгонная ректификационная колонна 39 сл. Печь трубчатая вертикальная цилиндрическая конвекционная камера 192 сл. к. п. д. 184, 186, 187 лучистый теплообмен 190 сл. полезное тепло 186 сл. радиантные трубы 188 сл. расход топлива 186, 188 расчет горения 185 сл. скорость сырья 190 схема потоков 189 градиентного типа см. также Реактор пиролиза к. п. д. 201, 209 расход топлива 209 расчет горения 202, 203 состав сырья и пирогаза 203 сл. схема 199 температура реакции, конечная 204 сл. тепловая нагрузка 206 сл. с изучающими стенками топки к. п. д. 154, 158 159 поверхности нагрева сл., 169 сл. потери напора 174 сл. радиантные трубы 159 сл. расход топлива 159 расчет горения 155 сл. схема 161

Печь трубчатая температура дымовых газов 163 тепловая нагрузка 158, 159 уравнение теплового баланса 160 Питательная секция отгонной колонны 46 сл. пропановой колонны 6, 18, 28 сл. Поверхность нагрева трубчатой печи 159 сл., 169 сл. теплообмена 104 сл. испарителя пропановой колонны 153 холодильника воздушного охлаждения 106, 117, 118 Потери напора 174 сл. Правило аддитивности 62 Прандтля критерий 100, 193 Процессы абсорбции 50 сл. горения 155 сл. десорбщии 5, 50 сл. массообменные 5 сл. теплообменные 93 сл. химические 199 сл. Равновесие фазовое 27 сл. химическое 259 сл. Реактор (ы) алкилирования, горизонтальный материальный баланс 318 посекционный расчет 307 сл. размеры 319 каталитического риформинга материальные балансы 259 сл., 274 сл., 280 сл. размеры 268 сл., 279, 280, 287 тепловые балансы 265 сл., 279. 283 сл. пиролиза, трубчатый см. также Печь трубчатая градиентного типа давление у основания десорбера 226зона отпарки 226, 228 материальный баланс 215 сл. размеры 214, 217 сл. распределительные решетки 226 сл. тепловой баланс 214, 217 циклоны 231, 232 полимеризации, кожухотрубчатый материальный баланс 291, 292 размеры 296 сл. расчет количества хладагентов 298 сл. тепловой баланс 292 сл. установки каталитического крекинга время пребывания парогазовой смеси 210 сл. лотери напора 212 сл.

Реакционные аппараты 198 сл. Регенератор катализатора воздухораспределительные решетки 249, 250 время пребывания катализатора 248 давления 248 сл. материальные балансы 240 сл. полнота сгорания углерода 235 сл. размеры 244 сл. расчет количества газов 236 сл. температуры катализатора 248, 249 тепловые балансы 240 сл. циклоны 251 Режим (ы) орошения минимального 13 сл. полного 17 сл. температурный десорбера 60, 61 Рейнольдса критерий 96, 100 сл., 139, 143. 193 сл. Саудерса и Брауна уравнение 70, 71 Сжимаемость газов 37 сл. Силы поверхностного натяжения 74 Скорость парогазовой смеси на входе в змеевик печи 162, 163, 190 Сопротивление аэродинамическое 106, 118 сл. гидравлическое 11, 73 сл., 108, 229 сл. тепловое 103, 106, 112, 115, 144, 152, 336 Степень черноты 168, 191 Ступень контакта 5 сл. Тарелка (и) ндеальная 5 из S-образных элементов 76 сл. гидравлическое сопротивление 77, 78 клапанная 70 сл. сопротивление гидравлическое 73 сл. колпачковая 70 «нулевая» отгонная 27 провальные 70 ситчатые (перфорированные) 86 сл. схема 88 теоретические 6 сл. минимальное число 13 сл. Температурный режим десорбера 60, 61 Тепловая нагрузка испарителя 145 сл. кипятильника пропановой колонны 84 сл. кожухотрубчатого конденсатора-холодильника 132 теплообменных аппаратов 97 сл. трубчатой печи 158, 159 холодильника воздушного охлаждения 106 сл.

Тепловой баланс 51, 61 сл. десорбера 51, 63, 64 реактора каталитического риформинга 265 сл., 279, 283 сл. пиролиза 214, 217 сл. полимеризации 292 сл. регенератора катализатора 240 сл. трубчатой печи 160 фракционирующего абсорбера 51. 61 сл. экстракционной колонны 80, 85 Теплонапряжение поверхности нагрева испарителя 146 радиантных труб печи 154, 160, 188 сл. топочного объема трубчатой печи 162 сл. Теплообмен конвективный 105 сл. лучистый 190 сл. Теплообменные аппараты 5 сл. Теплота конденсации 62, 137, 141 образования 208 парообразования 298 растворения 61 реакции 201 сгорания топлива, низшая 155, 185. 242 Тощий адсорбент 51, 56, 58, 67

Трегубова метод, аналитический 12, 126

Уравнение (я) Авогадро — Дальтона 40 сл. Андервуда 17, 18 Багатурова 14, 15 Дарси — Вейсбаха 202 изотермы 51 концентраций 20, 27 Кремсера 50 Кружилина 148 Менделеева — Клапейрона 148 равновесия фаз 9 сл. Саудерса и Брауна 70, 71 Фенске — Андервуда 14

Фазовое равновесие, константы 9, 10. 19, 27 сл., 126 сл. Фенске — Андервуда уравнение 14 Флегмовое число 6, 17 сл. Формула(ы) Альдерса 86 Бакланова 173 Бахшияна 164 Белоконя 192 Воинова 175, 291 Формула (ы) Грасгофа 97, 135, 137, 173 Гросса 99, 109 Крэга 71, 72, 77, 106 Кусакова 293 Мамедова 138, 149, 293 Манна 272, 274 Нельсона 173, 195 Шмидта 205 Этвиша 149 Якимова 183

Холодилыник аэродинамическое сопротивление пучка труб 106, 118, 119 коэффициенты теплоотдачи и теплопередачи 109 сл. поверхность теплообмена 106, 117, 118 расход воздуха 107, 108 средний температурный напор 112, 113 тепловая нагрузка 106 сл. характеристика труб 108

Циклоны 231 сл. Циркуляция катализатора 217 сл.

Число нулевых продуктовых концентраций 17 паровое минимальное 17 сл. рабочее 6. 21 сл. практических тарелок в абсорбере 64, 65 степеней проектирования 13, 15 в адсорбере 51 теоретических тарелок в ректификационной колонне 6,, 21, 33, 48 сл. флегмовое минимальное 17 сл. рабочее 6, 18, 19, 29, 33 сл. Шмидта формула 205

Эйлера критерий 179 Экстракционная колонна 78 сл. Экстракция 79 сл. Энтальпия жидкостей 21 сл., 328 сл. паров 20 сл., 332 сл. Этвиша формула 149

Якимова формула 183

СОДЕРЖАНИЕ

предисловие	3
Глава 1. Массообменные процессы	5
Ректификационная колонна для разделения многокомпонентной смеси.	6
Отгонная ректификационная колонна	39
Фракционирующии аосороер	49
	/0
	93
Теплоооменный аппарат типа «труба в трубе»	95
Кожухотрубчатый конденсатор-хододильник	104
Испаритель	145
Трубчатая печь с излучающими стенками топки	153
Вертикальная цилиндрическая трубчатая печь	184
Глава 3. Химические процессы	198
Трубчатый реактор пиролиза	199
Реактор установки каталитического крекинга в псевдоожиженном слое	
Катализатора	213
тетенератор катализатора установки каталитического крекинга в псевло-	
Ожиженном слое	931
ожиженном слое . Реакторный блок установки каталитического риформинга нал алюмопла-	2 31
ожиженном слое . Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором	2 31 2 5 1
ожиженном слое. Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации	231 251 289
ожиженном слое. Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования	231 251 289 303
ожиженном слое. Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Литература.	231 251 289 303 322
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Литература. Приложение 1. Соотношения единиц СИ с другими единицами измерения	231 251 289 303 322 327
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Л и тература. Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей	231 251 289 303 322 327 328
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Литература. Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей Приложение 3. Энтальпия нефтяных паров Приложение 3. Физические свойства насышението волящого доро	231 289 303 322 327 328 332
ожиженном слое . Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором . Кожухотрубчатый реактор полимеризации . Горизонтальный реактор алкилирования . Литература . Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей . Приложение 3. Энтальпия нефтяных паров . Приложение 4. Физические свойства насыщенного водяного пара . Приложение 5. Тепловые сопротивления отложений на поверхностях тепло-	231 289 303 322 327 328 332 336
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Л и тература. Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей Приложение 3. Энтальпия нефтяных паров Приложение 4. Физические свойства насыщенного водяного пара. Приложение 5. Тепловые сопротивления отложений на поверхностях тепло- обмена	231 251 289 303 322 327 328 332 336 336
ожиженном слое . Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором . Кожухотрубчатый реактор полимеризации . Горизонтальный реактор алкилирования . Л и тература . Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей . Приложение 3. Энтальпия нефтяных паров . Приложение 4. Физические свойства насыщенного водяного пара . Приложение 5. Тепловые сопротивления отложений на поверхностях тепло- обмена . Приложение 6. Пределы применения основных хладагентов и теплоносителей	231 251 289 303 322 327 328 332 336 336
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Л и тература. Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей Приложение 3. Энтальпия нефтяных паров Приложение 4. Физические свойства насыщенного водяного пара. Приложение 5. Тепловые сопротивления отложений на поверхностях тепло- обмена Приложение 6. Пределы применения основных хладагентов и теплоносителей реакционных систем нефтеперерабатывающей промышлен-	231 251 289 303 322 327 328 332 336 336
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор алкилирования Л и тература. Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей Приложение 3. Энтальпия нефтяных паров Приложение 4. Физические свойства насыщенного водяного пара. Приложение 5. Тепловые сопротивления отложений на поверхностях тепло- обмена Приложение 6. Пределы применения основных хладагентов и теплоносителей реакционных систем нефтеперерабатывающей промышлен- ности Приложение 7. Средняя массовая теплоемкость газов при постосние сования на поверхноста сования ности.	231 289 303 322 327 328 332 336 336 336
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор полимеризации Л и тература. Литература Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей Приложение 3. Энтальпия нефтяных паров Приложение 4. Физические свойства насыщенного водяного пара. Приложение 5. Тепловые сопротивления отложений на поверхностях тепло- обмена Приложение 6. Пределы применения основных хладагентов и теплоносителей реакционных систем нефтеперерабатывающей промышлен- ности Приложение 7. Средняя массовая теплоемкость газов при постоянном дав- лении с _{рт}	231 289 303 322 327 328 332 336 336 336 337
ожиженном слое Реакторный блок установки каталитического риформинга над алюмопла- тиновым катализатором Кожухотрубчатый реактор полимеризации Горизонтальный реактор плимеризации Л и тература. Литература Приложение 1. Соотношения единиц СИ с другими единицами измерения Приложение 2. Энтальпия нефтяных жидкостей Приложение 3. Энтальпия нефтяных паров Приложение 4. Физические свойства насыщенного водяного пара. Приложение 5. Тепловые сопротивления отложений на поверхностях тепло- обмена Приложение 6. Пределы применения основных хладагентов и теплоносителей реакционных систем нефтеперерабатывающей промышлен- ности Приложение 7. Средняя массовая теплоемкость газов при постоянном дав- лении срт. Предметный указатель	231 251 289 303 322 327 328 332 336 336 336 337 338

Алексей Алексеевич Кузнецов Султан Магомедович Кагерманов Евгений Николаевич Судаков

РАСЧЕТЫ ПРОЦЕССОВ И АППАРАТОВ НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

Редакторы: А. Е. Драбкии, Ю. К. Кузнецов Техн. редактор З. Е. Маркова Переплет художника В. Г. Шмыгина

Корректор Г. А. Рябинина

М-09740. Сдано в наб. 26/II 1974 г. Подп. к печ. 25/VII 1974 г. Формат бумаги 60×90¹/ив. Бумага тип. № 2 Усл. печ. л. 21,5 Уч.-изд. л. 21,73 Тираж 12 500 экз. Заказ № 100 Изд. № 566 Цена 99 коп.

Издательство "Химия", Ленинградское отделение 191186. г. Ленинград. Д-186. Невский пр., 28

Ордена Трудового Красного Знамени Ленинградская типография № 2 имени Евгении Соколовой Союзполиграфпрома при Государственном комитете Совета Министров СССР по делам издательств, полиграфии и книжной торговли 193052, г. Ленинград, Л-52, Измайловский пр., 29