Министерство высшего и среднего специального образования Республики Узбекистан

Ташкентский государственный технический университет имени Абу Райхана Беруни

М.К. Бахадирханов, И.Б. Ортиков

МАЛЫЙ ЭНЦИКЛОПЕДИЧЕСКИЙ СПРАВОЧНИК ПО ПОЛУПРОВОДНИКОВЫМ МАТЕРИАЛАМ

Ташкент – 2006

Малый энциклопедический справочник по полупроводниковым материалам. М.К. Бахадирханов, И.Б. Ортиков. Ташкент: ТашГТУ, 2006. 199 с.

В представленном справочнике приведены основные физические и химические фундаментальные параметры полупроводниковых материалов, как элементарных, так и соединений типа A^{III}B^V, A^{II}B^{VI}, а также более сложных полупроводниковых соединений. В справочнике также рассмотрены основные параметры примесных атомов в полупроводниках, коэффициент диффузии, растворимость, энергетические уровни, создаваемые ими в запрещенной зоне. Читатели могут найти здесь информацию о современных достижениях ведущих компаний в производстве полупроводниковых материалов.

Книга предназначена для студентов, магистров, аспирантов и научных сотрудников, а также технологов и инженеров, работающих в области полупроводниковой электроники. Может быть также полезна преподавателям высших и специальных учебных заведений при чтении курсов лекций «Физика твердого тела», «Физика полупроводников», «Материалы электронной техники» и т.д.

Рецензенты: академик АН РУз А.Т. Мамадалимов доктор физико – математических наук, профессор Х.М. Илиев кандидат технических наук С.А. Тачилин

Печатается по решешию научного совета Ташкентского государственного технического университета.

© Ташкентский государственный технический университет, 2006.

2

ОГЛАВЛЕНИЕ

	введение	
Глава I.	ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ	
	Введение	5
§1.1	Основные параметры полупроводниковых материалов	8
§1.2	Кристаллическая структура полупроводниковых материалов	17
§1.3	Сложные полупроводниковые материалы	22
§1.4	Структура энергетических зон полупроводников	31
§1.5	Энергия запрещенной зоны полупроводников	37
§1.6	Окись кремния	43
§1.7	Материалы, используемые для создания барьеров Шоттки и омических контактов	51
§1.8	Современные достижения в производстве	57
Ū	полупроводниковых материалов	
Глава II.	ДИФФУЗИЯ, РАСТВОРИМОСТЬ И	
	ЭНЕРГЕТИЧЕСКИЕ УРОВНИ РАЗЛИЧНЫХ	
	ПРИМЕСЕИ В ПОЛУПРОВОДНИКАХ Ввеление	78
821	Лиффузионные характеристики примесей в	80
3	полупроводниках	00
§2.1.1	Диффузионные параметры примесей в эпитаксиальных	105
	структурах	110
§2.2	Растворимость примесей в полупроводниках	119
§2.3	Энергетические уровни примесных атомов в полупроволниках	130
§2.4	Зависимость подвижности носителей заряда от	144
	концентрации примесных атомов	
§2.5	Зависимость удельного сопротивления важнейших	154
	полупроводниковых материалов от концентрации	
Глава III	НЕОБХОЛИМЫЕ ФОРМУЛЫ И СПРАВОЧНЫЕ	
	ДАННЫЕ ПО ФИЗИЧЕСКИМ ВЕЛИЧИНАМ	
	Введение	157
§3.1	Проводимость твердых тел	158
§3.2	Распределение Ферми – Дирака	160
§3.3	Кинетические явления в полупроводниках	161
§3.4	Различные механизмы рассеяния носителей заряда	162
§3.5	Оптические и фотоэлектрические свойства полупроволников	163

§3.6	ВАХ p – n перехода, барьера Шоттки	167
§3.7	Основные параметры фотоэлементов	168
§3.8.	Справочные данные по физическим величинам	170
§ 3.8.1	Соотношение между физическими единицами	173
§3.8.2	Физические постоянные (константы)	177
§3.8.3	Давление паров различных элементов	190
§3.8.4	Спектр электромагнитного излучения	192
§3.8.5	Изотопы некоторых элементов	193
§3.8.6	Влияние скорости на параметры тел	195
	Литература	198

ВВЕДЕНИЕ

Перемены мирового масштаба во второй половине 20 века в сфере науки и техники, промышленности и всех отраслях производства, в том числе освоение космоса, появление новых информационных технологий, автоматики, возникновение новых средств связи, несомненно, стало результатом быстрого развития электроники и микроэлектроники и ее применения во всех отраслях техники.

20 век в истории человечества можно назвать веком электроники. Еще в пятидесятых годах транзисторы и диоды, размеры которых были несколько миллиметров, заменили электронные лампы, имеющие размеры несколько десятков сантиметров. После начала эры интегральных микросхем в 1970-1990 годах, число элементов, создаваемых на одном кристалле, достигло миллиона, а их средний размер составил несколько микрон.

В конце второй половины 20 века уменьшение размеров микроэлектронных элементов, увеличение их быстродействия, уменьшение потребляемой энергии при работе и, наконец, снижение себестоимости, обеспечили не только широкомасштабное внедрение микроэлектроники во все отрасли техники, но и невиданный темп развития.

Сейчас человечество находится в начале 21 века. Мнение ученых и успехи в области электроники показывают, что 21 век станет веком нанотехнологии и наноэлектроники. Это есть объективная потребность в развитии и решении глобальных вопросов, с которыми человечество сталкивается в настоящее время. Ухудшение экологии, повышение потребности в энергии, потребность в совершенно новых информационных системах, разработка нового поколения приборов автоматики и робототехники и все прочее тесно связаны с электроникой и наноэлектроникой. Электроника только начала развиваться и в настоящее время является самой молодой наукой, развитие которой позволит решить не только упомянутые выше проблемы, но и существенно улучшить уровень жизни человечества и его безопасность. Основой электроники, микроэлектроники и наноэлектроники являются полупроводниковые материалы и современная сложная технология. Все специалисты – технологи, проектировщики, специалисты по эксплуатации элек-

5

тронных приборов и все, кто используют электронные приборы и установки, в первую очередь, должны хорошо знать основные свойства полупроводниковых материалов. Если специалист хорошо знаком со свойствами каждого полупроводникового материала, он может создать новый электронный прибор, используя функциональные возможности материала.

В этой книге собраны основные электрофизические, термодинамические и фундаментальные параметры всех известных полупроводниковых материалов, которые широко используются в настоящее время в электронной промышленности. Здесь также приведены коэффициенты диффузии различных элементов и их температурная зависимость, растворимость многих примесных атомов в полупроводниках, энергетические уровни, создаваемые в запрещенной зоне различными примесями. Эти данные позволят специалистам получать новые материалы с необходимыми электрофизическими параметрами. Отличительная особенность данной книги состоит в том, что название материала и его характеристики даны на двух языках для помощи читателю при использовании им различной литературы.

В справочнике собраны самые необходимые формулы и законы с целью обеспечения оперативной и точной работы специалистов при проектировании технологических и электронных приборов, а также для помощи студентам и аспирантам, которые ведут научные исследования.

В конце первой главы приведены ведущие компании, производящие самые важные полупроводниковые материалы, их физические и технологические параметры. Эти данные показывают достигнутый современный технологический уровень в производстве полупроводниковых материалов, а также дают читателю информацию, необходимую для приобретения нужных материалов.

Книга предназначена для специалистов, научных сотрудников, аспирантов, магистров и студентов, которые работают в сфере электронной техники и материаловедения. Надеемся, что данный справочник существенно облегчит труд и сэкономит время специалистов при решении различных вопросов электроники.

В заключение хотим выразить глубокую и искреннюю благодарность за оказанное внимание и поддержку, за ценные советы и плодотворную дискуссию

6

при обсуждении содержания глав энциклопедии: академику Мамадалимову А.Т., профессору Илиеву Х.М., профессору Зикриллаеву Н.Ф., профессору Эгамбердыеву Б.Э., доценту Курбановой У.Х., научному консультанту кандидату технических наук Тачилину С.А.

ГЛАВА I.

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ §1.1 ОСНОВНЫЕ ПАРАМЕТРЫ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Полупроводниковые материалы по элементному составу и структуре кристаллической решетки делятся на 6 групп:

- 1. Элементарные полупроводники;
- 2. Полупроводниковые соединения $A^{III}B^V$;
- 3. Полупроводниковые соединения А^{II}В^{VI};
- 4. Полупроводниковые соединения А^{IV}В^{IV};
- 5. Полупроводниковые соединения $A^{IV}B^{VI}$;
- 6. Сложные полупроводниковые материалы.

Практически все элементарные полупроводники и большинство полупроводниковых соединений $A^{III}B^{VI}$ и $A^{II}B^{VI}$, а также сложные полупроводниковые материалы имеют кристаллическую структуру типа алмаза или цинковой обманки, которые относятся к тетраэдрическим фазам, где каждый атом окружен четырьмя эквидистантными ближайшими соседями расположенными в вершинах соответствующего тетраэдра. Связь между двумя ближайшими соседями обусловлена парой электронов с противоположными спинами. Поэтому химическая связь в элементарных полупроводниках является 100% ковалентной, в соединениях $A^{III}B^{VI}$ связь имеет ионно - ковалентный вид. В соединениях $A^{II}B^{VI}$ доля ионной связи увеличивается.

Основным фундаментальным параметром полупроводников является ширина запрещенной зоны E_g. Величина E_g – это необходимая энергия для освобождения валентного электрона, участвующего в химической связи кристаллической решетки, который будет участвовать в обеспечении проводимости материала. Величина E_g в полупроводниках определяется в основном состоянием (расположением) валентных электронов атома, образующих кристаллическую решетку. Например:

8

Элемент	Электронная структура	Е _g , эВ
С	$1s^22s^22p^2$	5,48
Si	$1s^22s^22p^6 3s^23p^2$	1,17
Ge	$1s^22s^22p^6 3s^23p^6 3d^{10}4s^24p^2$	0,74
Sn	$1s^22s^22p^6\ 3s^23p^6\ 3d^{10}4s^24p^64d^{10}5s^25p^2$	0,082

Хотя все эти элементы образуют алмазоподобную кристаллическую решетку с ковалентной связью, расположение валентных электронов у них в электронной структуре атома, энергия связи в решетке, величина запрещенной зоны E_g могут существенно отличаться. Такая закономерность имеет место в полупроводниковых соединениях $A^{III}B^V$, $A^{II}B^{VI}$ и сложных материалах. Поэтому комбинируя элементы (т.е. различные энергетические состояния валентных электронов в атоме), в соединениях можно получить полупроводниковый материал с управляемой E_g . Карбид кремния является представителем $A^{IV}B^{IV}$. Этот материал по своим физическим параметрам очень близок к алмазу.

Полупроводники условно можно разделить на широкозонные, где $E_g \ge 2$ эВ, нормальные, где $2 \ge E_g \ge 0,6$ эВ и узкозонные, где $E_g < 0,5$ эВ. Именно величина E_g полупроводниковых материалов определяет их функциональные возможности при разработке различных фото - и оптоэлектронных приборов микроэлектрони-ки.

Полупроводниковые материалы

Материал	Элемент или со- единение Element or compound	Название Name	Кристалли- ческая структура Crystal structure	Постоянная ре- шетки при 300К (Å) Lattice constant at 300K (Å)
	С	Углерод Carbon (diamond)	D	3,56683
D	Ge	Германий Germanium	D	5,64613
Элемент	Si	Кремний Silicon	D	5,43095
	Sn	Олово Grey tin	D	6,48920
IV-IV	SiC	Карбид кремния Silicon carbide	W	a=3,086; c=15,117
	AlAs	Арсенид алюминия Aluminum arsenide	Z	5,6605
	AlP	Фосфид алюминия Aluminum phosphide	Z	5,4510
	AlSb	Антимонид алюминия Aluminum antimonide	Z	6,1355
	BN	Нитрид бора Boron nitride	Z	3,6150
111-V	BP	Фосфид бора Boron phosphide	Z	4,5380
	GaAs	Арсенид галлия Gallium arsenide	Z	5,6533
	GaN	Нитрид галлия Gallium nitride	W	a=3,189; c=5,185
	GaP	Фосфид галлия Gallium phosphide	Z	5,4512

Продолжение табл 1.1.1

	GaSb	Антимонид галлия Gallium antimonide	Z	6,0959
	InAs	Арсенид индия Indium arsenide	Z	6,0584
111 - V	InP	Фосфид индия Indium phosphide	Z	5,8686
	InSb	Антимонид индия Indium antimonide	Z	6,4794
	CdS	Сульфид кадмия Cadmium sulfide	Z	5,8320
	CdS	Сульфид кадмия Cadmium sulfide	W	a=4,16; c=6,756
	CdSe	Селенид кадмия Cadmium selenide	Z	6,050
II-VI	CdTe	Теллурид кадмия Cadmium telluride	Z	6,482
	ZnO	Оксид цинка Zinc oxide	R	4,580
	ZnS	Сульфид цинка Zinc sulfide	Z	5,420
	ZnS	Сульфид цинка Zinc sulfide	W	a=3,82; c=6,26
	PbS	Сульфид свинца Lead sulfide	R	5,9362
IV-VI	РbТе	Теллурид свинца Lead telluride	R	6,4620
	PbSe	Селенид свинца Lead selenide	R	6,12

D-алмаз; W-вюрцит; Z-цинковая обманка; R-каменная соль

D-diamond; W-wurtzite; Z-zincblende; R- rock salt

В природе связи кристаллической решетки существенную роль играют не только фундаментальные параметры полупроводниковых материалов, но и подвижность носителей заряда. В таблице 1.1.2 приведены разность значения электроотрицательности и доля ионной связи в различных полупроводниковых материалах по расчету Паулинга.

Таблица	1	.1	.2
			-

Материал	Элемент или соеди- нение	Разность электроотри- цательности	Доля ионной связи, %
	С	0	0
11.7	Ge	0	0
IV	Si	0	0
	Sn	0	0
IV-IV	SiC	0,8	0
	AlAs	0,6	11
	AlP	1,6	50
	AlSb	1,4	43
	BN	0,4	8
	BP	1,3	40
	GaAs	0,5	9
111-V	GaN	1	22
	GaP	1,9	61
	GaSb	0,1	2
	InAs	0,5	9
	InP	0,6	11
	InSb	0,3	6
	CdS	1	22
	CdSe	0,9	19
	CdTe	0,6	11
	ZnO	2	64
11-VI	ZnS	1	22
	PbS	0,9	19
	РbТе	0,8	17
	PbSe	0,5	9

Основные параметры важнейших полупроводниковых материалов Basic parameters of more important semiconductor materials

	Ge	Si	GaAs	GaP	CdS	CdTe	ZnS	ZnS
Количество атомов в 1см ³	$4,42 \cdot 10^{22}$	$5,0.10^{22}$	$4,42 \cdot 10^{22}$	$5,02 \cdot 10^{22}$	$4 \cdot 10^{22}$	$1,46 \cdot 10^{22}$	$5 \cdot 10^{22}$	
Atoms/cm ³								
Атомная масса	72,60	28,09	144,63	100,7	144,46	240	97,45	
Atomic weight								
Напряжение пробоя, В/см	$\sim 10^{5}$	$\sim 3.10^{5}$	$\sim 4 \cdot 10^5$					
Breakdown, V/cm								
Кристаллическая структура	Алмаз	Алмаз	Цинковая	Цинковая	Wurtzite	Цинковая	Цинковая	Wurtzite
Crystal structure	Diamond	Diamond	обманка	обманка	Вюрцит	обманка	обманка	Вюрцит
			Zincblende	Zincblende		Zincblende	Zincblende	
Плотность, г/см ³	5,3267	2,328	5,32	4,07	4,82	5,86	4,09	4,10
Density, g/cm ³								
Относительная диэлектрическая	16,0	11,9	13,1	11,1	5,4	10,2	5,2	
проницаемость								
Dielectric constant								
Эффективная плотность состояний	$1,04 \cdot 10^{19}$	$2,8.10^{19}$	$4,7 \cdot 10^{17}$	$8,6{\cdot}10^{19}$	$1,04 \cdot 10^{19}$	$2,1\cdot 10^{19}$	$2,9.10^{19}$	$2,9.10^{19}$
в зоне проводимости N _c , см ⁻³								
Effective density of states in conduc-								
tion band N_c , cm ⁻³								
Эффективная плотность состояний	$6,0.10^{18}$	$1,04.10^{19}$	$7,0.10^{18}$	$5,2 \cdot 10^{19}$	$8,32 \cdot 10^{19}$	$9,6.10^{19}$	$1,42 \cdot 10^{19}$	$1,42 \cdot 10^{19}$
в валентной зоне N _v , см ⁻³								
Effective density of states in valence								
band N_v , cm ⁻³								

Продолжение табл. 1.1.3.

Эффективная масса m*/m ₀								
электронов	<i>m</i> [*] =1,64	$m_l^* = 0,98$	0,067	0,82	0,21	0,096	0,27	
Effective mass m*/m ₀	$m_l^* = 0,082$	$m_l^* = 0,19$						
Electrons								
Дырок	m [*] _{lh} =0,044	m [*] _{lh} =0,16	$m_{lh}^*=0,082$	0,60	0,80	0,35	0,58	
Holes	$m_{hh}^*=0,28$	m [*] _{hh} =0,49	m [*] _{hh} =0,45					
Сродство к электрону, эВ	4,0	4,05	4,07					
Electron affinity, eV								
Ширина запрещенной зоны при	0,66	1,12	1,424	2,26	2,42	1,56	3,68	3,74
300К, эВ								
Energy gap (eV) at 300K								
Собственная концентрация, см-3	2,4·10 ¹³	1,45·10 ¹⁰	1,79·10 ⁶	6,7	0,299	4,03·10 ⁶	2,02·10 ⁻¹²	
Intrinsic carrier concentration, cm ⁻³								
Собственная длина Дебая, мкм	0,68	24	2250					
Intrinsic Debye length, µm								
Собственное удельное сопротив-	47	2,3·10 ⁵	10 ⁸	4,16·10 ¹⁵	5,26·10 ¹⁶	1,4·10 ⁹	1,8·10 ²⁷	
ление								
Intrinsic resistivity, Ω·cm								
Постоянная решетки, Å	5,64613	5,43095	5,6533	5,451	4,13(a)	6,48	5,41	3,82(a)
Lattice constant, Å					6,75(c)			6,26(c)
Температурный коэффициент ли-	5,8·10 ⁻⁶	2,6.10-6	6,86·10 ⁻⁶	4,7·10 ⁻⁶	5,7.10-6	$4 \cdot 10^{-6}$	6,2·10 ⁻⁶	
нейного расширения, ∆L/L∆T, °C ⁻¹								
Linear coefficient of thermal expan-								
sion, $\Delta L/L\Delta T$, °C ⁻¹								

Окончание табл. 1.1.3.

Точка плавления, °С	937	1415	1238	1467	1750	1041	1020	1780
Melting point, °C	,	.,	0					
Время жизни неосновных носите-	10-3	2,5.10-3	~10-8					
лей, с								
Minority carrier lifetime, s								
Дрейфовая подвижность, см ² /(В·с)								
электронов	3900	1500	8500	110	340	1050		165
дырок	1900	450	400	75	50	100		5
Энергия Рамановских фононов Е _р , эВ	0,037	0,063	0,035					
Optical-phonon energy, eV								
Средняя длина свободного пробега	105	76 (элек-	58					
фононов λ_0 , Å		(элек-						
Phonon mean free path λ_0 , Å		трон)						
		55 (дыр-						
		ка)						
Удельная теплота, Дж/(г·°С)	0,31	0,7	0,35					
Specific heat, $J/(g \cdot C)$								
Теплопроводность при 300К,	0,6	1,5	0,46		0,2	0,075	0,026	
Bt/(cm·°C)								
Thermal conductivity at 300K,								
W/(cm·°C)								
Коэффициент тепловой диффузии,	0,35	0,9	0,44					
cm ² /c								
Thermal diffusivity, cm ² /s								
Давление паров, Па	1 при	1 при	100 при		3,8 при	0,23 при	3,7 при	
Vapor pressure, Pa	1330°C	1650°C	1050°C		тем.	тем. плав-	тем. плав-	
	10 ⁻⁶ при	10 ⁻⁶ при	1 при		плавле-	ления	ления	
	760°C	900°C	900°C		НИЯ			

Свойства важнейших полупроводникое
Properties of important semiconductors

Полупроводник		Ширина за-		Подвижность			Эффективная масса m*/mo		
		прещенной		при 300К					
		ЗОНЫ	зоны (эВ)		$(cM^2/B \cdot c)$, , , , , , , , , , , , , , , , , , , ,	
		Ban	dgap	Mobili	$\frac{2}{2}$	Зона	Effectiv	e mass	
Semicono	ductor	(e	V)	300K (cr	$n^{-}/V \cdot c)$		m* /1	m ₀	
		300K	0K	элек- трон	дыр- ка	band	элек- трон	дыр- ка	$\epsilon_{\rm s}/\epsilon_0$
	С	5,47	5,48	1800	1200	Ι	0,2	0,25	5,7
2	Ge	0,66	0,74	3900	1900	Ι	1,64 0,082	0,04 0,28	16,0
Элемент	Si	1,12	1,17	1500	450	Ι	0,98 0,19	0,16 0,49	11,0
	Sn		0,082	1400	1200	D			
IV-IV	α- SiC	2,996	3,03	400	50	Ι	0,60	1,00	10,0
	AlSb	1,58	1,68	200	420	Ι	0,12	0,98	14,4
	BN	7,5				Ι			7,1
	BP	2,0							
	GaN	3,36	3,50	380			0,19	0,60	12,2
TTT T 7	GaSb	0,72	0,81	5000	850	D	0,042	0,40	15,7
111-V	GaAs	1,42	1,52	8500	400	D	0,067	0,082	13,1
	GaP	2,26	2,34	110	75	Ι	0,82	0,60	11,1
	InSb	0,17	0,23	80000	1250	D	0,0145	0,40	17,7
	InAs	0,36	0,42	33000	460	D	0,023	0,40	14,5
	InP	1,35	1,42	4600	150	D	0,077	0,64	12,4
	CdS	2,42	2,56	340	50	D	0,21	0,80	5,4
	CdSe	1,70	1,85	800		D	0,13	0,45	10,0
II VI	CdTe	1,56		1050	100	D			10,2
11 - V 1	ZnO	3,35	3,42	200	180	D	0,27		9,0
	ZnS	3,68	3,84	165	5	D	0,40		5,2
117 171	PbS	0,41	0,286	600	700	Ι	0,25	0,25	17,0
I V - V I	PbTe	0,31	0,19	6000	400	Ι	0,17	0,20	30,0

I-непрямозонная структура

D – прямозонная структура

§1.2 КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Кристаллическая структура полупроводников делится на 4 группы: структура алмаза, структура цинковой обманки, структура вюрцита и структура каменной соли. Основой структуры алмаза, цинковой обманки и каменной соли является гранецентрированная кубическая решетка.

Структура алмаза представляет собой сочетание двух гранецентрированных кубических подрешеток, вставленных друг в друга. У одной подрешетки начало координат совмещено с точкой 0.0.0., у другой сдвинуто вдоль диагонали куба на четверть ее длины в точку ¹/₄.¹/₄.¹/₄. Решетка алмаза не относится к числу плотно упакованных структур.

Структуру цинковой обманки можно получить из структуры алмаза, в случае, если узлы каждой гранецентрированной кубической решетки будут иметь разные атомы. Например, в одной решетки Ga, в другой – As. Координаты атомов Ga и As в решетке, соответственно, 0.0.0. и ¹/4.¹/4.¹/4. Структура каменной соли состоит из двух гранецентрированных кубических подрешеток. Первая подрешетка состоит из атомов Na, а другая – из атомов Cl. Координаты этих атомов в такой структуре будут, соответственно, 0.0.0. и ¹/₂.0.0.

Структура вюрцита – это плотно упакованная гексагональная решетка, которая состоит из двух взаимно проникающих простых гексагональных решеток Браве, смещенных относительно друг друга на ¹/₃. ¹/₃.

Рис. 1.2.1. Кристаллическая решетка алмаза Crystal lattice of diamond.

Решетку алмаза, которую имеют элементарные полупроводники, можно представить как две гранецентрированные кубические решетки, сдвинутые относительно друг друга на четверть объемной диагонали элементарной ячейки (рис. 1.2.1). У элементарных полупроводников в узлах подрешетки находятся одинаковые атомы. Такую структуру имеют следующие элементарные полупроводниковые материалы: C, Si Ge и Sn. На рисунке 1.2.2 представлена тетраэдрическая, ковалентная, химическая связь элементарных полупроводников.

Рис 1.2.2. Ковалентная, тетраэдрическая связь.

Рис. 1.2.3. Кристаллическая решетка цинковой обманки. Crystal lattice of zincblende.

Решетку цинковой обманки можно представить как две гранецентрированные кубические решетки, сдвинутые относительно друг друга на четверть объемной диагонали элементарной ячейки (рис. 1.2.3). В отличие от алмаза и подобных полупроводников, в решетке типа цинковой обманки, одну подрешетку составляют атомы одного элемента, а другую – атомы другого элемента. Например Ga и As. Такую структуру имеют следующие полупроводниковые материалы: AlAs, AlP, AlSb, BN, BP, GaAs, GaP, GaSb, InAs, InP, InSb, CdS, CdSe, CdTe, ZnS и т.д.

На рисунке 1.2.4. показана тетраэдрическая, ионно – ковалентная связь полупроводниковых материалов А^ШВ^V.

Рис 1.2.4. Ионно – ковалентная, тетраэдрическая связь полупроводниковых соединений $A^{III}B^{\rm V}$

Рис. 1.2.5. Кристаллическая решетка вюрцита. Crystal lattice of wurtzite.

Решетку вюрцита (рис. 1.2.5.), можно представить как две вставленные друг в друга плотно упакованные гексагональные подрешетки. В кристаллической структуре вюрцита, как и в решетках типа цинковой обманки, отдельный атом также находится в тетраэдрическом окружении четырех ближайших соседей. Такую структуру имеют следующие полупроводниковые материалы: SiC, GaN, CdS и ZnS.

На рисунке 1.2.6. показана тетраэдрическая, ионно – ковалентная связь полупроводниковых материалов А^{II}В^{VI}.

Рис. 1.2.6. Ионно – ковалентная тетраэдрическая связь по-лупроводниковых соединений $A^{\rm II}B^{\rm VI}$

Рис. 1.2.7. Кристаллическая решетка каменной соли. Crystal lattice of rock salt.

Решетку каменной соли, можно рассматривать как две гранецентрированные кубические решетки, вставленные друг в друга (рис. 1.2.7.), каждая из которых содержит ионы лишь одного знака (элемента). Заметим, что одной из важнейших характеристик любой структуры является координационное число. Координационное число равно числу ближайших соседей, окружающих данный атом. В представленной решетке каждый атом одного элемента окружен шестью ближайшими соседями – атомами другого элемента.

Такую структуру имеют следующие полупроводниковые материалы: PbS, PbSe, PbTe.

§1.3 СЛОЖНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

В последние годы очень интенсивно исследуется получение многокомпонентных полупроводниковых соединений на основе $A^{III}B^{V}$ и $A^{II}B^{VI}$. Такие исследования необходимы, во – первых, для получения новых полупроводниковых материалов с заданными фундаментальными параметрами, во – вторых, на основе таких материалов создаются более совершенные, многокаскадные гетероструктуры, позволяющие расширить диапазон спектра излучения в полупроводниковых лазерах, и создать более эффективные солнечные элементы. Особенностью технологии получения таких материалов является частичная замена основных атомов соединений $A^{III}B^{V}$ и $A^{II}B^{VI}$ изовалентными примесями в определенном процентном соотошении. При этом получаются новые сложные твердые растворы, параметры которых отличаются от базовых.

В таблице 1.3.1. приведена электронная структура некоторых элементов III, V, а также элементов II и VI групп, на основе которых создаются многокомпонентные соединения.

T ~	1	^	1
		-	
гаолица	1		. 1

Элементы III группы		Элементы V группы	
Эле-		Эле-	Anterna poundary
мент	электронная структура	мент	электронная структура
В	$1s^22s^22p^1$	Ν	$1s^22s^22p^3$
Al	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{1}$	Р	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{3}$
Ga	$1s^22s^22p^63s^23p^63d^{10}4s^24p^1$	As	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{3}$
In	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^1$	Sb	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^1$

	Элементы II группы	менты II группы Элементы VI группы	
Эле-		Эле-	Anarthoung other
мент	нт	мент	Электронная структура
Zn	$1s^22s^22p^63s^23p^63d^{10}4s^2$	S	$1s^22s^22p^63s^23p^4$
Cd	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2$	Se	$1s^22s^22p^63s^23p^63d^{10}4s^24p^4$
		Te	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^4$

Если в решетке GaAs частично заменить Ga алюминием (Al), то мы получим твердый раствор типа Ga_{1-x}Al_xAs. В зависимости от доли атомов Al такой твердый раствор будет всегда иметь больше E_g , чем GaAs вплоть до ширины запрещенной зоны AlAs. Так как валентные электроны Al, как видно из таблицы 1.3.1., находятся более близко к ядру, то энергия связи валентных электронов Al, больше чем энергия связи валентных электронов Ga. Если мы заменим в решетке Ga на B, то E_g будет еще больше. В случае замены Ga на In в решетке GaAs, в зависимости от доли In, ширина запрещенной зоны нового материала всегда будет меньше, чем E_g GaAs.

Аналогичная ситуация частичной замены элементов V группы в структурах $A^{III}B^V$, фосфором или азотом позволяет получить материал с большей E_g , чем у основного материала. Если заменить As на Sb, то получаем E_g всегда меньшее E_g GaAs независимо от доли атомов Sb в решетке (GaAs).

Такая же закономерность строго сохраняется и при получении сложных полупроводниковых соединений на основе $A^{II}B^{VI}$. Таким образом, целенаправленная замена одного из элементов $A^{III}B^{V}$ или $A^{II}B^{VI}$ соответствующим изовалентным атомом позволяет получить новый материал с управляемыми основными фундаментальными параметрами. Ниже приведены параметры сложных полупроводниковых соединений на основе $A^{III}B^{V}$ или $A^{II}B^{VI}$, а также зависимость E_g от состава для некоторых полупроводниковых соединений.

Рис.1.3.1 Ширина запрещенной зоны полупроводников I-III-VI₂ и II-IV-V₂.

б) Рис. 1.3.2.Зависимость ширины запрещенной зоны от состава твердых растворов на основе соединений А^{III}В^V(T=300K); а – соединения – партнеры, имеющие с

а – соединения – партнеры, имеющие одинаковую зонную структуру; б – соединения – партнеры, имеющие различную зонную структуру

Рис. 1.3.3. Изменение параметров решетки в зависимости от состава системы AlSb – InSb.

1 – по данным Б.В. Баранова и Н.А. Горюновой; 2 – по данным Вулея и Смита (равновесные значения); 3 – по данным Вулея и Смита (неравновесные значения)

Рис. 1.3.4. Изменение параметров решетки в зависимости от состава системы AlSb – GaSb.

Рис. 1.3.5. Изменение параметров решетки при изменении состава закаленных сплавов Ge – GaSb.

Рис. 1.3.6 Изменение параметров решетки в зависимости от состава системы GaAs – InAs.

Рис. 1.3.8. Изменение параметров решетки в зависимости от состава системы InAs – InP. 1 – по данным Фольберта; 2 – по данным Кестера и Ульриха

Рис. 1.3.9. Изменение параметров решетки в зависимости от состава системы InAs – InSb.

Рис. 1.3.10. Изменение параметров решетки в зависимости от состава системы GaSb – InSb. 1 – данные Вулея и Смита; 2 – данные Н.А. Горюновой и Н.М. Федоровой

Как видно из этих экспериментальных данных, при замене одного из компонентов полупроводниковых материалов соответствующими изовалентными примесями, меняется постоянная решетки нового материала. Следует отметить, что при этом с увеличением доли атомов, имеющих маленький атомный (ковалентный) радиус, постоянная решетки нового материала линейно уменьшается.

Таблица 1.3.2

Ширина запрещенной зоны сложных полупроводниковых материалов

$GaAs_{0,88}Sb_{0,12}$	1,21 эВ
Ga _{0,47} In _{0,53} As	0,75 эВ
Ga _{0,5} In _{0,5} Sb	0,36 эВ
Ga _{0,3} In _{0,7} Sb	0,24 эВ
InAs _{0,2} P _{0,8}	1,1 эВ
Ga _{0,13} In _{0,87} As _{0,37} P _{0,63}	1,05 эВ
GaAs _{0,45} P _{0,55}	1,977 эВ
Al _{0,4} Ga _{0,86} As	1,59 эВ
Al _{0,4} Ga _{0,86} As	1,62 эВ
Ga _{0,612} In _{0,388} As	0,95 эВ
CdGaAs ₂	0,55 эВ
CdSnP ₂	1,15 эВ
ZnGeP ₂	2,2 эВ
AgZnSe ₂	1,2 эВ
AgZnS ₂	2,0 эВ
AgGaS ₂	2,7 эВ
CuAlS ₂	3,5 эВ

§1.4 СТРУКТУРА ЭНЕРГЕТИЧЕСКИХ ЗОН ПОЛУПРОВОДНИКОВ

Структура энергетических зон показывает изменение энергии электрона, как функции волнового вектора в пространстве обратной решетки. Структура энергетических зон полупроводников определяет такие основные фундаментальные параметры, как ширина запрещенной зоны, эффективные массы электронов и дырок, их зависимость от кристаллографического направления. Также она определяет фотоэлектрические, оптические, тензометрические и гальваномагнитные свойства полупроводников. Структуру энергетических зон полупроводников можно разделить на две группы: прямозонную и непрямозонную. Прямую зонную структуру имеют GaAs, InSb и многие другие полупроводниковые соединения типа А^{ШВV} и А^ШВ^{VI}. При этом максимальная точка энергии в валентной зоне и ми-

Рис. 1.4.1. Модель прямой (а) и непрямой (б) энергетической структуры полупроводников

нимальная точка энергии в зоне проводимости лежат при одинаковых значениях волнового вектора k (рис. 1.4.1, а). У второй группы полупроводников, имеющих непрямую зонную структуру, положение точки максимальной энергии в валентной зоне и точки минимальной энергии в зоне проводимости лежат при различных значениях волнового вектора (рис. 1.4.1, б). В полупроводниках с прямой зонной структурой преобладающим механизмом рекомбинации носителей заряда является излучательный. Поэтому такие полупроводниковые материалы используются для создания различных видов светоизлучательных приборов, как полупроводниковые лазеры, светодиоды и т.д. В непрямозонных полупроводниках рекомбинация носителей заряда осуществляется с участием оптических и акустических фононов. Ниже приведены энергетические зоны некоторых полупроводников.

31

Рис. 1.4.2. Форма поверхностей постоянной энергии для Si. Shape of constant energy surface in Si.

Рис. 1.4.4. Форма поверхностей постоянной энергии для Ge. Shape of constant energy surface in Ge.

Рис. 1.4.5. Энергетические зоны для GaAs. Energy – band structure of GaAs.

Рис. 1.4.6. Форма поверхностей постоянной энергии для GaAs. Shape of constant energy surface in GaAs.

 $<\!\!\!111\!\!>$ \leftarrow k 0 k \rightarrow $<\!\!\!100\!\!>$ Рис. 1.4.7. Упрощенное схематическое изображение зонной структуры РbTe (не в масштабе).

PbS и PbSe имеют аналогичные зонные структуры.

Рис. 1.4.8. Предполагаемая зонная структура для PbS.

Рис. 1.4.9. Схематическое изображение зонной структуры InSb. Ширина запрещенной зоны (при 300 K) равна: ΔE=0,18 эВ.

Рис. 1.4.10. Схема энергетических зон некоторых полупроводников.
§1.5 ЭНЕРГИЯ ЗАПРЕЩЕННОЙ ЗОНЫ ПОЛУПРОВОДНИКОВ

Одним из фундаментальных параметров полупроводниковых материалов является энергия запрещенной зоны (E_g). Физический смысл E_g – это необходимая энергия для освобождения валентных, участвующих в ковалентной (или частично ионной) связи электронов кристаллической решетки для их участия в проводимости материала. Это необходимая энергия для перехода электронов из валентной зоны в зону проводимости. Концентрация свободных носителей заряда, а также собственная проводимость материала зависит от величины E_g . Величина E_g определяется состоянием валентных электронов в электронной структуре атома и типом химической связи.

E_g не является постоянной величиной для данного полупроводника. Она зависит от температуры, давления и степени легирования материала. Температурную зависимость ширины запрещенной зоны, а также ее зависимость от давления можно описать в следующим виде:

$$E_g = E_{g_0}(1 \pm \alpha T), \ \Im B (1.5.1)$$

 $E_g = E_{g_0}(1 \pm \beta T), \ \Im B (1.5.2)$

где α - температурный коэффициент E_g; β - барьерный коэффициент E_g, знак α и β зависят от свойств материала.

Значение E_g определяет собственную концентрацию и соответственную проводимость полупроводникового материала при любой температуре.

$$n_{i} = (N_{c}N_{v})^{1/2} \exp\left(-\frac{E_{g_{0}}(1-\alpha T)}{2kT}\right) (1.5.3)$$

 N_c , N_v – эффективная плотность состояний электронов в зоне проводимости и дырок в валентной зоне, k – постоянная Больцмана $k=8,6\cdot10^{-5}$ эВ/К. Физический смысл N_c , N_v будет подробно рассмотрен во второй главе.

 E_{g_0} - это ширина запрещенной зоны полупроводника при Т=0К, значение которой дано в таблице 1.5.1

Ширина з	апрещенной	зоны (эВ) различных	полупровод	ников при Т=0К
1	i '	(/1	5 1	1

Тип соеди- нения	Вещество	Ширина за- прещенной зоны	Тип соеди- нения	Вещество	Ширина за- прещенной зоны
Эле- менты	Si Ge Se Te α-Sn	1,10 0,68 2,1 0,34 0,08	II-VI	CaS CaSe CaTe MgSe MgTe	5,4 5,0 4,3 5,6 4,7
I-V	Na_3Sb KSb K_3Sb Pb_3Sb CsSb Cs_3Sb Cs_3Bi	$ \begin{array}{c} 1,1\\0,9\\1,1\\1,0\\0,8\\1,6\\0,5\end{array} $		ZnS ZnSe ZnTe SrO SrS SrSe SrTe CdS	3,2 3,7 2,6 2,1 5,8 4,8 4,6 4,0 2,4
I-VI	Cu ₂ O Ag ₂ S Ag ₂ Te	2,0 0,9 0,67 (при низких <i>T</i>) 0,98 (при высоких <i>T</i>)		CdSe CdSe CdTe BaO BaS BaSe BaTe HaS	2,4 1,7 1,5 4,2 4,0 3,7 3,4 2,0
I-VII	CuBr AgJ	2,9 2,8		нg5 (<<красная>>) HgSe НøTe	0,6 0.02
II-IV	$\begin{array}{c} Mg_2Si\\ Mg_2Ge\\ Mg_2Sn\\ Ca_2Si\\ Ca_2Sn\\ Ca_2Pb \end{array}$	$0,7 \\ 0,6 \\ 0,3 \\ 1,9 \\ 0,9 \\ 0,46$	II-VII	HgJ ₂	2,13 (при низких <i>T</i>) 2,55 (при низких <i>T</i>)
II-V	$\begin{array}{c} Mg_3Sb_2\\ Zn_3P_2\\ Zn_3As_2\\ ZnSb\\ Cd_3P_2\\ Cd_3As_2\\ CdSb \end{array}$	0,82 1,15 1,0 0,56 0,55 0,55 0,50	III-V	AlAs AlSb GaN GaP GaAs GaSb InP InAs InSb	2,4 1,5 3,4 2,24 1,4 0,67 1,25 0,33 0,18

Температурная зависимость ширины запрещенной зоны

Вещество	α, 10 ⁻⁴ эв/г рад	Вещество	а, 10 ⁻⁴ эв/г рад
Si	-4	InP	-4.7
Ge	-4,5	InAs	-3,5
Se	-9	InSb	-2,7
Те	-0,2 (100 -300° K)	Al_2S_3	-11,5
	-0,5 (300- 400° K)	Al_2Se_3	-11,2
Cu ₂ O	-2	Ga_2O_3	-8,3
AgCl	-10,2	Ga_2S_3	-6,7
Mg ₂ Si	-6	GaSe	-4,0
Mg ₂ Ge	-9	Ga_2Se_3	-4,4
Mg_2Sn	-3,5	GaTe	-6
ZnS	-4,6 (при 77° К)	In_2O_3	-5,4
	-8,5 (при 800° К)	In_2S_3	-7,7
ZnSe	-8	In_2Se_3	-6,8
CdS	-5,2	In_2Te_3	-4,0
CdSe	-4,6	SiC	-4,2
CsTe	-2,3 (при 77° К)	TiO ₂	-3,3
	-5,4 (при 800° К)	PbS	-8,9
HgJ ₂	-7 (низкотемпературная	PbSe	+4,0
	модификация при 150° С)	PbTe	+4,0
	-14 (низкотемпературная	As_2S_3	+4,0
	модификация при 350° К)	Sb_2Se_3	-5,6
	-24 (высокотемпературная	Sb_2Te_3	-7,0
	модификация)	Bi_2Se_3	-2,0
		Bi ₂ Te ₃	-9,0
AlSb	-3,5	AgInSe	-1,2
GaP	-5,5	CuInSe ₂	-1,5
GaAs	-5,0	AgInSe ₂	-2,3
GaSb	-3,5	CuInTe ₂	-3,2
		CuFeS ₂	-2,2

 $E_g = E_{g_0} \pm \alpha T$

 E_{g_0} — ширина запрещенной зоны при T=0

*E*_g – ширина запрещенной зоны при данной температуре

α – температурный коэффициент

Как видно из таблицы 1.4.2. для полупроводников типа IV-VI группы PbS, PbSe, PbTe температурный коэффициент α - является положительным, т.е. с ростом температуры величина E_g – увеличивается.

Рис. 1.5.1. Зависимость ширины запрещенной зоны ΔE_g в Si от температуры T.

Рис. 1.5.2 Зависимость ширины запрещенной зоны ΔE_g в Ge от температуры.

Рис. 1.5.3 Зависимость ширины запрещенной зоны GaAs от температуры

Рис. 1.5.4 Температурные зависимости ширины запрещенной зоны для халькогенидов свинца

Таблица 1.5.3.

Ширина запрещенной зоны халькогенидов свинца

Материал	Т, К	ΔE , $3B$
	290	0,41
PbS	77	0,31
	4	0,29
DhSa	290	0,27
ruse	77	0,17
	4	0,15
	290	0,32
PbTe	77	0,22
	4	0,19

Зависимость ширины запрещенной зоны от давления

$$E_G = E_{G(p=0)} \pm \beta P$$

Вещество	β, 10 ⁻⁶ эВ/атм (при низком давлении)	Величина дав- ления при <i>Е_{G,макс}</i> , атм	β, 10 ⁻⁶ эВ/атм (при высоком давлении)	Величина дав- ления при фазо- вом переходе	β, 10 ⁻⁶ эВ/атм (новая фаза)	
Si	-2,0					
Ge	+8,0	50000	-1,2			
GaP	+1,8	22000	-1,7			
GaAs	+9,4	60000	-8,7			
GaSb	+12,3	50000				
ZnO	0,6-1,9			10 ⁵	+1,9	
ZnS (куб.)	+5,7					
ZnS (гекс)	+9					
ZnSe	+6,0	13000				
ZnTe	+6,0		-2,9			
CdS	+3,3			27500	<<1	

§1.6 ОКИСЬ КРЕМНИЯ

Необходимым этапом при изготовлении полупроводниковых приборов, интегральных микросхем, солнечных элементов на основе полированных пластин монокристаллического кремния является создание двуокиси кремния определенной толщины.

Двуокись кремния SiO₂ – это кварцевое стекло. По внешнему виду оно мало отличается от стекла, но обладает высокой химической стойкостью ко многим кислотам за исключением плавиковой (HF), которая взаимодействуя с кварцем, образует кремниевую кислоту.

Двуокись кремния обеспечивает избирательную диффузию примеси, управление коэффициентом диффузии, защиту поверхности пластин, уменьшение доли отраженного света, и соответственно увеличение доли поглощенного света.

Наиболее часто окисные пленки на поверхности кремния получают методом термического окисления. Окисление проводят при температуре $T=1000\div1300^{\circ}C$ в атмосфере чистого кислорода или паров воды в зависимости от требуемой толщины пленки. Пленки, выращенные в атмосфере чистого кислорода, имеют более совершенную структуру. Избирательная диффузия примесей используется при проведении локальной диффузии в заданную область пластины кремния через специальные окна, вскрытые в слое SiO₂. Из акцепторных примесей только бор имеет меньший коэффициент диффузии в окисле, чем в кремнии. Галлий диффундируют в окисле в 400 раз быстрее, чем в кремнии, алюминий диффундируют еще быстрее, чем галлий. Донорные примеси P, As, Sb диффундируют относительно медленно в SiO₂, чем в кремнии. Наиболее медленно диффундирующей примесью являются атомы фосфора. Двуокись кремния также существенно уменьшает глубину проникновения ионов при их имплантации в полупроводниковый материал.

Более лучшими защитными и диэлектрическими свойствами обладают пленки нитрида кремния Si₃N₄. В пленке нитрида кремния большинство донорных и акцепторных примесей имеет очень маленький коэффициент диф-

43

фузии, чем в кремнии. Пленки Si_3N_4 толщиной d~0,1 мкм для большинства примесей могут стать практически непроницаемым защитным слоем при температуре диффузии T=1000÷1200°C. В основном пленки Si_3N_4 создаются с помощью реакции азотирования силана аммиаком при температуре T=700÷1000°C

$$3SiN_4+4NH_3 \rightarrow Si_3N_4+12H_2\uparrow$$
.

Зависимость толщины пленки SiO₂ от температуры отжига при различных условиях, а также их маскирующие свойства, как при диффузии, так и при ионной имплантации, приведены в конце этого параграфа.

Рис. 1.6.1. Зависимость толщины оксида от времени окисления и температуры для ориентации двух типов. а) рост в сухом кислороде. б) рост в паре

Рис. 1.6.2. Зависимость толщины оксида от времени окисления.

Рис. 1.6.3. Зависимость толщины окисла SiO₂, необходимого для маскирования кремния, от времени диффузии для различных температур: а — при диффузии фосфора; б— при диффузии бора

Рис. 1.6.4. Профиль распределения фосфора, имплантированного через оксидную пленку различной толщины.

Рис. 1.6.5. Профиль распределения мышьяка, имплантированного в кремний через оксидную пленку (о), а также безоксидной пленки (Δ).

Таблица 1.6.1

Диэлектрик	SiO ₂	Si ₃ N ₄
Insulator		A 1
Структура	Аморфная	Аморфная
Structure	Amorphous	Amorphous
Точка плавления (°С)	~1600	-
Melting point (°C)		
Плотность (г/см ³)	2.2	31
Density (g/cm ³)	2,2	5,1
Показатель преломления	1 46	2.05
Refractive index	1,40	2,05
Диэлектрическая проницаемость	3.9	7.5
Dielectric constant	5,7	7,5
Диэлектрическая прочность (В/см)	107	10^{7}
Dielectric strength (V/cm)	10	10
Полоса инфракрасного поглощения (µм)	0.2	11 5 12 0
Infrared absorption band (µm)	9,5	11,3-12,0
Энергия запрещенной зоны (эВ)	0	5.0
Energy gap (eV)	9	~5,0
Коэффициент термического расширения		
(°C ⁻¹)	5.10-7	-
Thermal-expansion coefficient (°C ⁻¹)		
Теплопроводность (Вт/см·К)	0.014	
Thermal conductivity (W/cm·K)	0,014	-
Удельное сопротивление (Ом.см)		
при 25°С		
при 500°С	1014 1016	1014
dc resistivity ($\Omega \cdot cm$)	10**-10**	$\sim 10^{-1}$
at 25°C	-	$\sim 2.10^{15}$
at 500°C		
Скорость травления в НЕ (Å/мин)		
Etch rate in buffered HF (Å/min)	1000	5-10

Свойства SiO_2 и Si_3N_4 при 300К Properties of SiO_2 and Si_3N_4 at 300К

Таблица 1.6.2

Порядок	Цвет	Интервал тол- щины SiO ₂ , мкм	Интервал тол- щины Si ₃ N ₄ , мкм		
	Металлический Silicon	0-0,027	0-0,020		
	Коричневый Brown	0,027-0,053	0,020-0,040		
	Золотисто-коричневый Golden brown	0,053-0,073	0,040-0,055		
	Красный Red	0,073-0,097	0,055-0,073		
	Темно – голубой Deep blue	0,097-0,010	0,073-0,077		
1	Голубой Blue	0,10-0,12	0,077-0,093		
	Бледно – голубой Pale blue	0,12-0,13	0,093-0,10		
	Очень бледно-голубой Very pale blue	0,13-0,15	0,10-0,11		
	Металлический Silicon	0,15-0,16	0,11-0,12		
	Светло - желтый Light yellow	0,16-0,17	0,12-0,13		
	Желтый Yellow	0,17-0,20	0,13-0,15		
	Оранжево - красный Orange red	0,20-0,24	0,15-0,18		
1	Красный Red	0,24-0,25	0,18-0,19		
I	Темно - красный Dark red	0,25-0,28	0,19-0,21		
	Голубой Blue	0,28-0,31	0,21-0,23		
2	Голубовато - зеленый Blue – green	0,31-0,33	0,23-0,23		
2	Светло - зеленый Light green	0,33-0,37	0,25-0,28		
	Оранжево - желтый Orange vellow	0,37-0,40	0,28-0,30		
2	Красный Red	0,40-0,44	0,30-0,33		

Зависимость цвета пленки SiO_2 и Si_3N_4 от её толщины Dependence film's color of SiO_2 and Si_3N_4 on its thickness

§1.7. МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ ДЛЯ СОЗДАНИЯ БАРЬЕРОВ ШОТТКИ И ОМИЧЕСКИХ КОНТАКТОВ

Очень важной задачей в полупроводниковой электронике является создание омического контакта к различным полупроводниковым материалам. Практически создать идеальный омический контакт невозможно. Омическим контактом принято считать контакт, когда ВАХ металл – полупроводникового перехода описывается законом Ома, или сопротивление контактной области значительно меньше, чем сопротивление объемного полупроводника, можно сказать, что такой контакт омический. Если на контактной области металл - полупроводник омический контакт отсутствует, то появляется потенциальный барьер, величина которого в основном зависит от работы выхода металла и полупроводника. Такой барьер называется барьером Шоттки или диодом Шоттки. В таких диодах, т.е. в барьерах металл – полупроводник ток через барьер осуществляется основными носителями. Поэтому диоду Шоттки свойственна высокая скорость переходных процессов, что позволяет использовать его для создания быстродействующих переключателей. Другой особенностью диодов Шоттки является низкое напряжение отпирания при V>0. Это позволяет использовать их в качестве выпрямителей большой мощности. Для создания контактов, кроме чистых металлов, также часто используются силициды.

В последнее время очень интенсивно ведутся работы по разработке технологии получения и исследованию свойств различных силицидов. Силицид – это твердый раствор полупроводникового материала и металла. Силициды очень широко используются для создания барьеров Шоттки, различных гетероструктур, хороших омических контактов, а также могут быть использованы как самостоятельный полупроводниковый материал для разработки различных приборов.

В данном параграфе приведены свойства наиболее известных (применяемых) силицидов, а также металлы и сплавы, которые обычно применяются в качестве омического контакта для полупроводниковых соединений

51

 $A^{III}B^{V}$ и других материалов. Эти данные весьма удобны для специалистов, работающих в этой области.

Таблица 1.7.1

r	•	1	1	Γ	
Силицид	φ _Б , B	Структура	Температура	Температура	
металла		силицида	образования, °С	плавления, °С	
CoSi	0,68	Кубическая	400	1460	
CoSi ₂	0,64	Кубическая	450	1326	
CrSi ₂	0,57	Гексагональная	450	1475	
HfSi	0,53	Тригональная	550	2200	
IrSi	0,93		300		
MnSi	0,76	Кубическая	400	1275	
Mn ₁₁ Si ₁₉	0,72	Тетрагональная	800a	1145	
MoSi ₂	0,55	Тетрагональная	1000 a	1980	
Ni ₂ Si	0,7-0,75	Тригональная	200	1318	
NiSi	0,66-0,75	Тригональная	400	992	
NiSi ₂	0,7	Кубическая	800 a	993	
Pd ₂ Si	0,72-0,75	Гексагональная	200	1330	
PtSi	0,84	Тригональная	300	1229	
RhSi	0,69	Кубическая	300		
TaSi ₂	0,59	Гексагональная	750 a	2200	
TiSi ₂	0,60	Тригональная	650	1540	
WSi ₂	0,65	Тетрагональная	650	2150	
ZrSi ₂	0,55	Тригональная	600	1520	

ВЫСОТА ПОТЕНЦИАЛЬНОГО БАРЬЕРА СИЛИЦИД МЕТАЛЛА – Sin – ТИПА И ИХ ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ

Таблица 1.7.2

Экспериментальные значения высоты потенциального барьера металл – полупроводник при 300К (в вольтах)

Полупроводник	Тип	Е _g , эВ	Ag	Al	Au	Cr	Cu	Hf	In	Mg	Mo	Ni	Pb	Pd	Pt	Та	Ti	W
Углерод	p	5,47			1,71													
Ge	n	0,66	0,45	0,48	0,59		0,52		0,64			0,49	0,38					0,48
Ge	р		0,50		0,30				0,55									
Si	n	1,12	0,78	0,72	0,80	0,61	0,58	0,58		0,40	0,68	0,61		0,81	0,90		0,50	0,67
Si	р		0,54	0,58	0,34	0,50	0,46				0,51	0,51	0,55				0,61	0,45
SiC	n	3,00			1,95													
AlAs	n	2,16		2,00	1,20										1,00			
AlSb	р	1,63			0,55													
BN	р	7,50			3,10													
BP	р	6,00			0,87													
GaSb	n	0,67			0,60													
GaAs	n	1,42	0,88	0,80	0,90		0,82	0,72							0,84	0,85		0,80
GaAs	р		0,63		0,42			0,68		1,04	1,13	1,27						
GaP	p	2,24	1,20	1,07	1,30	1,06	1,20	1,84							1,45		1,12	<u> </u>

Продолжение табл. 1.7.2.

GaP	n				0,72											
InSb	n	0,16	0,18 ¹		0,17 ¹											
InAs	p	0,33			0,47 ¹											
InP	n	1,29	0,54		0,52											
InP	p				0,76											
CdS	n	2,43	0,56		0,78	(0,50			0,45	0,59	0,62	1,10		0,84	
CdSe	n	1,70	0,43		0,49	(0,33						0,37			
CdTe	n		0,81	0,76	0,71								0,76			
ZnO	n	3,20		0,68	0,65	(0,45	0,30					0,75	0,30		
ZnS	n	3,60	1,65	0,80	2,00		1,75	1,50	0,82				1,84	1,10		
ZnSe	n		1,21	0,76	1,36		1,10	0,91			1,16		1,40			
PbO	n		0,95					0,93		0,96	0,95					

Таблица 1.7.3 Условия создания омических контактов к полупроводникам типа $A^{III}B^{\rm V}$

Полупроводники Е _g , типа А ^Ш -В ^V ЭВ		Тип	Контактный материал	Технология	Температура вплавления, °С
AlN	5,9	Полуизолятор	Si	Формовка	
		Полуизолятор	Al, Al-In	Формовка	1500-1800
		Полуизолятор	Mo, W	Распыление	1000
AlP	2,45	n	Ga-Ag	Формовка	500-1000
AlSb	2,16	n, p	In-Te	Формовка	150
		n, p	Au	Формовка	160
		n, p	Au-Ge	Формовка	700
		n	Au-Sn	Формовка	
	3,36	Полуизолятор	Al-In	Формовка	
	2,25	p	Au-Zn(99:1)	Формовка	
				Напыление	700
		Р	Au-Ge	Формовка	
		n	Au- Sn(62:38)	Формовка	360
		n	Au-Si(98:2)	Напыление	700
GaAs	1,42	p	Au-Zn(99:1)	Электролиз	600
				Напыление	
		р	In- Au(80:20)	Формовка	
		n	Au- Ge(88:12)	Напыление	
		n	In- Au(90:10)	Напыление	350-450
		n	Au-Se(94:6)	Напыление	550
		n	Au- Sn(90:10)	Напыление	300
		n	Au-Te(98:2)	Напыление	350-700
GaSb	0,72	р	In	Формовка	500
		n	In	Формовка	

Продолжение табл. 1.7.3.

InP	1,35	p	In	Формовка	
		n	In, In-Te	Формовка	350-600
		n	Ag-Sn	Формовка	350-600
				Напыление	600
InAs	0,36	n	In	Формовка	
			Sn-Te(99:1)	Формовка	
InSb	0,17	n	In	Формовка	
		n	Sn-Te(99:1)	Формовка	
GaAs _{1-x} P _x	1,42- 2,31	р	Au-Zn	Напыление	500
		р	Al	Напыление	500
		n	Au-Ge-Ni	Напыление	450
		n	Au-Sn	Напыление	450
AlGa _{1-x} As _x	1,42- 2,31	р	Au-In	Анодирование	400-450
		р	Au-Zn	Напыление	
		p	Al	Напыление	500
		n	Au-Ge-Ni	Напыление	500
		n	Au-Sn	Напыление	450-485
				Электролиз	450
		n	Au-Si	Напыление	
Ga _{1-x} In _x Sb	0,70- 0,17	n	Sn-Te	Напыление	
Al _x Ga _{1-x} P	2,31- 2,45	n	Sn	Формовка	
Ga _{1-x} In _x As	1,47- 0,35	n	Sn	Формовка	
$InAs_xSb_{1-x}$	0,17- 0,35	n	ln-Te	Формовка	

§1.8. СОВРЕМЕННЫЕ ДОСТИЖЕНИЯ В ПРОИЗВОДСТВЕ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Таблица 1.8.1

СОВРЕМЕННЫЙ УРОВЕНЬ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ МЕТОДОМ ЧОХРАЛЬСКОГО И ЗОННОЙ ПЛАВКИ

Параметры	Метод Чохральско-	Метод зонной
Параметры	ГО	плавки
Максимальный диаметр пластины	150÷400	200
Удельное сопротивление р – типа,	$5.10^{-3} \div 50$	$0.1 \div 3000$
Ом·см	5 10 . 50	0,1150000
Удельное сопротивление n – типа,	$5.10^{-3} \pm 50$	0 1÷800
Ом-см	5-10 . 50	0,1.000
Ориентация	[111], [110], [100]	[111], [100]
Время жизни неосновных носите- лей заряда, мкс	10÷50	100÷300
Содержание кислорода, атом/см ³	$10^{16}(10\div 200)$	<10 ¹⁶
Содержание углерода атом/см ³	10	<10 ¹⁶
Общий объем	90%	10%

Параметры монокристаллического кремния, выпускаемого различными компаниями. Как видно из табл.1.8.1, производство кремниевых монокристаллических кристаллов достигло достаточно высокого уровня. Китайскими компаниями, выпускающими кремниевые пластины, являются компании Jing Hua Silicon material co. Ltd (<u>http://www.jhsilicon.com</u>) и Silicon conquest international (<u>http://www.siliconquest.com</u>). В таблице 1.8.2. приведены параметры кремниевых пластин, выпускаемых Silicon conquest international:

Таблица 1.8.2

Диаметр, мм	50,8	76,2	100	125	150	200	300
Точность	$\pm / 0.38$	$\pm / 0.63$	± 0.50	$\pm / 0.20$	$\pm / 0.20$	$\pm / 0.20$	+/-
диаметра, мм	1/-0.38	-0.03	1/-0.30	1/-0.20	1/-0.20	1/-0.20	0.20
Толщина,	278	291	575 675	625	675	725	775
МКМ	278	301	525, 025	025	075	125	113
Точность							
толщины,	+/-25	+/-25	+/-20	+/-20	+/-20	+/-20	+/-20
МКМ							
Ориентация			<10	0>, <111>	>		
Легирующая							
примесь							
для n	P, As, Sb	P, As, Sb	P, As, Sb	P, As, Sb	P, As, Sb	P, As, Sb	Р
для р	В	В	В	В	В	В	В
Поверхность		Полиро	ованная с	одной или	и двух сто	рон.	
Класс		Т, Р	Т, Р	Т, Р	Т, Р	Т, Р	Μ

M – Mechanical, T – Test, P – Prime

Американская компания Silicon Valley, microelectronics, Ins

(<u>http://www.svmi.com</u>) выпускает кремниевые пластины, имеющие следующие

параметры:

Диаметр, мм	50	150	200	300
Точность диаметра, мм		+/- 0.2	+/- 0.2	+/- 0.5
Толщина, мкм	250-300	650-700 660-690	700-750	750-800
Метод выращивания		Чохральского		
Ориентация	100, по заказу		100	
Удельное	1-100	1 20	0.005-0.02	0.005-0.02
сопротивление, Ом.см	по заказу	1-30	1-100	1-100
Содержание углерода, ррта				≤30
Содержание кислорода		27-33		≤1
Концентрация металла на поверхности			$<5.10^{9} \div 5.10^{10}$	≤10 ¹⁰

Легирующая примесь				
Для n		Р		
Для р	В	В	В	В
Лицевая сторона		Полирова	нная	
Тыльная сторона	Полированная, травленая			

Японская компания SUMCO CORPARATION (JAPAN) (сайт компании <u>www.sumcosi.com</u>) выпускает кремниевые пластины со следующими параметрами.

Таблица 1.8.4

Tur	PW H ₂ -		EW	I W/	SOI	
ТИП	PW	отжиг	EW	LW	DBX	SIMOX
	100-	125-	100-	100-	100 150	200
диаметр, мм	300	200	300	150	100-130	300
Ориентация		<100> <111> <110>				
кристалла		<100>, <111>, <110>				
Легирующая	D D Sh					
примесь			D,	г,50		

Американская компания Silicon Inc. (<u>http://www.silicon-wafers.com</u>) выпускает кремниевые пластины со следующими параметрами

50 мм кремниевые пластины				
Тип и ориента- ция	Толщина	Удельное со- противление (Ом·см)	Примечание	
N(100)	280 +/-25 мкм	1-10		
P(111)	280 +/-25 мкм	1-10		
N(111)	280 +/-25 мкм	1-20		
N(111)	280 +/-25 мкм	0,005		
P(111)	280 +/-25 мкм	1-5		
P(100)	280 +/-25 мкм	1-10		
P(100)	280 +/-25 мкм	0,02-0,04		
P(110)	280 +/-25 мкм	1-10		

Продолжение таб. 1.8.5.

	76 мм кремниевые пластины				
P(100)	356-406 мкм	0,01-0,02, 1-10, 10-20			
P(111)	356-406 мкм	Различные	Некоторые платины име- ют окисный слой толщиной 5000Å		
N(100)	356-406 мкм	Различные			
P(100)	356-406 мкм	1-10			
N(111)	356-406 мкм	0,006-0,013			
N(111)	356-406 мкм	1-10			
	100 мм кремни	евые пластины	1		
P(100)	550 +/-25	5-15, 1-10, < 0.01	Полированные с одной или двух сторон		
P(111)	525	10-20, < 1.0			
N(100)	475-525	2-6, 1-10, 0.005			
N(110)	525 +/-25	1-10	Полированные с одной или двух сторон		
P(110)	525 +/-25	1-10	Полированные с одной или двух сторон		
N(100)	475-525	1-10, <1.0, 0.008	Полированные с одной или двух сторон		

	125 мм кремниевые платины				
P(100)	5	75 +/-25	1-25, <1.0		
N(100)	00) 575 +/-25		1-10, <1		
N(100)	5	75+/-25	3-20		
P(111)	5	75+/-25	1-10		
P+(100) EPI	P+(100) EPI 625+/-15		0,01-0,02	Эпитаксиальные 20-40 Ом·см	
N+(100) EPI	62	25+/-15	различные		
		150 мм кремн	иевые пластины		
P(100)		650 +/-25	10-25		
P(100)	P(100) 650 +/-25		1-10		
P(100)	P(100) 300		1-10		
N(100)	N(100) 650 +/-25		1-10, .00802		
P(110)		650+/-25	10-20		
		200 мм кремн	иевые пластины		
P(100)	75	0 +/-25	10-25	Notched, Test Grade	
P(100)	75	0 +/-25	1-10	Notched	
P(100)	725 +/-25		10-20	Mechanical Grade, Jeida Flatted	
N(100)	75	0 +/-25	1-30	Notched	
P(100)	725+/-25		1-25	С оксидным сло- ем толщиной 20000Å	

Американская компания Montco Silicon Technology, Inc выпускает множество различных кремниевых пластин пригодных для применения в качестве подложек. Диаметры кремниевых платин составляют от 25 до 300мм. В качестве примеси для получения n типа применяют P, Sb, As. В качестве примеси для получения p типа - бор. Ориентациями пластин являются <100>, <111> и <110>. Выращивание осуществляется методами Чохральского и зонной плавки. Класс пластин: наилучший, пробный и исправленный.

В таблице 1.8.6 приведены параметры некоторых пластин, выпускаемых Montco Silicon Technology, Inc

50 мм кремниевые пластины					
Тип	Ориентация	Удельное сопро- тивление	Толщина	Класс	
собственный	100	80	$254 \div 305$	Test	
Ν	111	$0.001 \div 0.006$	$410 \div 450$	Prime	
Ν	111	$0.005 \div 0.015$	350 ÷390	Prime	
Ν	111	$10 \div 20$	256 ÷ 356	Prime	
	20	0 мм кремниевые пл	астины		
любой	100	0,1 ÷ 100	625 ÷ 775	Reclaim	
Ν	100	0.1 ÷10	700 ÷ 750	Prime	
Ν	100	1 ÷ 2	$700 \div 750$	Prime	
Ν	100	1 ÷ 10	$700 \div 750$	Prime	
	300 мм кремниевые пластины				
любой	100	$0 \div 100$	$700 \div 800$	CR / PATTERN	
любой	100	0 ÷ 1000	700 ÷ 800	MECH / CLEAN	
любой	100	0 ÷ 100	$700 \div 800$	PART MONITOR	
Р	100	$0 \div 100$	$700 \div 800$	CR	
Р	100	0 ÷ 100	$750 \div 800$	EPI	
UNK	100	0 ÷ 100	700 ÷ 800	CASSETTED CR	

Компания Silicon conquest international также производит германий. В таблице 1.8.7 приведены параметры германиевых пластин, выпускаемые Silicon conquest international

Германиевые пластины р - типа				
Метод выращивания	VGF			
Диаметр	100 мм			
Ориентация	<100>			
Примесь для получе- ния р типа	галлий			
Удельное сопротивле- ние	<20 Ом·см			
Плотность дислокаций	(обычно меньше чем 1000/см) 500/см			
Германиевые пластины n - типа				
Метод выращивания	VGF			
Диаметр	До 150 мм			
Ориентация	<111>			
Примесь для получе-	Sh As или P			
ния n типа				
Удельное сопротивле-	2-30 OM-CM			
ние				
	для 25-100 мм меньше чем 2000/см для			
Плотность дислокаций	150 мм (обычно 3000/см), меньше чем			
	5000/см (обычно 1500/сm)			

Параметры монокристаллического арсенида галлия, выпускаемого различными компаниями.

Российская компания Girmet (сайт компаний <u>www.girmet.com</u>) выпускает слитки GaAs со следующими параметрами:

Монокристаллы, выращенные методом вертикальной направленной кристаллизации (VGF)				
Материал		Полуизоли- рующий	Полупровод	цящий
Легирующая примесь		нелегирован- ный	Si	Zn
Тип проводимо	сти	n	n	р
Концентрация н	юсителей, см ⁻³	-	$5x10^{17} - 3x10^{18}$	$5x10^{18}$ - $3x10^{19}$
Удельное сопро Ом.см	тивление,	>1x10 ⁷	-	-
Подвижность, с	м ² /В.с	>5000	2400-1200	70-40
Плотность дис- локаций, см ⁻²	Ø50.8 мм	<5000	<500 или <5000	<500 или <5000
Монокристаллы, выращенные методом Чохральского с жилкостной герметизацией расплава (LEC)				
Материал		Полуизоли-	Полупроводя-	
		e e e e e e e e e e e e e e e e e e e		
10101 cpnusi		рующий	ЩИЙ	
Легирующая пр	оимесь	рующий нелегированны	щий й Si или Te	Zn
Легирующая пр Тип проводимо	римесь Сти	рующий нелегированны n	<u>щий</u> й <u>Si или Te</u> n	Zn p
Легирующая пр Тип проводимо Концентрация н	оимесь сти носителей, см ⁻³	рующий нелегированны n -	щий й Si или Te n 1x10 ¹⁷ - 3x10 ¹⁸	
Легирующая пр Тип проводимо Концентрация н Удельное сопро Ом.см	римесь сти юсителей, см ⁻³ тевление,	рующий нелегированны n - >1x10 ⁷	щий й Si или Te n 1x10 ¹⁷ - 3x10 ¹⁸ -	
Легирующая пр Тип проводимо Концентрация н Удельное сопро Ом.см Подвижность, с	оимесь сти носителей, см ⁻³ тевление, м ² /В.с	рующий нелегированны п - >1x10 ⁷ >5000	щий й Si или Te n 1x10 ¹⁷ - 3x10 ¹⁸ - 4200-1200	
Легирующая пр Тип проводимое Концентрация н Удельное сопро Ом.см Подвижность, с	<u>римесь</u> сти носителей, см ⁻³ тевление, м ² /В.с	рующий нелегированны п - >1x10 ⁷ >5000 <5x10 ⁴ или	щий й Si или Te n 1x10 ¹⁷ - 3x10 ¹⁸ - 4200-1200 <5x10 ⁴ или	Zn p $1x10^{17} - 3x10^{19}$ - 170-40 $< 5x10^4$ или
Легирующая пр Тип проводимо Концентрация н Удельное сопро Ом.см Подвижность, с Плотность	оимесь <u>сти</u> носителей, см ⁻³ тевление, <mark>м²/В.с</mark> Ø50.8 мм	рующий нелегированны п - >1x10 ⁷ >5000 <5x10 ⁴ или <8x10 ⁴	$ \begin{array}{r} щий \\ й Si или Te \\ n \\ 1x1017 - 3x1018 \\ - \\ 4200-1200 \\ <5x104 или \\ <8x104 $	Zn p 1x10 ¹⁷ - 3x10 ¹⁹ - 170-40 <5x10 ⁴ или <8x10 ⁴
Легирующая пр Тип проводимое Концентрация н Удельное сопро Ом.см Подвижность, с Плотность дислокаций,	оимесь сти носителей, см ⁻³ тевление, м ² /В.с Ø50.8 мм Ø76.2 мм	рующий нелегированны п - >1x10 ⁷ >5000 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ или	щий й Si или Te n 1x10 ¹⁷ - 3x10 ¹⁸ - 4200-1200 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ или <8x10 ⁴ или	Zn p $1x10^{17}$ - $3x10^{19}$ - 170-40 $<5x10^4$ или $<8x10^4$ $<8x10^4$ или
Легирующая пр Тип проводимо Концентрация н Удельное сопро Ом.см Подвижность, с Плотность дислокаций, см ⁻²	оимесь <u>сти</u> носителей, см ⁻³ тевление, <mark>м²/В.с</mark> Ø50.8 мм Ø76.2 мм	рующий нелегированны - - >1x10 ⁷ >5000 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ или <1x10 ⁵	$\begin{tabular}{ c c c c c } \hline \textbf{и} & \textbf{и} & \textbf{и} & \textbf{и} & \textbf{и} & \textbf{и} \\ \hline \textbf{и} & \textbf{Si или Te} & & & \\ \hline \textbf{n} & & & & \\ \hline & 1x10^{17} - 3x10^{18} & & \\ \hline & - & & & \hline \hline & - & & \\ \hline & - & & \hline \hline & - & & \\ \hline & - & & \hline \hline & - & -$	Zn p 1x10 ¹⁷ - 3x10 ¹⁹ - 170-40 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ или <1x10 ⁵
Легирующая пр Тип проводимо Концентрация н Удельное сопро Ом.см Подвижность, с Плотность дислокаций, см ⁻²	римесь <u>сти</u> носителей, см ⁻³ тевление, м ² /В.с Ø50.8 мм Ø76.2 мм	рующий нелегированны n - >1x10 ⁷ >5000 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ или <1x10 ⁵ Пластины	$ \begin{array}{r} щий й Si или Te 1x1017 - 3x1018 $	Zn p $1x10^{17}$ - $3x10^{19}$ - 170-40 $<5x10^4$ или $<8x10^4$ $<8x10^4$ или $<1x10^5$
Легирующая пр Тип проводимое Концентрация н Удельное сопро Ом.см Подвижность, с Плотность дислокаций, см ⁻² Диаметр, мм	римесь сти носителей, см ⁻³ тевление, м ² /В.с Ø50.8 мм Ø76.2 мм	рующий нелегированны n - >1x10 ⁷ >5000 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ <1x10 ⁵ Пластины 50	$\begin{array}{c c} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \hline \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I}$	Zn p 1x10 ¹⁷ - 3x10 ¹⁹ - 170-40 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ <1x10 ⁵
Легирующая пр Тип проводимо Концентрация н Удельное сопро Ом.см Подвижность, с Плотность дислокаций, см ⁻² Диаметр, мм Толщина, мкм	оимесь <u>сти</u> носителей, см ⁻³ тевление, <u>м²/В.с</u> Ø50.8 мм Ø76.2 мм	рующий нелегированны n - >1x10 ⁷ >5000 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ <1x10 ⁵ Пластины 50 350 ± 15, 40	щий й Si или Te n $1x10^{17} - 3x10^{18}$ - 4200-1200 <5x10 ⁴ или <8x10 ⁴ <8x10 ⁴ <1x10 ⁵	
Легирующая пр Тип проводимое Концентрация н Удельное сопро Ом.см Подвижность, с Плотность дислокаций, см ⁻² Диаметр, мм Толщина, мкм Ориентация по	римесь сти носителей, см ⁻³ тевление, м ² /В.с Ø50.8 мм Ø76.2 мм	рующий нелегированны п - > $1x10^7$ > 5000 $<5x10^4$ или $<8x10^4$ $<8x10^4$ или $<1x10^5$ Пластины 50 $350 \pm 15, 40$ (100), (1	щий й Si или Te n $1x10^{17} - 3x10^{18}$ - $4200 - 1200$ $<5x10^4$ или $<8x10^4$ $<1x10^5$.8 ± 0.3, 76.2 ± 0.3 $00 \pm 15, 450 \pm 15, 500$ (11), (110), (211), (31)	

Продолжение таб. 1.8.8.

Отклонение от точной ори- ентации	$(1 - 10) \pm 0.1^{\circ}$ в заданном направлении
Базовый и дополнитель- ный срезы	согласно стандарту SEMI M9 (US SEMI или E/J SEMI) для (100), для других ориентаций - по выбо- ру заказчика
Обработка поверхности	
лицевая сторона	полированная, годная к эпитаксии
обратная сторона	полированная, шлифовано-травленая
Упаковка	индивидуальная, двойная, внутренняя вакуумизиро- ванная, внешняя заполнена инертным газом

Польская компания Comsecore (сайт компаний www.Comsecore.com) выпуска-

ет слитки GaAs со следующими параметрами:

Таблица	1	.8	.9
---------	---	----	----

Материал: легирую- щая при- месь	Тип	Диа- метр, мм	Плот- ность дисло- кации, см ⁻²	Концен- трация носителей заряда, см	Подвиж виж- ность, см ² /В·с	Ориен- тация	Удельное сопротив- ление, Ом- см
GaAs:Si	N	50, 76	$<5\frac{10}{4}$	10^{17} - 2*10 ¹⁹		(100), (111)	
GaAs:Te	N	50, 76	<5 * 10	10 ¹⁷ -10 ¹⁸		(100), (111), (110)	
GaAs:Zn	Р	50, 76	<5 * 10	$5*10^{16}-$ $2*10^{19}$		(100), (111), (110)	
GaAs:- нелиги- рован- ный	SI	50, 76	<5 * 10		>6*10 ³	(100), (111)	>6*10 ⁷
GaAs:Cr	SI	50, 76	<5*10		>4*10 ³	(100), (111)	>6*10 ⁷

В таблице 1.8.10 приведены цены на GaAs в зависимости от параметров, выпускаемым Польской компанией Comsecore

Цена €/штука	Мате- риал	Ори- ента- ция	Диа- метр, мм	Тол- щина, мкм	По- верх- ность	Удельное сопротив- ление, Ом- см	Концен- трация носите- лей заря- да, см ⁻³	Подвиж- виж- ность, см ² /В·с	Плот- ность дис- лока- ции, см ⁻²
125.00	SI GaAs:-	[100]	76	500	P/E	$(1.5-1.3)\cdot 10^8$	US Flats	(6.4-5.6) $\cdot 10^3$	(1.3-4.5) $\cdot 10^4$
91.00	SI GaAs:-	[100]	50	400	P/E	(2.3-0.96) $\cdot 10^8$	US Flats	(6.8-6.4) $\cdot 10^3$	<5,00 0
66.00	SI GaAs:-	[100]	50	350	P/E	$(1.0-1.9) \cdot 10^8$	EJ Flats	$(6.2 - 6.8) \cdot 10^3$	<10 ⁵
83.00	SI GaAs:-	[100]	50	500	P/E	$3.26 \cdot 10^7$	$4.25 \cdot 10^7$	4,800	$5.4.1_{4}$

Р – полированная, Е - травленая

Германская компания Freiberger (<u>http://www.fcm-semicon.com</u>) выпускает GaAs пластины со следующими параметрами:

Полуизолирующие GaAs-пласт	ины
----------------------------	-----

Параметры	Размер	LEC		VGF	
	мер-				
Диаметр	MM	76	100 / 125 / 150	100	150 мм
Диапазон удельного					
сопротивления А					
Удельное сопротивле-	Ом.см		$(0.1 \div 5) \cdot 10^7$		
ние					
Холловская подвиж-	$c M^2 / B \cdot c$		$> 6 \cdot 10^{3}$		
ность					
Содержание углерода	см ⁻³		$(0,1 \div 1,0)$ ·		
			10^{14}		
Диапазон удельного					
сопротивления В					
Удельное сопротивле-	Ом.см		$(0.1 \div 2.0) \cdot 10^7$		
ние					
Холловская подвиж-	$c M^2 / B \cdot c$		$(5 \div 7) \cdot 10^3$		
ность					

Продолжение табл. 1.8.21

Содержания углерода	см ⁻³		$(1 \div 5) \cdot 10^{14}$	
Диапазон удельного сопротивления С Удельное сопротивле- ние	Ом.см	$(1 \div 4) \cdot 10^7$	$(1 \div 4) \cdot 10^7$	
Подвижность Холла	$c M^2 / B \cdot c$	$> 7 \cdot 10^3$	$> 7 \cdot 10^{3}$	
Содержания углерода	см ⁻³	$(0.5 \div 2.0) \cdot 10^{15}$	$(0.5 \div 2.0) \cdot 10^{15}$	
Диапазон удельного сопротивления D				
Удельное сопротивле-	Ом.см	$> 1 \cdot 10^{7}$	$> 1 \cdot 10^{7}$	$> 1 \cdot 10^{7}$
Холловская подвиж-	$c M^2 / B \cdot c$	$> 6 \cdot 10^3$	$> 6 \cdot 10^3$	$> 6 \cdot 10^3$
содержание углерода	см ⁻³	$> 0.5 \cdot 10^{15}$	$> 0.5 \cdot 10^{15}$	$> 0.5 \cdot 10^{15}$
Диапазон удельного сопротивления Е				
Удельное сопротивле- ние			$(1 \div 4) \cdot 10^8$	
Холловская подвиж-			$(6.0 \div 4.5) \cdot 10^3$	
ность Содержание углерода			$> 4 \cdot 10^{15}$	
Плотность дислока-	см ⁻²			
ции низкий стандарт	см ⁻²	≤ 70 000	<u>≤</u> 100 000 ≤150 000	<u>≤3 000</u> <u>≤5 000</u> ≤5 000 10 000
Концентрация EL2				
Сред. значения на пластине	см ⁻³	(1. ÷1.7	$) \cdot 10^{16}$	$(1.0 \div 1.5) \cdot 10^{16}$
Отклонение от стан- дарта	%	≤5	5	≤ 5

Таблица 1.8.12

Параметры	Размерность	LEC	VGF
Диаметр		76 мм	100 мм
Примесь		Te	Si
Тип		n	n
Концентрация носителей	ow ⁻³	$(0, 1, \cdot, 2, 0), 10^{18}$	$(0.2 \cdot 2.5) \cdot 10^{18}$
заряда	CM	$(0.1 \div 2.0) \cdot 10$	$(0.2 \div 2.3) \cdot 10$
Холловская подвижность	см ² /Вс	$(4.2 \div 2.3) \cdot 10^3$	$(3.0 \div 1.5) \cdot 10^3$
Плотность дислокации			
Лазер класса А			
≥ 80% площади пласти-			
ны	См ⁻²		0
Лазер класса В			
≥ 85% площади пласти-			
ны	См ⁻²		400
Лазер класса С			
≥ 90% площади пласти-			
ны	см ⁻²		1,200
LED класса			
среднее значение		< 70 000	5 000
≥ 60% площади пласти-	см ⁻²	~ 70,000	5,000
ны	см ⁻²		5,000

Полупроводящие GaAs-пластины

Параметры монокристаллического фосфида галлия, выпускаемого различными компаниями.

Российская компания Girmet выпускает слитки GaP со следующими параметрами:

	Монок	ристаллы	I		
Легирующая примесь	Нелегиро	эванный	S	Zn	
Тип проводимости	n	l	n	р	
Концентрация носителей,	≤1 x	10^{16}	1×10^{17} -	$2x10^{17}$ -	
CM ⁻³			$2x10^{18}$	$2x10^{18}$	
Подвижность, см ² /В.с	≥1	00	≥60	≥ 60	
Плотность дислокаций,	$\geq 2x$	10^{5}	$\geq 2x10^5$	$\geq 2x10^5$	
CM ⁻²					
	Пласт	ины			
Диаметр, мм		50.8 ± 0.1	.3 $76.2 \pm$	0.3	
Толщина, мкм		300 ± 15	$5 400 \pm 1$	5	
Ориентация поверхности		(100)	(111)		
Точность ориентации		$\pm 0.5^{\circ}$	± 0.1°		
Отклонение от точной орие	ентации	$(1 - 10) \pm 0.1^{\circ}$ в заданном направле-			
		нии			
Базовый и дополнительный	й срезы	По стан,	дарту SEMI М	Э, US SEMI и	
		E/J SEM	Ι		
Обработка поверхности					
лицевая сторона	1	полиров	ванная, годная	к эпитаксии	
обратная сторон	a	полиров	ванная, шлифон	зано-	
		травлена	ая		
Упаковка		индивид	цуальная		

Польская компания Comsecore выпускает слитки GaP со следующими параметрами:

Таблица 1.8.14

Материал: легирующая примесь	Тип	Диаметр, мм	Плотность дислокации, см ⁻²	Концентрация носителей заряда, см ⁻³	Подвижность, см ² /В·с	Ориентация	Удельно противл Ом•
GaP:S	N	2", 3"	<1*10 ⁵	$2*10^{17}$ - $2*10^{18}$	>90	(100), (111), (110)	
GaP:- undoped	N	2", 3"	<1*10 ⁵	<10 ¹⁶	>90	(100), (111), (110)	

В таблице 1.8.15 приведена цена GaP в зависимости от параметров, выпускаемого Польской компанией Comsecore

Таблица 1.8.15

Цена €/штук а	Мате- риал	Ориен- тация	Диа- метр, мм	Тол щи- на, мкм	По- верх- ность	Удельное сопро- тивле- ние, Ом- см	Концен- трация носите- лей за- ряда, см ⁻ 3	Под- виж- ность, см ² /В· с	Плот- ность дисло- кации, см ⁻²
83.00	n- GaP:S	[110]	15x30 mm	400	P/P	0.081	$8.2 \cdot 10^{17}$	100	$4.5 \cdot 10^4$
135.0 0	n- GaP:-	[100]	2"	400	P/E		<1.5.10	>100	<9·10 ⁴
135.0	n-	[100]	2"	400	P/E	0.18	$2.6 \cdot 10^{17}$	120	$2.8 \cdot 10^4$

Р – полированная, Е – травленая

Параметры монокристаллического арсенида индия выпускаемого различ-

ными компаниями.

Российская компания Girmet выпускает слитки InAs со следующими параметрами:

Таблица 1.8.16

	Монокристаллы						
Легирующая при-	00001111111	S	Zn Mn				
месь	нелегир	ованный	5	Z11, W111			
Тип проводимости		n	n	р			
Концентрация носи-	<21	10 ¹⁶	1×10^{17} -	5×10^{16} -			
телей, см ⁻³	<u>~</u> 57	10	$3x10^{18}$	5×10^{18}			
Подвижность, см ² /В.с	≥20	0000	≥10000	≥100			
Плотность дислока-			$<5 \times 10^{4}$				
ций, см ⁻²			<u>_</u> 5X10				
	Π	ластины					
Диаметр, мм		50.8 ± 0.3					
Толщина, мкм		450 ± 15					
Ориентация поверхное	сти	(100)					
Точность ориентации		$\pm 0.5^{\circ}$	$\pm 0.1^{\circ}$				
Отклонение от точной	ориен-	$(1 \ 10) \perp$	0.1º towarda tha	spacified free			
тации		$(1 - 10) \pm$	0.1 towards the	specified face			
Базовый и дополнит	ельный	SEMI M9, US SEMI and E/J SEMI Stan-					
срезы		dard					
Обработка повер	эхности						
лицевая (сторона	полирова	анная, годная к з	опитаксии			
обратная ст	орона	полированная, шлифовано-травленая					
Упаковка		индивидуальная					

r

Польская компания Comsecore выпускает слитки InAs со следующими параметрами:

Таблица 1.8.17

Материал:	Тип	Диаметр,	Плотность	Концентрация	Подвижность,	Опиентация	Удельн
примесь	1 1111	ММ	см ⁻²	заряда, см ⁻³	$c M^2 / B \cdot c$	Орисптация	Ом-
InAs:- undoped	N	50	$<5*10^{4}$	$<5*10^{16}$	>2*10 ⁴	(100), (111), (110)	
InAs:S	N	50	<5*10 ⁴	$1*10^{17}$ - $5*10^{19}$	>3*10 ³	(100), (111), (110)	
InAs:Zn	Р	50	<5*10 ⁴	$1*10^{17}-5*10^{19}$	>80	(100), (111), (110)	

В таблице 1.8.18 приведена цена InAs в зависимости от параметров, выпускаемого Польской компаниий Comsecore

Таблица 1.8.18

Цена €⁄ штука	Мате- риал	Ориен- тация	Диа- метр, мм	Тол щи- на, мкм	По- верх- ность	Удельное сопро- тивле- ние, Ом· см	Концен- трация носите- лей за- ряда, см ⁻³	Подви ви- ность, см ² / В·с	Плот- ность дис- локации, см ⁻²
200.0 0	n- InAs:-	[100]	50	400	P/E	1 US Flat	(2-6) $\cdot 10^{16}$	>20, 000	<120
165.0 0	n- InAs:S	[111]	40mm	400	P/E	~0.0002	>1.10 ¹⁸	>5,0 00	$<2.10^{3}$
200.0 0	p- InAs:Z n	[100]	50	400	P/E	US Flats	(1-5) $\cdot 10^{18}$		$< 1.0 \cdot 10^4$

Р – полированная, Е - травленая

Параметры монокристаллического антимонида галлия выпускаемого различными компаниями:

Российская компания Girmet выпускает слитки GaSb со следующими параметрами:

Монокристаллы							
Легирующая примесь	Нел	егированный	Te	Si или Ge			
Тип проводимости		р	n	р			
Концентрация носите-	≤ 2	2.10 ¹⁷ (300K)	2×10^{17} -	3×10^{17} -			
лей, см ⁻³	\leq	2.10 ¹⁶ (77K)	1.2×10^{18}	1×10^{19}			
Подвижность, см ² /В.с	2	700 (300K)	2500 - 3500	1000 - 250			
	≥	2000 (77K)					
Плотность дислокаций,		$\leq 5 \times 10^3$	$\leq 2 \times 10^3$	$\leq 2 \times 10^3$			
CM ⁻²							
Пластины							
Диаметр, мм	50.8 ± 0.3						
Толщина, мкм	450 ± 15						
Ориентация поверхности	(100)	(111)					
Точность ориентации	$\pm 0.5^{\circ} \pm 0.1^{\circ}$						
Отклонение от точной орг	$(1 - 10) \pm 0.1^{\circ}$ в заданном направлении						
ентации							
Базовый и дополнительни	По стандарту SEMI M9, US SEMI и Е/Ј						
срезы	SEMI						
Обработка поверхности							
лицевая сторон	полированная, годная к эпитаксии						
обратная сторо	полированная, шлифовано-травленая						
Упаковка	индивидуальная						

В таблице 1.8.20 приведена цена GaSb в зависимости от параметров, выпускаемого Польской компанией Comsecore

Таблица 1.8.20

Цена €/штук а	Мате- риал	Ориен- тация	Диа- метр, мм	Тол щи- на, мкм	По- верх- ность	Удель- ное со- против- ление, Ом∙ см	Концен- трация носите- лей заря- да, см ⁻³	Под- виж- ность, см ² /В· с	Плот- ность дисло- каций, см ⁻²
225.0 0	p-type GaSb:-	[100]	50	450	P/P	US Flts	(1- 1.2)·10 ¹⁷ при 77°К	(760- 810) при 77°К	(1,200- 1,500)
200.0 0	n-type GaSb: Te	[100]	50	450	P/P	US Flts	(0.2-0.9) ·10 ¹⁸ при 77°К	~3,2 00	<2,000
185.0 0	n-type GaSb: Te	[100]	50	450	P/E	US Flts	(0.2-2.0) ·10 ¹⁸ при 77°К	~3,2 00	<2,000

Р – полированная, Е - травленая

Параметры монокристаллического антимонида индия, выпускаемого раз-
личными компаниями.

Российская компания Girmet выпускает слитки InSb со следующими параметрами:

Таблица 1.8.21

	Нелегирован-	Те	Ge, Mn			
Легирующая примесь	ный					
Тип проводимости	n	n	р			
Концентрация носителей,	$(3 - 7)x10^{14}$	$7x10^{14}$ -	1×10^{15} -			
см ⁻³ (77К)		$1 x 10^{18}$	5×10^{18}			
Плотность дислокаций,		≤200				
CM ⁻²						

Монокристаллы

Пла	стины
Диаметр, мм	50.8 ± 0.3
Толщина, мкм	450 ± 15
Ориентация поверхности	(100) (111)
Точность ориентации	$\pm 0.5^{\circ} \pm 0.1^{\circ}$
Отклонение от точной ориентации	$(1 - 10) \pm 0.1^{\circ}$ tв заданном на-
	правлении
Базовый и дополнительный срезы	по стандартам SEMI M9, US
	SEMI and E/J SEMI Standard
Обработка поверхности	
лицевая сторона	полированная, годная к эпитак-
обратная сторона	сии
	полированная, шлифовано-
	травленая
Упаковка	индивидуальная

В таблице 1.8.22 приведена цена InSb в зависимости от параметров, выпускаемого Польской компанией Comsecore

Таблица 1.8.22

Цена €/штука	Мате- риал	Ориен- тация	Диа- метр, мм	Тол щи- на, мкм	По- верх- ность	Удельное сопро- тивле- ние, Ом· см	Концен- трация носите- лей за- ряда, см ⁻³	Под- виж- ность, см ² /В· с	Плот- ность дисло- кации, см ⁻²
185.00	n- type InSb:-	[100]	50	450	P/P	US Flats	(5.0- 7.1)·10 ¹ ⁴ при 77К	(4.3-3.8) $\cdot 10^5$	120- 150
185.00	n- type InSb:-	[100]	50	450	P/E	US Flats	(0.8- 4.0) ·10 ¹⁴ при 77К	(7.5-4.5) $\cdot 10^5$	120- 150
170.00	n- type InSb:-	[100]	50	450	P/E	US Flats	(5.0- 7.1) ·10 ¹⁴ при 77К	(4.3-3.8) $\cdot 10^5$	120- 150

Р – полированная, Е - травленая

Параметры монокристаллического фосфида индия выпускаемого различными компаниями.

Польская компания Comsecore выпускает слитки InP со следующими параметрами:

Таблица 1.8.23

Материал: легирую- щая при- месь	Тип	Диаметр, мм	Плот- ность дисло- кации, см ⁻²	Концен- трация но- сителей заряда, см ⁻ ³	Подвиж- ность, см ² /В·с	Ориента- ция	Удельное сопротив- ление, Ом- см
InP:- undoped	N	2"		1*10 ¹⁶ - 5*10 ¹⁷		(100), (111)	
InP:S (класс A)	N	50	<100 0	(5-8)*10 ¹⁸		(100), (111)	
InP:S (класс B)	N	50	<500 0	$(1-20)*10^{18}$		(100), (111)	
InP:Sn	Ν	50		$2*10^{17}$ - $1*10^{19}$		(100), (111)	
InP:Zn	Р	50	<100	$(3-5)*10^{18}$	60-80	(100), (111)	
InP:Fe	SI	50	$<5*1 \\ 0^4$		$>2*10^{3}$	(100), (111)	>10 ⁷

В таблице 1.8.24 приведена цена InP в зависимости от параметров, выпускаемого Польской компанией Comsecore

Таблица 1.8.24

Цена €⁄ штука	Матери- ал	Ориен- тация	Диа- метр, мм	Тол щи- на, мкм	По- верх- ность	Удельное сопро- тивле- ние, Ом· см	Концен- трация носите- лей за- ряда, см ⁻³	Под- виж- ность, см ² /В· с	Плот- ность дисло- каций, см ⁻²
200.0 0	SI InP:Fe	[100]	50	400	P/E	3.2E7	$8.4 \cdot 10^7$	2,300	$7.5 \cdot 10^4$
200.0 0	SI InP:Fe	[100- 2°]	50	350	P/E	>1E7	EJ Flats		$< 5.10^{4}$
170.0 0	n-type InP:-	[100]	50	400	P/E	0.254	$6.2 \cdot 10^{15}$	3,980	$4.9 \cdot 10^4$

Компания по продаже полупроводниковых InP материалов (<u>www.waferworld.com</u>) предлагает следующее:

Таблица 1.8.25

Ме- тод	Диа- метр.	Тип	Ори- ента- ция	Удель ное сопро- про- тив- ление	Толщи- на	По- верх ность	Класс	Раз- мер	Цена
VGF	150.0	SI	(100)	$1.0 \cdot 10^7$	600-650	P/P	Test	5	\$1,000.00
VGF	150.0	SI	(100)	$1.0 \cdot 10^7$	600-650	P/P	Test	25	\$2,500.00
VGF	150.0	SI	(100)	$1.0 \cdot 10^7$	600-650	P/P	Test	100	\$10,000.00
VGF	150.0	SI	(100) off 2° <110>	$\begin{array}{c} 1.0 \\ \cdot 10^8 \end{array}$	650-700	P/P	Epi	5	\$2,500.00
VGF	150.0	SI	(100) off 2° <110>	$\begin{array}{c} 1.0 \\ \cdot 10^8 \end{array}$	650-700	P/P	Epi	25	\$8,750.00

Параметры монокристаллических полупроводниковых соединений типа A^{II}B^{VI}, выпускаемых различными компаниями.

Компания по продаже полупроводниковых материалов

(<u>http://www.waferworld.com</u>) предлагает следующие материалы:

CdS

Отклонение от точной ориентации: $\pm 0.30^{\circ}$

Отклонение боковых размеров: ± 0.1 mm

Отклонение от точной толщины: ± 0.50 мкм

Шероховатость поверхности : Ra < 5Å

Ровность поверхности: <1 мкм/см параллельность в пределах 1°.

MP: 1287 d: 4.821

MS: 1"x 40mm

Структура: гексагональная, а= 4.1367 с=6.7161

Таблица 1.8.26

Me-	Диа-	Ти	При-	Ориента-	Удель-	Тол-	Поверх	Класс	Раз-	Цена
тод	метр	П	месь	ция	ное со-	щина	верх-		мер	
					против-		ность			
					ление					
	5 X			(0001)		475-	D/E		1	\$250.0
	5			(0001)		525	Γ/E	FRIME	1	0

CdTe

Отклонение от точной ориентации: $\pm 0.30^{\circ}$

Отклонение боковых размеров: ± 0.1 mm

Отклонение от точной толщины: ± 0.50 мкм

Шероховатость поверхности : Ra < 5Å

Ровность поверхности: <1 мкм/см параллельность в пределах 1°.

MP: 1287 d: 4.821

MS: 1"x 40mm

Структура: кубическая, а= 6.483

Таблица 1.8.27

Me-	Диа-	Ти	При-	Ориента-	Удель-	Тол-	Поверх	Класс	Раз-	Цена
тод	метр	П	месь	ция	ное со-	щина	верх-		мер	
					против-		ность			
					ление					
	10 X			(111)		475-	D/E		1	\$500.0
	10			(111)		525	Γ/E	FNIME	I	0

ГЛАВА II

ДИФФУЗИЯ, РАСТВОРИМОСТЬ И ЭНЕРГЕТИЧЕСКИЕ УРОВНИ РАЗЛИЧНЫХ ПРИМЕСЕЙ В ПОЛУПРОВОДНИКАХ ВВЕДЕНИЕ

В отличие от металлов, электрофизические, оптические и контактные свойства полупроводников очень чувствительны к наличию примесных атомов и других дефектов кристаллической решетки. Чистый полупроводниковый материал (где концентрация примесных атомов сравнима с концентрацией собственных носителей заряда) принято называть собственным полупроводником, обладающим достаточно высоким удельным сопротивлением при комнатной температуре (табл. 2.1.1). Такие полупроводники в основном представляют научный интерес. При разработке различных микроэлектронных приборов необходим полупроводниковый материал, который содержит примесные атомы в широком интервале концентрации $N=10^{13}\div10^{19}$ см⁻³. Наличие таких примесных атомов позволяет управлять удельным сопротивлением и типом проводимости.

Легирование полупроводниковых материалов примесями с необходимой концентрацией является одной из основных и важной технологической операцией в электронике.

В настоящее время существует 4 способа легирования полупроводниковых материалов: **1** – легирование материала в процессе выращивания. Этот способ позволяет получить однородно легированные монокристаллы различных размеров. Данный способ в основном применяется для получения однородно легированных полупроводниковых монокристаллических слитков, которые в дальнейшем используются как базовый материал для создания различных электронных приборов. **2** –диффузионное легирование, которое является основным способом для создания различных приборов в планарной технологии. **3** – легирование материала методом имплантации ионов примесных атомов высокой энергии (до несколько сотен кэВ). Этот метод позволяет внедрять примесные атомы в очень тонкую поверхностную область материала (в зависимости от энергии ионов от 10 Å до несколько сотен Å). При этом поверхностная

78

область полупроводника легируется неоднородно и нарушается её кристалличность (т.е. происходит аморфизация кристаллической решетки). Для восстановления поверхностных состояний и активизации примесных атомов необходим дальнейший низкотемпературный отжиг (T~600÷900°C) или отжиг с помощью концентрированного излучения. Этот метод позволяет, в отличие от диффузионного легирования, вводить примесные атомы с неограниченной концентрацией. Данный метод применяется при разработке отдельных классов приборов, но не является доступным для всех примесных атомов. **4** –**радиационное легирование**. Этот способ основан на облучение кремния быстрыми нейтронами в реакторе, при котором часть атомов Si²⁸ превращается в атомы фосфора. Данный способ позволяет осуществлять однородное легирование и используется только для очень узких специальных задач.

Таблица 2.1.1

Материал	Собственное удельное сопро-	Собственная концентрация носи-			
marephasi	тивление при Т=300 К, Ом.см	телей заряда при Т=300 К, см ⁻³			
Ge	47	$2,3 \cdot 10^{13}$			
Si	$2,3.10^{5}$	$1,45 \cdot 10^{10}$			
GaAs	10 ⁸	$1,8.10^{6}$			
InP	$6 \cdot 10^8$	4.10^{7}			
CdTe	5.10^{9}	$1,2.10^{6}$			

Параметры собственных полупроводниковых материалов

§2.1 ДИФФУЗИОННЫЕ ХАРАКТЕРИСТИКИ ПРИМЕСЕЙ В ПОЛУ-ПРОВОДНИКАХ

Как известно, диффузия происходит, когда существует градиент концентрации частиц. Диффузия описывается законами Фика. Первый закон Фика описывается выражением:

$$j = -D\frac{dN}{dx}$$
(1)

где j – поток частиц (N) пересекающих (диффундирующих) в единицу времени единичную площадку в направление x, связанный с градиентом концентрации $\frac{dN}{dx}$. Величина D – коэффициент диффузии диффундирующих частиц.

Концентрация диффундирующих частиц при заданном времени и определённом расстоянии рассчитывается вторым законом Фика

$$\frac{dN}{dt} = D\frac{d^2N}{dx^2}.$$
 (2)

Диффузию примесей в полупроводник осуществляют из газовой фазы (если давление паров достаточно) или из напылённого слоя на поверхность материала. Основным параметром в процессе диффузии является коэффициент диффузии примеси D, величина которого зависит от температуры по закону:

$$D = D_0 \exp\left(-\frac{Q}{kT}\right) (3)$$

где Q –энергия активации примеси, показывающая необходимую энергию для перескока примесного атома в решетке из одного равновесного состояния в другое (из одного узла кристаллической решетки в другой узел, или из одного междуузлия в другое). Используя кинетическую теорию газов, коэффициент диффузии атомов в твердых телах можно записать в следующем виде:

$$D \approx \frac{1}{6} \frac{\delta^2}{\tau_0} \quad (4)$$

где δ - расстояние между ближайшими равновесными положениями атомов (расстояние между двумя узлами или междуузлями), τ₀ – постоянная, по порядку величины равная периоду собственных колебаний атомов в узлах кристаллической решетки (~ 10^{-12} с). Величина Q, в зависимости от физических параметров примесного атома (структуры электронной оболочки, атомного и ковалентного радиуса атома) меняется в очень широком интервале (табл. 2.1.2). Обычно диффузия примесных атомов в полупроводниках происходит в условиях диффузии из постоянного источника (при диффузии концентрация примесных атомов на поверхности материала, или в среде, где идет диффузия не меняется) или диффузии из ограниченного источника (в процессе диффузии, со временем, концентрация примесных атомов на поверхности кристалла уменьшается).

Решение уравнения (2) для диффузии из постоянного источника дает следующее распределение концентрации примесных атомов по глубине кристалла:

$$N(x,t) = C_s erfc\left(\frac{x}{2\sqrt{Dt}}\right) (5)$$

в случае диффузии из ограниченного слоя:

$$N(x,t) = \frac{S}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$
(6)

где t – время диффузии, x – расстояния от поверхности, D коэффициент диффузии при данной температуре.

Если коэффициент диффузии примесей при данной температуре известен и известно время диффузии, то можно определить максимальную глубину проникновения примесей L при диффузии:

$$L = 2\sqrt{Dt} \quad (7)$$

В данном параграфе нами приведены ионные и ковалентные радиусы примесных атомов, значения коэффициентов диффузии примесей в различных полупроводниках, значения энергии активации Q и предэкспоненциальные постоянные (D_0) для многих примесей , что позволит читателю определить коэффициент диффузии примесей при любой температуре согласно формуле (3), где $k = 8,6 \cdot 10^{-5}$ эB/K, T – температура в кельвинах. В последнее время очень широко используются пленочные многоструктурные приборы различного назначения.

При этом основной способ получения таких структур является создание на основе (подложки) монокристаллических пластинок эпитаксиальных слоев как монокристаллического, так и поликристаллического характера различной толщины. Как показали результаты исследований последних лет, механизм и коэффициент диффузии, а также растворимость примесей в таких эпитаксиальных структурах существенно отличаются от объемных полупроводниковых материалов. Поэтому нами в конце данного параграфа приведены существующие данные по диффузии в эпитаксиальных слоях.

Таблица 2.1.2

Эффектирице зналения ралиусов	(dá)	
Эффективные значения радиусов ((BA)	

Элемент	Ионный	Тетраэдрический	Металлический	Ван – дерва-
	радиус	ковалентный ра-	радиус	альсов радиус
		диус		
Li	068 (Li ⁺)	0,68	1,58	
			1,52	
Na	$0,9 (Na^{+})$		1,92	
			1,86	
Κ	1,33 (K ⁺)		2,38	
			2,31	
Pb	$1,49 (Pb^{+})$		2,53	
			2,43	
Cs	$1,65 (Cs^+)$		2,72	
			2,62	
Be	$0,34 (Be^{2+})$	(0,975)	1,12	
			1,07	
Mg	$0,74 (Mg^{2+})$	(1,301)	1,60	
_			1,55	
Ca	$1,04 (Ca^{2+})$	(1,333)	1,97	
			1,91	
Sr	$1,20 (\mathrm{Sr}^{2+})$	(1,689)	2,15	
			2,07	
Ba	$1,38 (Ba^{2+})$		2,24	
			2,17	
	$0,78 (Ti^{2+})$		1,47	
Ti	$0,69 (Ti^{3+})$		1,42	
	0,64 (Ti ⁴⁺)			
Zr	$0,82 (Zn^{4+})$		1,60	
			1,54	
Та	$0,66 (Ta^{5+})$		1,49	
			1,44	
	$0,83 (Cr^{2+})$		1,30	
Cr	0,64 (Cr ³⁺)		1,26	
	0,35 (Cr ⁶⁺)			
М.	$0,68 (Mo^{6+})$		1,39	
IVIO	$0.65 (Mo^{6+})$		1,36	

Элемент	Ионный	Тетраэдрический	Металлический	Ван – дерва-
	радиус	ковалентный ра-	радиус	альсов радиус
		диус		
W 7	$0,68 (W^{4+})$		1,41	
w	$0,65 (W^{6+})$		1,37	
	$0.91 (Mn^{2+})$		1,27	
Mn	$0,70 (Mn^{3+})$		1,24	
	$0,52 (Mn^{4+})$			
Ea	$0,80 (Fe^{2+})$		1,26	
re	$0,67 (Fe^{3+})$		1,23	
Ca	$0,78 (Co^{2+})$		1,25	
Co	$0,64 (Co^{3+})$		1,22	
Ni	0,74 (Ni ²⁺)		1,25	
			1,22	
Pd	$0,64 (Pd^{4+})$		1,37	
			1,34	
Pt	$0,64 (Pt^{4+})$		1,39	
			1,35	
Cu	$0,98 (Cu^{+})$	(1,225)	1,28	
Cu	0,80 (Cu ²⁺)	1,35	1,24	
Ag	$1,13 (Ag^{+})$	1,53, (1,405)	1,44	
			1,40	
Au	$1,37 (Au^{+})$	1,50	1,46	
			1,42	
Zn	$0,83 (Zn^{2+})$	1,31, (1,225)	1,37	
			1,32	
Cd	$0,99 (Cd^{2+})$	(1,405)	1,54	
			1,49	
Hg	$1,12 (Hg^{2+})$		1,57	
			1,52	
В	$0,20 (B^{3+})$	0,88, (0,853)		
Al	$0,57 (Al^{3+})$	1,26, (1,230)	1,43	
			1,39	
Ga	$0,62 (Ga^{3+})$	1,26, (1,225)	1,53	
			1,48	
In	$0,92 (In^{3+})$	1,44, (1,405)	1,67	
			1,62	
T1	$1,49 (Tl^{+})$		1,71	
	$1,05 (Tl^{3+})$	147	1,66	
C	$0,2(C^{4+})$	0,77, (0,774)		
	$2,60 (C^{4})$			
Si	0,39 (Si ⁴⁺)	1,17, (1,173)		

Элемент	Ионный	Тетраэдрический	Металлический	Ван – дерва-
	радиус	ковалентный ра-	радиус	альсов радиус
		диус		
Ge	$0,65 (Ge^{2+})$	1,22, (1,225)		
	$0,44 (Ge^{4+})$			
Sn	$1,02 (Sn^{2+})$	1,40, (1,405)	3,06	
	$0,67 (Sn^{4+})$		3,17	
Pb	$1,26 (Pb^{2+})$	1,46	3,42	
	$0,76 (Pb^{4+})$			
Ν	$0,15 (N^{5+})$	0,70, (0,719)		1,5
	$1,48(N^{3})$			
Р	$0,35 (P^{5+})$	1,10, (1,128)		1,9
	$1,86 (P^{3})$			
As	$0,69 (As^{3+})$	1,225, (1,18)		
	$1,91 (As^{3})$			2,0
Sb	$0,90 (Sb^{3+})$	1,36		2,2
	$0,62 (Sb^{5+})$	(1,405)		
	$2,08 (Sb^{3})$			
Bi	$1,20 (Bi^{3+})$	1,46		
	2,13 (Bi ³⁻)			
0	$1,36(0^{2+})$	(0,678)		1,40
S	$1,82~(S^{2+})$	(1,127)		1,85
Se	$1,93 (Se^{2+})$	(1,225)		
	$0,69 (Se^{4+})$			
	$0,35 (Se^{6+})$			2,00
Те	2,1 (Te ²⁻)	(1,405)		2,20
	$0,89 (Te^{4+})$			
Cl	1,18 (Cl ⁻)	(1,127)		1,80
				1,95
Br	1,96 (Br ⁻)	(1,225)		2,05
Ι	2,20 (ľ)	(1,405)		

Элемент	Q, 9B		D ₀ , см ² /сек		
	По дан-	По другим	По данным	По другим дан-	
	ным [18]	данным	[18]	НЫМ	
1	2	3	4	5	
Li	0,465	0,5	$1,3.10^{-4}$	$25 \cdot 10^{-4}$	
		0,57	—	9,1.10-3	
Cu	0,18		1,9.10-4	_	
Ag		1,0		4,4.10-2	
Au		2,5		$2,15 \cdot 10^{-2}$	
Zn	2,8	2,5-2,16	10,0	$5,7.10^{-2}$	
В	4,6		1,6·10 ⁻⁹	—	
Ga	3,14	2,5	40,0		
Al		2,7		0,05	
In	2,41	2,5-2,16	0,03	0,03	
Ge		3,2	—	87	
Sn	—	1,9	—	$1,7.10^{-2}$	
Pb		3,6		—	
Р	2,48	—	2,5	—	
As	2,42	2,5-2,25	6,3	0,7—11,3	
Sb	2,42	2,5-2,25	4,0	0,7—10	
Fe		11		0,13	
Ni		0,9		0,8	
0		2,02	—	0,17	
Не		0,7		$6, 1 \cdot 10^{-3}$	
Н	—	0,38		$2,7.10^{-3}$	
Та		1,16		$2,5 \cdot 10^{-6}$	
		2,86		0,2	
Be		2,5		0,5	
Со		1,1		0,16	
N		2,58			
Bi		2,42			

Диффузионные параметры примесей в германии

Таблица 2.1.4

Элемент	D ₀ , см ² /сек	Q, эВ	ΔΤ	Метод
1	2	3	4	5
	3			_
Н	9,4·10 ⁻³	0,48	967÷1207	5
Li	4,4.10-3	0,78	450÷1000	2
	$2,3.10^{-3}$	0,65	360÷860	4
	$2,2.10^{-3}$	0,70	420÷800	1
	$2,5 \cdot 10^{-3}$	0,66	25÷125	
			80÷1350	4
	$2,65 \cdot 10^{-3}$	0,62	400÷500	3
Cu	4.10^{-2}	1,0	800÷1100	1
	$4,7.10^{-3}$	0,43	400÷700	2
Ag	2,0.10-3	1,59	1100÷1350	1
Au	$1,1.10^{-3}$	1,11	800÷1200	1
	2,44.10-4*	0,38	700÷1300	1
	2,75·10 ^{-3 **}	2,0		
Na	1,65·10 ⁻³	0,72	520÷820	2
Κ	1,1.10-3	0,75	530÷790	2
Zn	0,1	1,4	980÷1270	4
В	10,5	3,66		2
	3,2	3,5		2
	17,1	3,66		2
	15,8	3,7		2
	10,7	3,64		2
	25	3,51		2
	6·10 ⁻⁷	1,68	700÷1150	1
Al	8	3,45		2
	4,8	3,34	1100÷1400	2
	2800	3,77		2
Ga	3,6	3,49		2
	270	4,15		2
	2,1	3,5		2

Диффузионные параметры примесей в кремнии

Элемент	D ₀ , см ² /сек	Q, эВ	ΔΤ	Метод
In	16,5	3,89		2
	19,4	3,86		1
Те	16,5	3,88		2
Sn	32	425	1050÷1200	1
C	0,33	2,92	1070÷1400	1
Si	1800	4,86	1220÷1400	1
	9000	5,14	1100÷1300	1
Ge	6,26·10 ⁵	5,28	1150÷1350	1
Р	10,5	3,66		2
	29	3,88		1
As	0,32	3,55		2
	68,6	4,25		2
Sb	5,6	3,92		2
	12,9	3,95		1
Bi	1030	4,6		2
0	0,21	2,55		2
		3,5		2
S	0,92	2,2	1050÷1360	2
Cr	0,01	1	900÷1250	
Fe	1,6.10-3	0,65	1000÷1300	
Не	0,11	1,26		1
Se	0,9	2,44	1000÷1300	3
Mn	2,6.10-1	1,3	1000÷1300	1
Ni	2,3.10-3	0,47	1000÷1300	1
Со	8,5.10-4	0,51	1000÷1300	4

Таблица 2.1.5

Элемент	D ₀ , см ² /сек	Q, 9B	ΔΤ	Метод			
AlSb							
Al		1,8					
Sb		1,5					
Zn	0,33	1,93	660÷860	Меченые атомы			
Cu	3,5.10-3	0,36	150÷500	>> >>			
	•	InAs	·				
In	6.10^{5}	4	740÷900	Меченые атомы			
As	3.10^{7}	4,47	740÷900	>> >>			
Cu	0,036	0,52					
Cu	$2,2.10^{-2}$	0,54	600÷900	>> >>			
Ag	7,3.10-4	0,26	460÷900	>> >>			
Au	5,8·10 ⁻³	0,65	600÷900	>> >>			
Mg	$1,98 \cdot 10^{-6}$	1,17	600÷900	р–п - переход			
Zn	3,11.10-3	1,17	600÷900	>>			
	$4,2.10^{-3}$	0,96±0,02	600÷900	Меченые атомы			
Cd	4,35.10-4	1,17	600÷900	р–п - переход			
	7,4.10-4	1,15±0,03	600÷900	р–п - переход			
Ge	3,74.10-6	1,17	600÷900	>>			
Sn	1,49.10-6	1,17	600÷900	>>			
S	6,78	2,2	600÷900	>>			
Se	12,55	2,2	600÷900	>>			
Те	3,43.10-5	1,28	600÷900	>>			
Р	1,26.10-2	2,7±0,2	650÷900	p/a			
Al	4,3.10-4	1,17	650÷900	p/a			
	•	GaSb					
Ga	$3,2.10^3$	3,15	658÷700	Меченые атомы			
Sb	$3,4.10^4$	3,45	658÷700	>> >>			
Sb	8,7.10-3	1,13	320÷650	>> >>			
In	1,2.10-7	0,53					
Sn	$2,4.10^{-5}$	0,80	320÷650	>> >>			
Те	3,8.10-4	1,2	320÷650	>> >>			
Cd	1,5.10-6	0,72	500÷640	р–п – переход			
Li	0,12	0,7	800	Меченые атомы			

Диффузионные параметры примесей в соединениях $\mathbf{A}^{III}\mathbf{B}^V$

Элемент	D ₀ , см ² /сек	Q, 9B	ΔΤ	Метод				
GaSb								
	2,3.10-4	1,9	>800° C					
Cu	$3,2\cdot10^{3}$	3,15	300÷700					
Mg	$3,4.10^4$	3,44	300÷700					
Ni	8,7.10-3	1,13	300÷700					
Se	3,8.10-4	1,2	300÷700					
	I	InP						
In	1.10^{5}	3,85÷0,05	850÷100	Меченые атомы				
Р	7.10^{10}	5,65÷0,06	850÷1000	>> >>				
Au	$1.32 \cdot 10^{-5}$	0.48÷0.01	600÷820	>> >>				
Au	$1.37 \cdot 10^{-4}$	0,73	600÷900	>> >>				
Ag	3.6.10-4	0,59÷0,03	500÷900	>> >>				
Cu	3.8.10-3	0,69÷0,02	600÷900	>> >>				
Cd	$1.1 \cdot 10^{-7}$	0,725	700÷900	р–n – переход				
Zn	1.6.10-8	0,3						
	7	InSb						
In	$1.8 \cdot 10^{-9}$	0,28	300÷500	Меченые атомы				
	0,3	1,75	455÷500	>> >>				
	5.10^{-2}	1,82	478÷520	>> >>				
Sb	$1,4.10^{-4}$	3,75	300÷500	>> >>				
	5.10-2	1,94	478÷520	>> >>				
Cu	$3,5.10^{-5}$	0,37	230÷490	>> >>				
Ag	10 ⁻⁷	0,25	440÷510	>> >>				
Au	7.10^{-4}	0,32	140÷510	>> >>				
Li	7.10^{-4}	0,28						
Hg	4.10^{-6}	1,17	425÷500	>> >>				
Cd	10 ⁻⁵	1,1	250÷500	>> >>				
	1.26	1,75	400÷500	>> >>				
	10 ⁻⁹	0,52	434÷519	>> >>				
	$1,3.10^{-4}$	1,2		р–n-переход				
Zn	$2,6\cdot10^{-2}$	1,36	400÷500	Меченые атомы				
	$6,32 \cdot 10^8$	2,61÷2,47	400÷500	>> >>				
	5,5	1,6		р–n-переход				
	$1,4.10^{-7}$	0,86	390÷512	p/a				
	0,5±0,4	1,35±0,05	362÷508	>>				
	$1,6.10^{6}$	2,3±0,3	350÷500	p–n-переход				

Элемент	D ₀ , см ² /сек	Q, эВ	ΔΤ	Метод
Sn	1,3.10-6	0,65	300÷500	Меченые атомы
	$5,5\cdot10^{-8}$	0,75	390÷512	>> >>
Ge	5.10^{-6}	0,95	325÷495	>> >>
S	4.10^{-5}	1,05	200÷450	>> >>
Se	$1,6\cdot 10^{-2}$	1,3	200÷450	>> >>
	1,6	1,87	380÷500	Емкостной
	$1,7.10^{-7}$	0,57	300÷500	Меченые атомы
	10 ⁻⁶	0,8	300÷500	>> >>
Со	$2,7\cdot10^{11}$	0,39	300÷450	>> >>
	10 ⁻⁷	0,25	425÷500	>> >>
Fe	10 ⁻⁷	0,25	440÷510	>> >>
Те	6610 ⁻⁵	1,19	440÷510	Емкостной
S	0,09	1,4	360÷500	>> >>
		GaP		
Zn	1,0	2,1		Меченые атомы
	$2,56 \cdot 10^{-19}$	1,12	600÷900	
	0,739			
	$7,5\cdot10^{-8}$	2,5	900	>> >>
	0,45			
	$(N>10^{18})$			
S	$3,2.10^{3}$	4,7	1100÷1300	>> >>
	1 7	GaAs	1	
Ga	10'	5,6	1100÷1225	Меченые атомы
As	4.10^{4}	10,2	1100÷1225	>> >>
Li	0,53	1,0	250÷500	Спектральный
				анализ, электри-
	1 (10-3	0.0.0.1		ческие измерения
	$1,6\cdot10^{-5}$	0,6±0,1		Меченые атомы
	$6 \cdot 10^{-2}$	0,98±0,06	450÷750	Ультразвук
Au	10 5	1,1±0,1	$590 \div 1055$	Меченые атомы
Ag	4.10^{-4}	0,8±0,05		>> >>
Ве	7,3.10	1,2		
Mg	4.10-3	1,22	800 ÷ 1000	электрические
				измерения

Элемент	D ₀ , см ² /сек	Q, 3B	ΔΤ	Метод
Cd	1,3.10-3	2,2	800 ÷ 1100	электрические
				измерения
	$5 \cdot 10^{-2}$	2,43	860 ÷ 1150	Меченые атомы
	$5 \cdot 10^{-2}$	2,8	900 ÷ 1100	электрические
	-			измерения
Zn	3.10-7	1,0	800 ÷ 1100	электрические
				измерения
	15	2,49	677 ÷ 903	Меченые атомы
	8·10 ⁻⁵	1,1	$880 \div 1140$	>> >>
	15	2,5	880 ÷ 1140	
Ge	$3 \cdot 10^{-5}$	1,8		
	7,5	3,6	1050 ÷	>> >>
			1140	
Sn	$6 \cdot 10^{-4}$	2,5	1000 ÷	>> >>
			1200	
S	1,6	2,8	900 ÷ 1075	>> >>
	6.10^{-5}	2,6	900 ÷ 980	
	4.10^{3}	4,04	1000 ÷	электрические
			1200	измерения
	$1,85 \cdot 10^2$	2,6	800 ÷ 1200	Меченые атомы
	2,6.10-5	1,86	900 ÷ 1100	р–п-переход
Se	3.10^{3}	4,16		
Mn	0,65	2,49	$700 \div 1000$	>> >>
Те	$2,6\cdot10^{-5}$	2,0	1000 ÷	>> >>
			1100	
Р	7.10^{10}	5,65		

Соединение	Примесь	T, °C	D ₀ , см ² /сек	Q, эВ	Примечание
CdS	Cd	750÷1150	3	2,0	При насыщенном давлении паров кадмия
		400÷730	$1,1.10^{-5}$	0,62	Для междоузельного кадмия
	S	—	_	2	
	Cu	400÷730	$1,5.10^{-3}$	0,76	Анизотропия диффузии отсутствует
		380÷500	25	1,2	
		146÷400	$2 \cdot 10^{3}$	0,96	Параллельно оси с
	Ag	300÷500	0,24	0,8	В области малых концентраций серебра
			25	1,2	В области промежуточных концентраций серебра
	Au	500÷800	200	1,8	При давлении паров кадмия 500 торр
	Li	610÷960	3.10^{-6}	0,68	
CdSe	Cd		6.10^{-5}	0,99	В парах кадмия
	Se	950÷1430	$1,3.10^{5}$	4,43	При давлении паров кадмия 1 ат (D~P _{Cd} ⁻¹)
	Р	800÷1000	—	2,1	При насыщенном давлении паров кадмия
CdTe	Cd		3,26	2,67	В образцах, отожженных в парах кадмия
			1,58	2,44	В образцах, отожженных в парах кадмия
			1,37	0,67	
	Se	680÷900	$1,7.10^{-4}$	1,35	При наличии примеси Al (5·10 ¹⁷ см ⁻³)
	In	450÷1000	$4,1\cdot10^{-2}$	1,6	
	Au	330÷720	67	2	В атмосфере азота
	Ag		10÷100	0,61	
	Cu	97÷300	$3,7\cdot10^{-4}$	0,67	Диффузия из омического контакта

Диффузионные параметры примесей в соединениях А^{II}В^{VI}

Соединение	Примесь	Т, °С	D ₀ , см ² /сек	Q, əB	Примечание
ZnS	Zn	900÷930	3.10-4	1,52	В образцах, отжигавшихся при давлении паров
					цинка 1 ат
		940÷1030	1,5.10 ⁻⁴	3,26	То же
		1030÷1075	10 ¹⁶	6,52	То же
	S	700÷890	—	3,4	P _s =0,5 ат. Предварительный отжиг при насыщенном
					давлении паров цинка в течении 2 суток
ZnSe	Zn	720÷810	10 ¹³	3,45	В поликристалле
	Al		_	2	
	Cu	200÷570	1,7.10 ⁻⁵	0,56	В чистом и в легированном хлором материале
ZnTe	Zn	782÷950	10 ⁻²	1,9	При наличии примеси Al (10 ¹⁹ см ⁻³)
			14	2,69	Ниже 950° С в чистом материале и выше 950° С не-
					зависимо от А1
	Te	730÷1000	$2 \cdot 10^{-4}$	3,8	В образцах, отожженных в парах теллура
	Al		—	2	
HgTe	Cd	250÷ 350	3,1.10 ⁻⁴	0,69	В вакууме
	Hg			0,59	

Таблица 2.1.7

$P_0 \times 10^{-18}$, cm ⁻³	T, °C	t, мин.	δ _{рп} , мм	$n_{\infty} \cdot 10^{-19}$, см ⁻³	$D_1 \cdot 10^7$,	$D_2 \cdot 10^7$,			
					см ² /сек	см ² /сек			
Чистый PbS ($p_0 = N_v^+$)									
3	100	180	0,65	3	3,9	3,9			
3	100	180	0,50	3	2,3	3,9			
1	150	60	0,90	3	7,5	5,0			
1	150	60	0,75	3	5,3	3,5			
0,7	200	60	0,40	2	1,5	1,0			
0,1	250	30	1,95	3	55	33			
1	250	30	1,0	3	20	13			
2	300	10	0,75	3	30	67			
1	350	5	1,10	2	165	120			
1	350	5	0,9	2	135	100			
1	400	10	1,8	2	270	200			
		PbS+Ag	$(p_0 = N)$	$_{Ag}^{+} = 10^{18} \text{ cm}^{-3}$					
	100	60	0,70	3	2,3	5,3			
	100	60	0,60	3	1,7	39			
	150	60	1,00	2	6,9	17			
	150	60	0,92	2	5,9	15			
	200	60	1,09	1,5	11	22			
	200	30	0,85	2	10	25			
	300	10	0,96	1,5	53	106			
	350	5	1,45	2	175	440			
	350	5	1,50	2	190	470			

Диффузия меди в сульфиде свинца

Для удобства в определении коэффициента диффузии или растворимости примесей в полупроводниках в таблице 2.1.7 приведены значения kT в эB, при различных температурах

Таблица 2.1.8

Т, °К	kT, эВ	Т, ⁰К	kТ, эВ	Т, ⁰К	kT, эВ	Т, °К	kТ, эВ
250	0,0215	450	0,0559	1050	0,0903	1450	0,1247
300	0,0258	700	0,0602	1100	0,0946	1500	0,1290
350	0,0301	750	0,0645	1150	0,0989	1550	0,1333
400	0,0344	800	0,0688	1200	0,1032	1600	0,1376
450	0,0387	850	0,07310	1250	0,1075		
500	0,0430	900	0,0774	1300	0,1118		
550	0,0473	950	0,0817	1350	0,1161		
600	0,0516	1000	0,086	1400	0,1204		

Значение kT в зависимости от температуры в электрон – вольтах

Пример расчета: $D = D_0 \exp\left(-\frac{Q}{kT}\right)$

где D₀=10⁻⁵см²/сек; Q=2,45 тогда
$$D = 10^{-5} \exp\left(-\frac{2,45}{kT}\right)$$

при Т=1000° К

$$D = 10^{5} \exp\left(-\frac{2,45}{0,086}\right) = 10^{-5} \exp\left(-28,49\right) = 10^{5} \cdot 10^{-12,38} = 10^{5} \cdot 4,110^{-13} = 4,1 \cdot 10^{-8} \text{ cm}^{2}/\text{cek}$$

Так как 28,49:2,3=12,38 это переход от натурального логарифма к десятичному логарифму.

Рис. 2.1.1. Температурная зависимость коэффициентов диффузии элементов переходной группы в кремнии

Рис. 2.1.2 Температурные зависимости коэффициентов диффузии примесей в кремнии при низком содержании примесей.

Рис. 2.1.3. Температурная зависимость коэффициента диффузии различных элементов в кремнии (согласно Landolt - Bornstein).

Рис. 2.1.4. Коэффициенты диффузии различных элементов в GaAs в области малых концентраций.

[* - измерения проводились в отсутствие избыточного давления паров мышьяка;

** - измерения проводились под давлением паров мышьяка 8,5 · 10⁻³ *атм. -Прим.* перев.]

Рис. 2.1.5 Зависимость коэффициентов диффузии D серы и селена в арсениде галлия от температуры T. Константы в уравнении D=D₀e^{-E/kT} равны: для серы E = 4,04 эB и D₀ = $4 \cdot 10^3$ см²/сек и для селена E = 4,16 эB и D₀ = $3 \cdot 10^3$ см²/сек

Рис. 2.1.6. Зависимость коэффициентов диффузии D кадмия в арсениде галлия от температуры T. Константы в уравнении D=D₀e^{-E/kT} равны: E = 2,43 эB и D₀ = 0,05 см²/сек. $D_{Cd} = 5 \cdot 10^{-2} \exp\left(-\frac{2,43}{kT}\right)$

Рис. 2.1.7. Температурная зависимость коэффициента диффузии цинка в арсениде галлия при его диффузии из электролитически нанесенного слоя на поверхность арсенида галлия. Константы в уравнении D=D₀e^{-E/kT} равны: E =

2,49 эВ и D₀ = 15 см²/сек.
$$D_{\mathcal{A}m} = 15 \exp\left(-\frac{2,49}{kT}\right)$$

Рис. 2.1.8. Зависимость коэффициентов диффузии D галлия (1) и мышьяка в арсениде галлия от температуры T. Константы в уравнении D=D₀e^{-E/kT} равны: для галлия E = 5,6 эВ и D₀ = 1·10⁷ см²/сек и для мышьяка E = 10,2 эВ и D₀ = 4·10²¹ см²/сек. $D_{Ge} = 1·10^7 \exp\left(-\frac{5,6}{kT}\right), D_{As} = 4·10^{21} \exp\left(-\frac{10,2}{kT}\right)$

Рис. 2.1.9. Температурные зависимости коэффициентов диффузии примесей в германии.

Рис. 2.1.10. Температурная зависимость коэффициентов диффузии примесей в InSb в области малых концентраций (за исключением случаев, отмеченных на фигуре).

**-при концентрации 2 \cdot 10²⁰ см⁻³; †-материал не содержит дислокации; *-плотность дислокаций равна 10⁴ см⁻³.

§2.1.1 ДИФФУЗИОННЫЕ ПАРАМЕТРЫ ПРИМЕСЕЙ В ЭПИТАКСИАЛЬНЫХ СТРУКТУРАХ

Под эпитаксией понимают ориентированный рост кристаллического слоя вещества на поверхности другого кристалла (подложки) с воспроизведением кристаллической ориентации подложки или с другой строго заданной ориентацией кристаллической решетки слоя относительно кристаллографической плоскости поверхности подложки. В последнее время очень широко исследуются многослойные пленочные структуры, полученные методом эпитаксии на основе полупроводниковых соединений $A^{III}B^V$, Так как на базе таких многослойных структур в настоящее время разрабатывается широкий класс функциональных приборов, лазеров, фотоэлементов и др.

Управление свойствами таких структур в основном определяется распределением концентрацией и диффузией примесных атомов. В связи с этим здесь приведены существующие экспериментальные данные коэффициентов диффузии и распределение примесей в пленочных структурах.

Таблица 2.1.1.1

Материал	Примесь	Т, С	D ₀ , см ² /сек	Q, эВ
Эпислой, де-				
фекты упа-	Sb^{124}	950 - 1200	$1,3.10^{-5}$	1,2
ковки				
Эпислой	Sb^{124}	1000 - 1200	10,5	3,47
Объемный	Sb^{124}	1190 - 1398	12,9	3,98
кристалл	Sb	1050 - 1350	5,6	3,95
Эпислой,	Sb^{124}	1000 - 1250	7,9	3,97
плотность				
дислокаций:				
$10^3 \div 10^4 \text{ cm}^{-2}$				
$(3\div 6)\cdot 10^6 \mathrm{cm}^{-2}$	\mathbf{Sb}^{124}	1000 - 1250	4,7	3,75
Эпислой	P^{32}	1130 - 1405	$7,4.10^{-2}$	3,3
Эпислой	В	1130 - 1405	$2,1\cdot 10^{-3}$	2,85
Эпислой	As	1167 – 1394	6,6·10 ⁻²	3,44
Эпислой	Sb	1190 - 1405	$2,1\cdot 10^{-1}$	3,65
Эпислой	Bi	1190 - 1394	1,08	3,85
Объемный кристалл	Р	1000 - 1350	10,5	3,69
	Al	1119 - 1390	1,385	3,41
	Ga	1143 - 1393	0,374	3,39
	In	1180 - 1398	0,785	3,63
	Tl	1244 - 1338	1,37	3,70

Параметры диффузии примесей в эпитаксиальном и объемном кремнии

Рис. 2.1.1.1 Температурная зависимость коэффициента диффузии сурьмы в кремнии.

1 – диффузия по дефектам упаковки эпислоя; 2 и 3 – в эпитаксиальном кремнии; 4- в объемном кристалле кремния

Материал	Примесь	T °C	D ₀ ,	ОэВ	Метод	
		1, C	см/сек	Q, 5D		
GaAs (эпислой)	$7n^{65}$	700 · 1050	$2,9.10^{-7}$	0,85	Меченые атомы	
GaAs (подложка)	Ζ.11	700÷1030	22	2,58	То же	
GaAs (эпислой)	Cd	800÷1050	4,5·10 ⁻³	2,45	Профили распределения носителей	
					тока	
Al _{0,3} Ga _{0,7} As (эпислой)	$7n^{65}$	650÷950	9,0	2,4	Меченые атомы, метод Матано,	
GaAs (подложка)	ΣΠ		2,0	2,2	$N=2.10^{18} cm^{-3}$	
In _{0,18} Ga _{0,82} As(эпислой)	Zn(P _{As} - равновесное)		1,3·10 ⁻⁵	1,15	p-n- переход	
	Р _{Аs} =0,1 атм		$1,3.10^{-3}$	1,6	То же	
	Р _{Аs} =1,0 атм	700÷950	$2,1.10^{-5}$	1,7	>> >>	
GaAs (подложка)	$Zn(P_{As}$ - равновесное)		$4 \cdot 10^{-6}$	1,2	>> >>	
InAs (подложка)	$Zn(P_{As}$ - равновесное)		$1 \cdot 10^{-3}$	1,1	>> >>	
In _{0,26} Ga _{0,74} As(эпислой)				2,77	>> >>	
In _{0,4} Ga _{0,6} As(эпислой)	Zn	629÷745		2,74	>> >>	
InAs (объемный кристал)	2.11			2,73	>> >>	
GaAs (подложка)				3,10	>> >>	
GaAs _{0,67} P _{0,33} (эпислой)	Zn	775÷1050	$4,5.10^{-3}$	1,04	>> >>	
Ga _{0,4} In _{0,6} Р (эпислой)	Zn	500÷900	1,9.10 ⁻⁵	0,9	Меченые атомы, метод Матано,	
					N=2·10 ²⁰ см ⁻³	

Параметры диффузии примесей в соединениях А^{ШВV} и их растворах (D=D₀exp(-Q/kT))

Рис.2.1.1.2. Зависимость коэффициентов взаимной диффузии D от температуры (1-3) и содержания алюминия в Al_xGa_{1-x}As (4-7). x – 0; 0,5 и 1,0 для 1 – 3 соответственно . T° C: 837, 937, 992 и 1088 для 4 – 7 соответственно.

Рис. 2.1.1..3. Концентрационные профили цинка в эпислое Al_xGa_{1-x}As (1) и в подложке GaAs (2). Т - 800° C, t=20 мин. Сплошные линии – erfc Z – функция.

Рис. 2.1.1.4. Температурная зависимость эффективного коэффициента диффузии $D_{э\phi}$ цинка в эпислоях $In_{0,18}Ga_{0,82}As$ при различных давлениях паров мышьяка.

1 – равновесное давление, 2 – р=0,1 атм, 3 – р=1 атм.

 $T^{-1} \cdot 10^3$, °K⁻¹

Рис. 2.1.1..5. Температурная зависимость эффективного коэффициента диффузии $D_{3\phi}$ цинка в эпислоях $In_xGa_{1-x}As$. 1, 2, 3 и 4 соответствуют x=0; 0,26; 0,4; 1,0

Рис. 2.1.1.6. Температурная зависимость коэффициента диффузии D и растворимости цинка N в эпислоях Ga_xIn_{1-x}P (x=0,4÷0,5).

Рис. 2.1.1.7. Концентрационные профили меди в Al_xGa_{1-x}As – GaAs – гетероструктурах. Т=950° C, t=70 сек., d – толщина; a – n – n, d=32 мкм; б – p – n, d= 50 мкм.; в – p – p, d=109 мкм; г – n – p, d=32 мкм.

Рис. 2.1.1.8. Концентрационные профили серебра в Al_xGa_{1-x}As – GaAs – гетероструктурах. a – d=33 мкм, 960° C, 70 сек.; б – 48 мкм, 960° C, 40 сек.; в – 48 мкм, 960° C,

40 сек.; г – 34 мкм, 960° С, 45 сек.;

Рис. 2.1.1.9. Концентрационные профили золота в Al_xGa_{1-x}As – GaAs – гетероструктурах. а – d=33 мкм, 960° C, 2 мин.; б – 62 мкм, 900° C, 1 мин.; в – 46 мкм, 900° C, 1 мин.: г – 33 мкм. 900° C, 6 мин.;

Рис. 2.1.1.10. Концентрационные профили золота в nAl_xGa_{1-x}As – nGaAs – гетероструктурах при различных температурах. 1 – T=800° C, t=10 мин., d=55мкм; 2 – 850° C, 9 мин., 43 мкм; 3 – 900° C, 2 мин., 33 мкм; 4 – 1000° C, 40 сек., 42 мкм;

Рис. 2.1.1.11. Температурная зависимость концентрации меди (Cu), серебра (Ag) и золота (Au) в (AlGa)As – GaAs –структурах. 1 – концентрация в центре эпислоя (в минимуме), 2 – концентрация на гетерогранице (в максимуме).

Рис. 2.1.1.12. Распределение концентрации серебра N_{Ag} и плотности дислокаций N_D в $Al_xGa_{1-x}As - GaAs - гетероструктуре.$ а: n - n, T=960 °C, t=70 сек.; б: n - p, T=970 °C, t=45 сек.

Рис. 2.1.1.13. Распределение концентрации цинка N_{Au} и плотности дислокаций N_D в $nAl_xGa_{1-x}As - nGaAs - nGaAs - гетероструктуре.$ T=1100° C, t=50 мин.

Рис. 2.1.1.14. Концентрационные профили меди (а) и золота (б) в (GaIn)Р – GaAs – гетероструктурах.

a: 1 – 600° C, 10 мин., d=30 мкм; 2 – 700° C, 10 мин., 34 мкм; 3 - 800° C, 10 мин., 38 мкм.

б: 1 – 500° С, 60 мин., 35 мкм; 2 – 600° С, 50 мин., 35 мкм; 3 - 700° С, 23 мин., 40 мкм, 4 – 800° С, 10 мин., 40 мкм.

Рис. 2.1.1.15. Распределение концентрации цинка N_{Zn} в GaAs_{0,5}P_{0,5} – GaAs – гетероструктуре. T=975 °C, t=35 мин.

Рис. 2.1.1.16. Распределение концентрации цинка N_{Zn} в $Al_xGa_{1-x}As - GaAs - гетероструктуре.$ T=800 °C, t=30 мин.

Рис. 2.1.1.17. Концентрационное распределение цинка в Ga_xIn_1-xP – GaAs гетероструктуре. T=800° C, t=30 мин.

§2.2 РАСТВОРИМОСТЬ ПРИМЕСЕЙ В ПОЛУПРОВОДНИКАХ

Понятие растворимости примесей непосредственно связано с диффузионным процессом в твердых телах. При легировании полупроводников в процессе выращивания ионной имплантации можно ввести количество примесных атомов сколько угодно много, при этом понятие растворимости не имеет места. В данном случае основная часть примесных атомов в решетке находится в виде скоплений, примесных преципитатов или выделяется в виде второй фазы. Такое поведение примесных атомов существенно искажает кристаллическую решетку и меняет свойства кристаллов.

Растворимость – это максимальная концентрация примесных атомов, которые можно ввести в решетку с помощью диффузии при данной температуре. Примесные атомы в кристаллический решетке могут находиться в узлах или в междуузлиях. Если примесный атом находится в узле кристаллической решетки, то он заменяет основной атом элементарного полупроводника. В полупроводниковых соединениях такие примеси называются примесями, образующими твердый раствор замещения. При этом примесный атом обязательно будет участвовать в химической связи. Если примесные атомы находятся в междуузельном состоянии, они образуют твердые растворы внедрения. При этом примесный атом не будет участвовать в химической связи с соседним основным атомом. Однако он может образовывать различные комплексы с другими дефектами решетки.

Температурная зависимость растворимости примесей в полупроводниках в основном описывается соотношением (8). Однако растворимость некоторых примесей в полупроводниках с изменением температуры носит ретроградный характер, т.е. значение растворимости с начала роста температуры увеличивается и при T=T_м достигает своего максимального значения, затем при T>T_м, уменьшается. Наиболее типичный ретроградный характер растворимости имеет растворимость меди в германии. Максимальное значение растворимости меди имеет место при T=875° С и оно составляет значение N_{Cu}=4·10¹⁶ ат/см³. Для не-

119

которых примесей наблюдается явно ретроградный характер растворимости.

Растворимость примесных атомов в полупроводниках очень тесно связана с коэффициентом сегрегации примесных атомов. Коэффициент сегрегации (К) определяется соотношением концентрации примесей в твердой и жидкой фазах при равновесии между фазами

$$K = \frac{N_{ms}}{N_{ms}}$$
 (9)

значение К зависит от природы примесных атомов. Обычно чем больше коэффициент сегрегации, тем больше значение растворимости примесей в твердых телах. Величина растворимости зависит от температуры диффузии и определяется выражением:

$$N = N_s \exp\left(-\frac{E}{kT}\right) \,(8)$$

где Е – энергия растворения, N_s – растворимость примесей при $T = \infty$. Согласно (8), меняя температуру диффузии можно управлять растворимостью примесей или концентрацией примесных атомов, введенных с помощью диффузии в кристаллическую решетку. Меняя концентрацию примесных атомов в решетке, можно в широком интервале управлять удельным сопротивлением, т.е. получать материал с заданными параметрами.

Существует тесная взаимосвязь между коэффициентом диффузии и растворимостью примесей в полупроводниках. Чем меньше коэффициент диффузии, тем больше растворимость примесей. Чем больше D, тем меньше растворимость.

В данном параграфе нами приведены растворимости всех исследованных примесных атомов в различных полупроводниках, как в виде таблиц, так и в виде графиков эмпирических соотношений, установленных экспериментальными методами. Читатель сможет определить растворимость любых примесей в полупроводниках, зная их Е и N_s, которые приведены для многих примесных атомов.

При диффузии из постоянного источника поверхностная концентрация примеси является постоянной величиной. На графике концентрационного рас-

120

пределения легирующей примеси при x=0 N(0, T) является значением растворимости примеси при данной температуре. Положение точки N(0, T) на графике (максимальное значение растворимости при данной температуре) не зависит от времени диффузии примеси.

Рис. 2.2.1. а – растворимость железа и серебра в германии; б – растворимость золота в кремнии; в – растворимость серебра в кремнии

Таблица 2.2.1

Примесь	Максимальная раство-	Коэффициент	Максимальная
	римость, at/cm^{-3}	сегрегации, %	температура, °С
Cu	$4 \cdot 10^{16}$	1,7.10-5	875
Fe	10 ¹⁵	3,5.10-5	850
Ag	$7 \cdot 10^{14}$	3.10-6	870
Ni	$5 \cdot 10^{15}$	3.10-6	875
Au	10 ¹⁵	1,5.10-5	Максимальное
			значение
Pt	10^{14}	10-6	
Li	$2,5 \cdot 10^{18}$	$2 \cdot 10^{-3}$	800
Zn	$5 \cdot 10^{18}$		
Sb	10 ¹⁹		
As	10^{20}	10 ⁻²	
In	$5 \cdot 10^{20}$	10-3	
Ga	$5 \cdot 10^{20}$	$2 \cdot 10^{-2}$	
Sn	$5 \cdot 10^{20}$	10 ⁻²	
Al	10^{21}		

Растворимость и коэффициент распределения примесей в германии

Примесь	Максимальная раство-	Коэффициент	Максимальная
	римость, at/cm^{-3}	сегрегации, %	температура, °С
			1200
Cu	3.10^{10}	2,5.10-4	1300
Ag	2.10^{17}	5	1350
Au	1.10^{17}	3.10-5	1250
Li	$4 \cdot 10^{19}$	1,3.10-2	1200
B	10 ²⁰	0,9	1200
Al	$1,7.10^{20}$	10-1	1200
In	10 ¹⁹	5.10-4	1200
Р	2.10^{20}	0,35	1200
As	10 ²⁰	0,3	1200
Sb	10^{20}	0,4	1200
Zn	10 ¹⁷	$4 \cdot 10^{-4}$	1250
Mg	10 ¹⁶		1250
Cd	10 ¹⁶		1250
Hg	10 ¹⁶		1270
Sc	10 ¹⁶		1250
V	10 ¹⁶		1250
Sn	10^{21}		1350
Ge	10 ²²		1430
Cr	10 ¹⁶		1200
Fe	$5 \cdot 10^{16}$	8.10-6	1250
Со	$2 \cdot 10^{16}$		1250
Ni	7.10^{17}		1250
Mn	$2 \cdot 10^{16}$		1250
Re	10 ¹⁶		1250
Ru	10 ¹⁷		1260
Os	10^{16}		1300
Rn	10 ¹⁶		1250
Ir	$5 \cdot 10^{16}$		1250
Pd	$4 \cdot 10^{16}$		1250
Pt	10 ¹⁶		1250
Sm	10 ¹⁸		1300
Gd	10 ¹⁸		1300
Но	10 ¹⁷		1300
0	$1.7 \cdot 10^{18}$		1250
S	5.10^{16}		1250
Se	10 ¹⁷		1250
Te	5.10^{17}		1250
Mo	10 ¹⁵		1200
W	10 ¹⁵		1200

Растворимость и коэффициент распределения примесей в кремнии

Температурная зависимость растворимости некоторых

$N_{Mn} = 2,5 \cdot 10^{22} \exp(-2,4/kT)$
$N_{Fe} = 3.6 \cdot 10^{26} \exp(-3/kT)$
$N_{Co} = 1.8 \cdot 10^{21} \exp(-1.65 / kT)$
$N_{Ni} = 1.4 \cdot 10^{25} \exp(-2.3/kT)$
$N_{Zn} = 4 \cdot 10^{21} \exp(-1.6 / kT)$
$N_s = 1.5 \cdot 10^{27} \exp(-1.65 / kT)$
$N_{Se} = 10^{25} \exp(-2.1/kT)$

примесей в кремнии

Таблица 2.2.4

Растворимость и коэффициент распределения примесей в GaAs

Примесь	Максимальная раство-	Коэффициент
	римость, at/cm^{-3}	сегрегации, %
Cu	$3 \cdot 10^{18}$	$2 \cdot 10^{-3}$
Ag	$8 \cdot 10^{17}$	$4 \cdot 10^{-4}$
Au	$2,6\cdot 10^{18}$	1,3.10-3
Ca		$2 \cdot 10^{-3}$
Mg	$5 \cdot 10^{18}$	0,1
Zn	10^{20}	0,4
In		$7 \cdot 10^{-3}$
Al		0,2
Be		3
С	$2 \cdot 10^{17}$	
Ge		·10 ⁻²
Si	10 ¹⁹	0,14
Sn		8·10 ⁻³
Pb		1.10^{-5}
Р		3
Sb		1,6.10-2
S	10^{20}	0,3
Se	10^{19}	0,3
Te		5,9·10 ⁻²
Cr	$2 \cdot 10^{17}$	5,7.10-4
Mn	>10 ¹⁷	$2 \cdot 10^{-2}$
Fe	>10 ¹⁷	1.10-3
Со	>10 ¹⁶	$4 \cdot 10^{-4}$
Ni	>10 ¹⁷	5.10-5

Элемент	Doctronumocti	Koodhuuuaur
JICMCHI	тастворимость	коэффициент
	примесей, см	распределения
		примесей
Cu	$4 \cdot 10^{17}$	6,6·10 ⁻⁴
Ag	$3 \cdot 10^{17}$	4,9.10-5
Au	$2 \cdot 10^{17}$	1,9.10-5
Mg	$5,2\cdot10^{18}$	0,7
Zn	$3 \cdot 10^{19}$	0,72
Cd	$1 \cdot 10^{19}$	0,13
Si	$5 \cdot 10^{19}$	0,4
Ge	$1 \cdot 10^{19}$	0,07
Sn	$1 \cdot 10^{19}$	0,19
S	$8 \cdot 10^{19}$	1
Se	$7 \cdot 10^{19}$	0,93
Те	$2 \cdot 10^{19}$	0,44

Максимальная растворимость и коэффициент распределения примесей в InAs

Рис.2.2.2. Температурная зависимость растворимости некоторых примесей в кремнии .

Рис. 2.2.3. Температурные зависимости растворимости различных примесей в германии.

Рис. 2.2.4. Температурная зависимость электроактивных атомов примесей

Рис. 2.2.5. Температурная зависимость растворимости примесей в кремнии.

§2.3 ЭНЕРГЕТИЧЕСКИЕ УРОВНИ ПРИМЕСНЫХ АТОМОВ В ПОЛУПРОВОДНИКАХ

Примесный атом, введенный в решетку, может быть электроактивным или неактивным (нейтральным). Электроактивными атомами являются те атомы, которые непосредственно поставляют электроны в зону проводимости и дырки в валентную зону (при тепловой или оптической генерации), или захватывают электроны из зоны проводимости и дырки из валентной зоны, т.е. при введении таких примесных атомов существенно меняется концентрация электронов в зоне проводимости и дырок в валентной зоне, проводимость материала существенно меняется в зависимости от концентрации введенных примесных атомов. Электроактивность примесных атомов проявляется в основном у тех атомов, у которых число валентных электронов отличается от числа валентных электронов основного атома решетки. Электронеактивными примесными атомами являются примесные атомы, у которых число валентных электронов совпадает с числом валентных электронов основного атома решетки. Типичными примесями нейтральных атомов в кремнии являются Ge, C, Sn; в GaAs - Zn, Al; в CdS –Zn и т.д.

Электроактивные примесные атомы могут быть донорами – когда эти атомы поставляют электроны в зону проводимости или захватывают дырки из валентной зоны, или акцепторами - когда эти примесные атомы поставляют дырки в валентную зону, или захватывают электроны из валентной зоны.

Необходимая энергия для перехода электрона в зону проводимости или дырки в валентную зону называется энергией ионизации примесных атомов. Она определяют донорные или акцепторные уровни в запрещенной зоне полупроводника в соответствии с энергией ионизации.

В реальных условиях не все примесные атомы будут электроактивными, всегда определенная их часть остается электронейтральной. Некоторые примесные атомы в кристаллической решетке могут находиться в различных состояниях – в узлах, в междуузлиях, простых или сложных комплексах. Поэтому, в зависимости от положения примесных атомов в решетке, они могут соз-

130

давать как донорные, так и акцепторные уровни. Такие примеси называются амфотерными.

В зависимости от энергии ионизации донорных или акцепторных примесных атомов, примесные энергетические уровни делятся на мелкие и глубокие. Когда мы говорим мелкие примесные энергетические уровни то мы имеем в виду, что их энергия ионизации ΔE существенно меньше чем ширина запрещенной зоны. Поэтому не только при комнатной, но и при более низких температурах эти уровни будут полностью ионизованы. Концентрация электронов в зоне проводимости будет равна $n = N_d^+$ (где N_d^+ - концентрация ионизованных донорных примесных атомов) и концентрация дырок в валентной зоне будет $p = N_a^-$ (где N_a^- - концентрация ионизованных акцепторных примесных атомов).

У глубоких энергетических уровней значение энергии ионизации ΔE имеет такой же порядок как $\frac{E_g}{2}$.

Введение примесных атомов, создающих глубокие энергетические уровни в решетке не увеличивает, а наоборот, уменьшает концентрацию носителей тока. Поэтому такие примесные атомы называются компенсирующими примесными атомами. Далее приведены более менее достоверные данные по энергетическим спектрам примесных атомов в полупроводниковых материалах, определенных фотоэлектрическими, фотоемкостными и гальваномагнитными методами независимо друг от друга.

Концентрация электроактивных примесных атомов определяется всегда решением уравнения нейтральности на основе экспериментальных результатов, полученных из температурной зависимости эффекта Холла или фотопроводимости.

131

Таблица 2.3.1

Примеси, создающие мелкие энергетические уровни в Ge и в Si

Акцепторные примеси					
Энергия ионизации примесных уров				ых уровней, э	В
	В	Al	Ga	In	Ti
Ge	$E_v + 0.0104$	$E_v + 0.0102$	$E_v + 0.0108$	$E_v + 0.012$	$E_{v} + 0.010$
Si	$E_v + 0.044$	$E_v + 0.069$	$E_v + 0.079$	$E_v + 0.155$	$E_{v} + 0.26$
	Донорные примеси				
Материал	E	Энергия ионизации примесных уровней, эВ			
	Р	As	Sb	Li	
Ge	$E_{c} - 0.012$	$E_{c} - 0.0127$	$E_{c} - 0.069$	$E_{c} - 0.0066$	$E_{c} - 0.0093$
Si	$E_{c} - 0.044$	$E_{c} - 0.049$	$E_{c} - 0.069$	$E_{c} - 0.039$	$E_{c} - 0.033$

Примесные уровни в кремнии

Элемент	Название	Уровень	Энергия ионизации
Element	Name	Level	Ionization energy
Li	Литий	Donor	$E_{c} - 0.033$
	Lithium		
Sb	Сурьма	Donor	$E_{c} - 0.039$
	Stibium		C C
Р	Фосфор	Donor	$E_{c} - 0.045$
	Phosphorus		
As	Мышьяк	Donor	$E_{c} - 0.054$
	Arsenic		
Bi	Висмут	Donor	$E_{c} - 0.069$
	Bismut		
Те	Теллур	Donor	$E_{c} - 0.14$
	Telluriu		
Ti	Титан	Donor	$E_{c} - 0.21$
	Titanium		
С	Углерод	Donor	$E_{c} - 0.25$
	Carbon		
Mg	Магний	Acceptor	$E_v + 0.11$
	Magnesium	Acceptor	$E_v + 0.25$
Se	Селен	Donor	$E_{c} - 0.25$
	Selenium	Donor	$E_{c} - 0.4$
Cr	Хром	Donor	$E_{c} - 0.41$
	Chromium		
Та	Тантал	Donor	$E_{c} - 0.14$
	Tantalum	Donor	$E_{c} - 0.43$
Cs	Цезий	Donor	$E_{c} - 0.3$
	Caesium	Acceptor	$E_v + 0.5$
Ba	Барий	Donor	$E_{c} - 0.32$
	Barium	Acceptor	$E_v + 0.5$
S	Cepa	Donor	$E_{c} - 0.26$
	Sulphur	Donor	$E_{c} - 0.48$
Mn	Марганец	Donor	$E_{c} - 0.43$
	Manganese	Donor	$E_{c} - 0.53$
		Acceptor	$E_v + 0.45$
Ag	Серебро	Acceptor	$E_v + 0.36$
	Silver	Donor	$E_{c} - 0.33$
Cd	Кадмий	Acceptor	$E_v + 0.2$
	Cadmium	Acceptor	$E_v + 0.45$
		Acceptor	$E_v + 0.55$
		Acceptor	$E_{v} + 0.3$

Продолжение таблицы 2.3.2

Pt	Платина	Acceptor	$E_{v} + 0.25$
	Platinum	Acceptor	$E_{v} + 0.36$
		Donor	$E_{c} - 0.3$
Si	Кремний	Acceptor	$E_v + 0.34$
	Silicon	Donor	$E_{c} - 0.49$
		Donor	$E_{c} - 0.19$
В	Бор	Acceptor	$E_v + 0.045$
	Boron	1	
Al	Алюминий	Acceptor	$E_{v} + 0.067$
	Aluminum	1	
Ga	Галлий	Acceptor	$E_v + 0.072$
	Gallium		
In	Инлий	Acceptor	$E_{x} + 0.16$
	India		
T1	Таппий	Acceptor	$E_{x} \pm 0.3$
11	Thallium		
Pd	Паппапий	Acceptor	F + 0.34
14	Palladium	receptor	$L_v + 0.54$
No	Папаціції	Dopor	E 0.25
INA	Патрии Sodium	Donoi	$E_{c} = 0.33$
Da		Accontor	E + 0.42
Бе	Бериллии	Acceptor	$E_v + 0.42$
7		Acceptor	$E_v + 0.17$
Zn	Цинк	Acceptor	$E_v + 0.55$
•		Acceptor	$E_v + 0.26$
Au	Золото	Acceptor	$E_v + 0.54$
	Gold	Acceptor	$E_v + 0.49$
~		Donor	$E_{c} - 0.29$
Co	Кобальт	Acceptor	$E_v + 0.53$
	Cobalt	Acceptor	$E_v + 0.35$
V	Ванадий	Donor	$E_{c} - 0.49$
	Vanadium	Acceptor	$E_v + 0.4$
Ni	Никель	Acceptor	$E_{v} + 0.35$
	Nickel	Acceptor	$E_v + 0.23$
Mo	Молибден	Donor	$E_{c} - 0.33$
	Molybdenum	Donor	$E_{c} - 0.34$
		Donor	$E_{c} - 0.3$
Hg	Ртуть	Acceptor	$E_v + 0.31$
_	Quicksilver	Acceptor	$E_{v} + 0.36$
		Donor	$E_{c} - 0.33$
		Donor	$E_{c} - 0.25$
Sr	Стронций	Donor	$E_{c} - 0.28$
	Strontium	Donor	$E_{c} - 0.5$

Продолжение таблицы 2.3.2

Ge	Германий	Donor	$E_{c} - 0.27$
	Germanium	Donor	$E_{c} - 0.5$
Cu	Медь	Acceptor	$E_v + 0.53$
	Copper	Acceptor	$E_{v} + 0.4$
		Acceptor	$E_v + 0.24$
Κ	Калий	Donor	$E_{c} - 0.26$
	Tungsten	Donor	$E_{c} - 0.35$
Sn	Олово	Donor	$E_{c} - 0.25$
	Grey tin	Acceptor	$E_v + 0.27$
W	Вольфрам	Donor	$E_{c} - 0.22$
	Potassium	Donor	$E_{c} - 0.3$
		Donor	$E_{c} - 0.37$
		Donor	$E_{c} - 0.34$
		Donor	$E_{c} - 0.31$
Pb	Свинец	Donor	$E_{c} - 0.17$
	Lead	Acceptor	$E_v + 0.37$
0	Кислород	Donor	$E_{c} - 0.16$
	Oxygen	Acceptor	$E_v + 0.38$
		Acceptor	$E_v + 0.41$
Fe	Железо	Donor	$E_{c} - 0.14$
	Iron	Donor	$E_{c} - 0.51$
		Donor	$E_{c} - 0.4$

Элемент	Название	Уровень	Энергия ионизации
Element	Name	Level	Ionization energy
Li	Литий	Donor	$E_{\rm c} - 0.0093$
	Lithium		
Sb	Сурьма	Donor	$E_{c} - 0.0096$
	Stibium		
Р	Фосфор	Donor	$E_{c} - 0.12$
	Phosphorus		
As	Мышьяк	Donor	$E_{c} - 0.013$
	Arsenic		
S	Сера	Donor	$E_{c} - 0.18$
	Sulphur		
Se	Селен	Donor	$E_{c} - 0.14$
	Selenium	Donor	$E_{c} - 0.28$
Те	Теллур	Donor	$E_{c} - 0.11$
	Tellurium	Donor	$E_{c} - 0.3$
Cu	Медь	Acceptor	$E_v + 0.26$
	Copper	Acceptor	$E_v + 0.33$
		Acceptor	$E_v + 0.04$
Au	Золото	Acceptor	$E_v + 0.04$
	Gold	Acceptor	$E_v + 0.2$
		Acceptor	$E_v + 0.15$
		Donor	$E_{c} - 0.04$
Ag	Серебро	Acceptor	$E_v + 0.09$
	Silver	Acceptor	$E_v + 0.28$
		Acceptor	$E_v + 0.13$
В	Бор	Acceptor	$E_v + 0.01$
	Boron		
Al	Алюминий	Acceptor	$E_v + 0.01$
	Aluminum		
T1	Таллий	Acceptor	$E_v + 0.01$
	Thallium		
Ga	Галлий	Acceptor	$E_v + 0.011$
	Gallium		
In	Индий	Acceptor	E _v + 0.011
	India		
Be	Бериллий	Acceptor	$E_v + 0.06$
	Beryllium		
Zn	Цинк	Acceptor	$E_v + 0.095$
	Zinc	Acceptor	$E_v + 0.035$

Примесные уровни в германии

Продолжение таблицы 2.3.3

Cr	Хром	Acceptor	$E_{v} + 0.12$
	Chromium	Acceptor	$E_{v} + 0.07$
Cd	Кадмий	Acceptor	$E_v + 0.16$
	Cadmium	Acceptor	$E_v + 0.055$
Hg	Ртуть	Acceptor	$E_v + 0.23$
	Quicksilver	Acceptor	$E_v + 0.067$
Со	Кобальт	Acceptor	$E_{v} + 0.3$
	Cobalt	Acceptor	$E_v + 0.25$
		Donor	$E_{c} - 0.09$
Ni	Никель	Acceptor	$E_{v} + 0.3$
	Nickel	Acceptor	$E_v + 0.23$
Mn	Марганец	Acceptor	$E_v + 0.29$
	Manganese	Acceptor	$E_v + 0.16$
Fe	Железо	Acceptor	$E_v + 0.27$
	Iron	Acceptor	$E_v + 0.31$
Pt	Платина	Acceptor	$E_v + 0.12$
	Platinum	Acceptor	$E_{v} + 0.2$
		Acceptor	$E_v + 0.04$

Примесные уровни в арсениде галлия

Элемент	Название	Уровень	Энергия ионизации
Element	Name	Level	Ionization energy
Si	Кремний	Donor	$E_{c} - 0.0058$
	Silicon	Acceptor	$E_{v} + 0.035$
Ge	Германий	Donor	$E_{c} - 0.006$
	Germanium	Acceptor	$E_{v} + 0.07$
		Acceptor	$E_{v} + 0.04$
S	Сера	Donor	$E_{c} - 0.006$
	Sulphur		
Sn	Олово	Donor	$E_{c} - 0.006$
	Grey tin	Acceptor	$E_{v} + 0.17$
Те	Теллур	Donor	$E_{c} - 0.03$
	Tellurium		
Se	Селен	Donor	$E_{c} - 0.0059$
	Selenium	Donor	$E_{c} - 0.53$
0	Кислород	Donor	$E_{c} - 0.4$
	Oxygen	Donor	$E_{c} - 0.67$
С	Углерод	Acceptor	$E_v + 0.026$
	Carbon	1	
Be	Бериллий	Acceptor	$E_v + 0.028$
	Beryllium	1	
Mg	Магний	Acceptor	$E_v + 0.028$
	Magnesium	-	
Zn	Цинк	Acceptor	$E_v + 0.031$
	Zinc	-	
Cd	Кадмий	Acceptor	$E_v + 0.035$
	Cadmium	-	
Li	Литий	Acceptor	$E_v + 0.05$
	Lithium	Acceptor	$E_v + 0.023$
Au	Золото	Acceptor	$E_v + 0.09$
	Gold		
Mn	Марганец	Acceptor	$E_v + 0.095$
	Manganese		
Ag	Серебро	Acceptor	$E_v + 0.11$
	Silver		
Pb	Свинец	Acceptor	$E_{v} + 0.12$
	Lead		
Со	Кобальт	Acceptor	$E_v + 0.16$
	Cobalt		
Ni	Никель	Acceptor	$E_v + 0.21$
	Nickel		

Продолжение таблицы 2.3.4

Cu	Медь	Acceptor	$E_v + 0.44$
	Copper	Acceptor	$E_v + 0.24$
		Acceptor	$E_v + 0.19$
		Acceptor	$E_v + 0.14$
		Acceptor	$E_v + 0.023$
Fe	Железо	Acceptor	$E_v + 0.52$
	Iron	Acceptor	$E_v + 0.37$
Cr	Хром	Acceptor	$E_v + 0.63$
	Chromium		

Таблица 2.3.5

Электрические характеристики атомов IV группы в полупроводниках типа А^{III}В^{V1)}

Примесь	AlSb	GaP	GaAs	GaSb	InP	InAs	InSb
С	A		A (0,019)				
Si	A	D	D (0,02)	Α	D	D	A
		(0,082)	A (0,03)				
		A	А (комплек-				
Ge	A	(0,082)	сы)	A	D (мел-	D	A
			D (мелкий)		кий)		
		A (0,30)	A (0,03)				
Sn	D +		A (ком-	A		D	D
	A		плекс)		D (мел-		
Pb		D	D (мелкий)	N	кий)	N	D
	A	(0,058)	A (0,20)				(?)
			A (0,12)		N		

1) А – акцептор, D – донор, N – примесь, не влияющая на электрические свойства.

Таблица 2.3.6

Энергия	ионизации	примесей	B	GaP
---------	-----------	----------	---	-----

Примесь	Донор, эВ	Акцептор, эВ	
Sn Si Te Se S Неизвестна >>	$E_{c} -0,065$ $E_{c} -0,082$ $E_{c} -0,0895$ $E_{c} -0,102$ $E_{c} -0,104$ $E_{c} - \leq 0,165$ $E_{c} -0,24$ $E_{c} -0,6$	Ловушка для	
O Cu Co Ge Si Cd Zn Be Mg C C C N Bi	E _c -0,896 Изоэлектронная ловушка То же	электронов $E_{v}+0,41$ $E_{v}+0,30$ $E_{v}+0,203$ $E_{v}+0,097$ $E_{v}+0,064$ $E_{v}+0,056$ $E_{v}+0,054$ $E_{v}+0,041$ $E_{v}-0,008$ $E_{v}+0038$	
Zn-O Cd-O	>> >> >> >>	E_{v} -0,30 E_{v} -0,40	

Таблица 2.3.7

Cu	Двойной донор	$E_c - 0.023 \ \Im B, E_c - 0.056 \ \Im B$
Ag	Двойной акцептор	$E_v + 0.028 \ \Im B, E_v + 0.039 \ \Im B$
Au	Двойной акцептор	$E_v + 0.032 \ \Im B, E_v + 0.066 \ \Im B$
Zn	Акцептор	E _v + 0.075 эВ
Sn	Донор	
Pb	Донор	Уровни практически спи-
Si, Ge	Акцептор	ваются с зоной проводимо-
S, Se, Te	Донор	СТИ
Mn	Акцептор	

Энергетические уровни примесей в InSb

Энергии ионизации примесей в фотопроводящих

Веще- ство	Примесь	Груп- па	Замещае- мый атом	Донор или акцеп- тор	Энергия ионизации (<i>E_c-E_l</i>), эв	Энергия ионизации (<i>E</i> _I - <i>E</i> _V), эв
ZnS	C1,Br	VII	S	D	0,25	
	A1.	III	Zn	D	0,25	
	Sc	III	Zn	D	0,35	
	Ga	III	Zn	D	0,42	
	In	III	Zn	D	0,50	
	Cu	Ι	Zn	А		0,95
	Ag	Ι	Zn	А		0,55
ZnSe	Br	VII	Se	D	0,21	
	Cu	Ι	Zn	А		0,6
	Ag	Ι	Zn	Α		0,6
	Sb	V	Se	А		0,7
				А		1,3
	As	V	Se	А		0,7
CdS	C1, Br, J	VII	S	D	0,03	
	A1, Ga, In	III	Cd	D	0,03	
	Cu *	Ι	Cd	А		0,6 ; 1,0
	Ag	Ι	Cd	А		(≤ 1,0)
	Вакансия			А		1.0
	Cd					1,0
ZnTe	Cu **	Ι	Zn	А		

соединениях элементов II и VI групп

CdSe	C1,Br,J	VI	Se	D		
	Cu	Ι	Cd	А	0,14	
	Вакансия			D	~ 0,6	
	Se			D		0,6
				А		1,0
	Вакансия			А		
	Cd					
CdTe	J	VII	Te	D	~ 0,01	
	Li	Ι	Cd	А		
CdTe	Sb	V	Te	А		0,36
	Р	V	Te	А		0,38
	Na	Ι	Cd	А		0,29
	Вакансия			А		0,3
	Cd					
7.0		т	н	D	0.05	
ZnO	H	1	Примесь	D	0,05	
			внедрения			
			Примесь			
	Li	Ι	внедрения	D	0,05	
			Примесь			
			внедрения			
	Zn	II		D	0,05	

§2.4 ЗАВИСИМОСТЬ ПОДВИЖНОСТИ НОСИТЕЛЕЙ ЗАРЯДА ОТ КОНЦЕНТРАЦИИ ПРИМЕСНЫХ АТОМОВ

Подвижность носителей заряда μ - это среднее расстояние, проходимое в единичном электрическом поле в направлении поля за время между столкновениями, деленное на это время. Размерность подвижности μ (см²/В·с). Существуют различные виды подвижности:

- Микроскопическая подвижность подвижность, которую свободные носители имеют в действительности;
- Подвижность по проводимости подвижность, вычисляемая из равенства $\mu = \frac{\sigma}{cn}$, практически идентична микроскопической подвижности;
- Дрейфовая подвижность скорость дрейфа носителей в электрическом поле на единицу напряженности поля. Дрейфовая подвижность совпадает с микроскопической подвижностью только тогда, когда прилипание носителей отсутствует;
- Холловская подвижность произведение постоянной Холла (R) на проводимость (σ) μ_x=Rσ. Эта подвижность, когда на носители заряда действуют одновременно электрическое и магнитное поле;
- Амбиполярная подвижность это эффективная подвижность, когда кроме равновесных носителей заряда с концентрацией (n₀, p₀) существуют неравновесные носители заряда с концентрацией (n', p') (например, при наличии инжекции).

Подвижность носителей заряда в полупроводниках определяется выражением:

$$\mu_n = \frac{e}{m_e^*} \langle \tau \rangle \quad (9)$$
$$\mu_p = \frac{e}{m_e^*} \langle \tau \rangle \quad (10)$$

где (m_e^*) , (m_h^*) – эффективная масса электрона и дырки, $<\tau >$ – время релаксации. Для определенного полупроводника, где m_e^* и m_h^* - постоянные значения, подвижность в основном определяется величиной времени релаксации. Время
релаксации <τ> зависит от многих факторов – концентрации нейтральных, ионизованных примесных атомов, плотности дислокаций, концентрации носителей заряда и колебаний решетки (оптических и акустических фононов). Каждый из перечисленных факторов может быть доминирующим в определенной области температур. Поэтому при изменении температуры подвижность носителей заряда меняется не монотонно, а по определённой закономерности.

При комнатной температуре величина т в основном определяется колебаниями решетки, так как в кристалле концентрация ионизованных примесных атомов или концентрация носителей заряда не высокая (N≤10¹⁶,или n≤10¹⁶см⁻³). С ростом концентрации носителей заряда (или примесных атомов) значение подвижности носителей заряда монотонно падает.

Далее приведены экспериментальные результаты, показывающие зависимость подвижности электронов и дырок от концентрации донорных и акцепторных примесных атомов соответственно. Такие данные необходимы при разработке различных приборов на основе сильно легированных полупроводниковых материалов.

Раниантро	Подвижность электро-	Подвижность дырок,
рещество	нов, см ² /В·с	см ² /В·с
Алмаз	900-3900	1200-4800
Ge	3600-3900	1700-1900
Si	1200-1900	350-500
Te	910	570
NaC1	250 (при 84° К)	
KC1	100 (при 90° К); 3	
KBr	110 (при 84° К); 12,5	
KJ	155 (при 84° К)	2-6
AgC1	300 (при 85° К); 50-70	40
AgBr	240	
Cs_2Sb	500	10
MgO		2
ZnO	180	
BaO	3-9	
Mg ₂ Ge	500	100
Mg ₂ Si	400	70
Mg_2Sn	200-300	150-250
Mg_2Sb_2		100
ZnSb		300
CdSb	360-660	300-700
CdS	200	
CdSe	500	
CdTe	800	100
HgTe	16000	16000
A1Sb	50-200	100-200
GaP		17
GaAs	2000-6800	200-680
GaSb	2500-5000	400-1000
InP	3400-5000	50-700
InAs	20000-30000	100-240
InSb	65000-80000	700-4000
InSe	900	
In_2Se_3	30	
PbS	600	250-800
PbSe	1200-1400	500-1400
PbTe	1200-2100	750-870
$AgFeSe_2$	>250	70
AgFeTe ₂	> 2000	150

Величины подвижностей носителей заряда (см²/в·сек) в полупроводниках при температуре T=300К

Подвижности носителей заряда в полупроводниках в области T>120÷150 К, в основном определяется рассеянием на колебаниях решетки. Поэтому в области 120°К<Т≤500°К, при концентрации примесей N≤10¹⁶см⁻³, температурную зависимость можно описать следующим соотношением:

$\mu = \mu_0 T^n$

При больших концентрациях примесных атомов такая зависимоть уже не работает, в данном преобладающим будет рассеяние носителей заряда на свободных носителях заряда.

Таблица 2.4.2

	Значения n для зависимости µ ~7						
Вещество	п электроны	р дырки					
Ge	-1,66	-2,33					
Si	-2,5	-2,5					
Алмаз	-1,5	-2,8					
AgC1	-1,5						
Cs ₃ Sb	-1,5						
ZnO	-1,5						
Mg ₃ Si)						
Mg ₃ Ge	От - 2,5 до - 3	От - 2,5 до - 3					
Mg ₃ Sn	J						
Mg_3Sb_2		-1,5					
GaSb	-1,5	-1,5					
InP	-2						
InAs	-1,5	>-2					
InSb	-1,7	-2,1					
PbS							
PbSe	От - 2,5 до -	От - 2,2 до -					
РbТе] 2,2	2,5					
		1					

Температурная зависимость подвижности носителей заряда полупроводниковых материалов

Рис. 2.4.1.Зависимость подвижности от температуры для германия.

Рис. 2.4.2.Зависимость подвижности от температуры для кремния.

Рис. 2.4.3. Зависимость подвижности от температуры для сульфида свинца.

Рис. 2.4.4. Зависимость подвижности от температуры для хлористого серебра свинца.

Рис. 2.4.5. Зависимость подвижности от температуры для окиси цинка. 1-вычисленная кривая для рассеяния на колебаниях решетки; 2экспериментальная зависимость µ_H.

Рис. 2.4.6. Зависимости подвижности основных носителей от температуры при различных концентрациях примесей: а – подвижность электронов в кремнии n – типа; б – подвижность дырок в кремнии p – типа.

Рис. 2.4.7. Зависимости коэффициентов диффузии от концентрации примесей для полупроводников Si и GaAs при комнатной температуре.

Рис. 2.4.8. Зависимость дрейфовой подвижности в кремнии от концентрации примесей при Т=300К.

Рис. 2.4.9 Зависимость дрейфовой подвижности в германии от концентрации примесей при T=300К.

Рис. 2.4 10. Зависимость дрейфовой подвижности в арсениде галлия от концентрации примесей при Т=300К.

Рис. 2.4.11. Связь подвижности свободных электронов в InP с их концентрацией.

Кружочками и крестиками обозначены экспериментальные точки, полученные при измерениях на верхней и нижней частях кристалла соответственно. Кривые представляют результаты теоретических расчетов при концентрациях акцепторов 6,2 ·1 0¹⁶ см⁻³ (верхняя кривая). 8,8 · 10¹⁶ см⁻³ (средняя кривая) и 1,8 ·10¹⁷ см⁻³ (нижняя кривая).

Рис.2.4.12 Зависимость подвижности электронов в твердых растворах $Ga_xIn_{1-x}Sb$ и InP_yAs_{1-y} от состава (T=300K)

§2.5. ЗАВИСИМОСТЬ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ВАЖНЕЙШИХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ ОТ КОНЦЕНТРАЦИИ ПРИ-МЕСИ

При использовании полупроводниковых материалов для решения конкретных задач, очень важно знать концентрацию примесей в данном материале, так как во всех паспортных данных полупроводниковых материалов указывается только их удельное сопротивление. Например, КДБ-10 или КЭФ-2 (Кремний, дырочный, легированный бором, удельное сопротивление ρ =10 Ом·см или кремний, электронный, легированный фосфором, удельное сопротивление ρ =2 Ом·см), или для монокристаллической германии ГДС-10 или ГЭФ-2, или для GaAs-10. Поэтому нижеприведенны графические зависимости, которые позволяют, зная удельное сопротивление материала, определить концентрацию доноров или акцепторов в данном материале.

Рис. 2.4.13. Зависимость удельного сопротивления германия от содержания примесей (Т=300К)

Рис . 2.4.14. Зависимость удельного сопротивления кремния от содержания примесей (T=300K)

Рис. 2.4.15. Зависимость удельного сопротивления арсенида галлия от содержания примесей (Т=300К)

Зависимость собственной концентрации носителей заряда в германии,

Рис. 2. 4. 16.

ГЛАВА III

НЕОБХОДИМЫЕ ФОРМУЛЫ И СПРАВОЧНЫЕ ДАННЫЕ ПО ФИЗИЧЕСКИМ ВЕЛИЧИНАМ

Введение

При подготовке дипломных работ, диссертаций или при статистической обработке экспериментальных результатов, а также при анализе различных экспериментальных и расчетных данных часто приходится сталкиваться с различными формулами, физическими законами и закономерностями изменения физических величин. В данной главе приведены самые необходимые и часто используемые формулы. Здесь также приведены физический смысл данных формул и единицы измерения физических величин, входящих в формулы.

В конце главы приведены таблицы физических свойств практически всех элементов таблицы Менделеева. Такие данные необходимы специалистам при решении различных технологических задач, а также при объяснении экспериментальных данных. Приведены графики давления паров различных элементов, которые используются как диффузант или омический контакт при различных температурах. Эти данные очень важны для технологов, которые занимаются диффузией. В главе также приведен ряд таблиц физических величин, которые часто используются при решении различных теоретических, экспериментальных и технологических задач. Надеемся, что приведенные формулы, физические параметры различных веществ и элементов облегчат ваш труд и сэкономят ваше время при решении различных проблем.

157

§3.1. ПРОВОДИМОСТЬ ТВЕРДЫХ ТЕЛ

Закон Ома:

$$I = \frac{U}{R}, U = IR, R = \frac{U}{I}$$
(1)

I, U, R – сила тока (A), напряжение (B) и сопротивление материала (Ом) соответственно.

$$R = \rho \frac{l}{S} (2)$$

ρ, *l*, S – удельное сопротивление материала (Ом·см), длина образца (см) и сечение образца (см²) соответственно.

$$\rho = \frac{1}{\sigma}, \ \sigma = en\mu$$
(3)

 σ - удельная проводимость, е, п, μ – заряд электрона (кл), концентрация электронов (см⁻³), подвижность носителей заряда – (электрона) (см²/В·с) соответственно.

В отличие от металлов, в полупроводниках существуют два носителя заряда – электроны (\bar{e}) и дырки (\bar{e}) . Поэтому проводимость в полупроводниках:

$$\sigma = en\mu_n + ep\mu_n(4)$$

р, μ_n, μ_n – концентрация дырок , подвижность электронов и дырок соответственно.

В электронном полупроводнике (полупроводник n-типа) n>>p:

$$\sigma_n = en\mu_n (5)$$

В дырочном полупроводнике (полупроводник p-типа) n<<p:

$$\sigma_p = en\mu_p (6)$$

В собственном полупроводнике:

n=p(7)

Закон действующих масс:

$$np = (n_i)^2 (8)$$

Этот закон показывает, что в любом полупроводнике произведение концентрации электронов и дырок величина всегда постоянная равная - $(n_i)^2$. Этот закон

справедлив только в условиях равновесия.

n_i – концентрация носителей заряда в собственном полупроводнике:

$$n_{i} = (N_{v}N_{c})^{\frac{1}{2}}e^{-\frac{E_{g}}{2kT}}$$
(9)

N_c – эффективная плотность состояний электронов в зоне проводимости:

$$N_{c} = 2 \left(\frac{2\pi m_{n}^{*} kT}{h^{2}} \right)^{3/2} (10)$$

N_v – эффективная плотность состояний дырок в валентной зоне:

$$N_{v} = 2 \left(\frac{2\pi m_{p}^{*} kT}{h^{2}} \right)^{3/2} (11)$$

где m_n^* , m_p^* , E_g , \hbar – эффективная масса электронов и дырок, величина ширины запрещенной зоны и постоянная Планка ($\hbar = 1,05458 \cdot 10^{-34}$ Дж·с, $\hbar = \frac{h}{2\pi}$)

$$m_{n}^{*} = \frac{h^{2}}{\frac{\partial^{2} E_{c}(k)}{\partial k^{2}}} = \hbar^{2} \left(\frac{\partial^{2} E_{c}(k)}{\partial k^{2}} \right)^{-1} (12)$$
$$m_{p}^{*} = \frac{h^{2}}{\frac{\partial^{2} E_{v}(k)}{\partial k^{2}}} = \hbar^{2} \left(\frac{\partial^{2} E_{v}(k)}{\partial k^{2}} \right)^{-1} (13)$$

 $E_c(k)$ и $E_v(k)$ – структура энергетических зон (зоны проводимости и валентной зоны) в k – пространстве.

k – волновой вектор, величина которого:

$$k = \frac{2\pi}{\lambda} \quad (14)$$

энергия свободного электрона:

$$E = \frac{\hbar^2}{2m}k^2 \ (15)$$

импульс электрона $p = \hbar k$ (16)

E_g – ширина запрещенной зоны полупроводника зависит от температуры по закону:

$$E_g = E_{g_0} - \alpha T \quad (17)$$

 $E_{g_{\alpha}}$ - ширина запрещенной зоны при T=0К, α - температурный коэффициент.

§3.2. РАСПРЕДЕЛЕНИЕ ФЕРМИ – ДИРАКА

Вероятность заполнения энергетического уровня Е электронами при данной температуре и при данном значении уровня Ферми F определяется (в условиях равновесия) выражением:

$$f = \frac{1}{1 + g \exp\left(\frac{E - F}{kT}\right)}$$
(18)

g – спиновый фактор вырождения.

Вероятность опустошения этого уровня Е:

$$(1-f) = \frac{1}{1+g\exp\left(\frac{F-E}{kT}\right)}$$
(19)

Положение уровня Ферми в собственном полупроводнике:

$$F = \frac{E_c - E_v}{2} + \frac{3}{4} kT \ln\left(\frac{m_p^*}{m_n^*}\right) (20)$$
$$F = \frac{E_g}{2} + \frac{3}{4} kT \ln\left(\frac{m_p^*}{m_n^*}\right)$$

Концентрация электронов в зоне проводимости:

$$n = N_c \exp\left(-\frac{E_c - F}{kT}\right)$$
(21)

Е_с – энергия, соответствующая дну зоны проводимости.

Положение уровня Ферми в электронном полупроводнике, при известной концентрации электронов при данной температуре Т:

$$F = E_c - kT \ln\left(\frac{N_c}{n}\right)$$
(22)

концентрация дырок в валентной зоне:

$$p = N_{v} \exp\left(-\frac{F - E_{v}}{kT}\right)$$
(23)

E_v – энергия, соответствующая потолку валентной зоны.

Положение уровня Ферми в дырочном полупроводнике, при известной концентрации дырок и данной температуре Т:

$$F = E_v - kT \ln\left(\frac{N_v}{p}\right)$$
(24)

Условие вырождения полупроводников как n, так и р типа:

$$\mu - E_c > 3kT$$
, $E_v - \mu > 3kT$ (25)

§3.3. КИНЕТИЧЕСКИЕ ЯВЛЕНИЯ В ПОЛУПРОВОДНИКАХ

Постоянная Холла:

$$R = -\frac{1}{ne} R = \frac{1}{pe} (25)$$

е – заряд электрона, n, p- концентрация электронов и дырок.

Холловская подвижность носителей заряда:

$$\mu_x = \sigma R (26)$$

Дрейфовая подвижность:

$$\mu_g = \frac{L^2}{Vt} \ (27)$$

L – расстояние между двумя электродами, V - напряжение подаваемого импульса, t – необходимое время для прохождения расстояния L.

Магнитосопротивление:

$$\frac{\Delta\sigma}{\sigma} = B \left(\frac{\mu H}{e}\right)^2 (28)$$

Условие для сильного магнитного поля:

$$\frac{\mu H}{e} >> 1 \ (29)$$

Условие для слабого магнитного поля:

$$\frac{\mu H}{e} < 1 (30)$$

Для кремния при Т=300К, Н≥30000 Эр является слабым магнитным полем.

§3.4. РАЗЛИЧНЫЕ МЕХАНИЗМЫ РАССЕЯНИЯ НОСИТЕЛЕЙ ЗАРЯДА

Подвижность электронов и дырок в полупроводниках:

$$\mu_n = \frac{e}{m_n^*} \langle \tau \rangle \ \mu_p = \frac{e}{m_p^*} \langle \tau \rangle \ (31)$$

<т> - время релаксации, которое показывает необходимое время восстановления системы из неравновесного состояния в равновесное.

$$\langle \tau \rangle = (32)$$

При рассеянии на нейтральных примесных атомах *<*т> меняется в зависимости от их концентрации N:

$$\langle \tau \rangle = \frac{m_n^*}{20a_B\hbar N}, (33)$$

где а_В – радиус первой боровской орбиты.

Соответственно подвижность с ростом концентрации нейтральных примесных атомов меняется по закону:

$$\mu \approx \frac{1}{N} (34)$$

При рассеянии на ионах примесных атомов время релаксации с изменением температуры меняется по закону:

$$\langle \tau \rangle \sim T^{\frac{3}{2}}$$
 и $\langle \tau \rangle \sim \mu^{\frac{3}{2}}$ (35)

При рассеянии на тепловых колебаниях решетки время релаксации с изменением температуры меняется по закону:

$$\langle \tau \rangle \sim T^{-3/2}$$
 и $\langle \tau \rangle \sim \mu^{-3/2}$ (36)

Соотношение Эйнштейна

$$\frac{D}{\mu} = \frac{kT}{e}$$
(37)

D коэффициент диффузии носителей заряда, μ - подвижность, е – заряд электрона, k=8,6·10⁻⁵эB/K, T-температура

Коэффициент диффузии электронов в полупроводнике:

$$D_n = \left(\frac{kT}{e}\right) \mu_n \ (38)$$

Коэффициент диффузии дырок в полупроводнике:

$$D_p = \left(\frac{kT}{e}\right) \mu_p \quad (39)$$

диффузионная длина электронов и дырок в полупроводниках:

$$L_n = \sqrt{D_n \tau_n} , \ L_p = \sqrt{D_p \tau_p} \ (40)$$

§3.5. ОПТИЧЕСКИЕ И ФОТОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ПО-ЛУПРОВОДНИКОВ

Энергия кванта:

$$hv = E = \frac{hc}{\lambda} = \frac{1,24}{\lambda}$$
, $3B$ (41)

Здесь λ - длина волны светового излучения в микронах, с – скорость света с=3.10¹⁰ см/с.

Коэффициент пропускания света в твердых телах:

$$T = \frac{I_T}{I_0} = \frac{(1-R)^2 \exp(-\alpha x)}{1-R^2 \exp(-2\alpha x)}$$
(42)

 I_T , I_0 – интенсивность падающего и пропущенного света, падающее число квантов на один см² в течение одной секунды, α - коэффициент поглощения (см⁻¹), х – толщина материала, R – коэффициент отражения:

$$R = \frac{I_R}{I_0} = \frac{(1-\overline{n})^2 + k^2}{(1+n)^2 + k^2}$$
(43)

I_R – интенсивность отраженного света, *n* – коэффициент преломления, k – показатель поглощения света, как функции длины светового излучения:

$$\alpha(\lambda) = \frac{4\pi k}{\lambda} \ (44)$$

Интенсивность падающего света в твердых телах уменьшается по закону Бугера – Ламберта:

$$I = I_0 e^{-\alpha x}$$
 (45)

I – интенсивность света на расстоянии х в твердом теле.

Спектральная зависимость коэффициента поглощения света при собственном поглощении в полупроводниках с прямозонной энергетической структурой:

$$\alpha(\lambda) = A(h\nu - E_g)^{\frac{1}{2}}$$
(46)

Спектральная зависимость коэффициента поглощения света при собственном поглощении в полупроводниках с непрямозонной энергетической структурой:

$$\alpha(\lambda) = A(h\nu - E_g \pm E_{\phi})^2 \quad (47)$$

Е_д, Е_Ф – ширина запрещенной зоны полупроводников и энергия фононов.

Спектральная зависимость коэффициента поглощения света α, при поглощении света примесными атомами акцепторов с концентрацией N_a и доноров с концентрацией N_d – соответственно:

$$\alpha(\lambda) = AN_a (hv - E_g + E_a)^{\frac{1}{2}} (48)$$
$$\alpha(\lambda) = AN_a (hv - E_g + E_a)^{\frac{1}{2}} (49)$$

Е_а и Е_d – энергия ионизации акцепторного и донорного уровня.

Спектральная зависимость коэффициента поглощения света α, при поглощении света свободными носителями:

$$\alpha(\lambda) = A\lambda^{1,5} + B\lambda^{2,5} + C\lambda^{3,5}$$
(50)

При этом коэффициент поглощения зависит от механизма рассеяния носителей заряда как $\lambda^{1,5}$, $\lambda^{2,5}$, $\lambda^{3,5}$ соответственно, когда имеет место рассеяние носителей заряда на акустических, оптических и ионизированных примесных атомах.

Фотопроводимость – это изменение проводимости полупроводника, при освещение светом. Определяется концентрацией неравновесных электронов Δn и дырок Δp (концентрация электронов и дырок, которые появляются дополнительно из-за освещения светом):

$$\Delta \sigma_{d} = e \Delta n \mu_n + e \Delta p \mu_n$$
 (51)

При этом можно считать, что подвижность носителей заряда не меняется.

$$\Delta n = I_0 k \beta \tau_p \ \Delta p = I_0 k \beta \tau_p \ (52)$$

I₀, α, β, τ_n, τ_p – интенсивность падающего света, коэффициент поглощения света, коэффициент квантового выхода (показывающий число электронно – дырочных пар, генерируемых при поглощении одного фотона. Величина β≈1, при $hv < 3E_g$), время жизни электронов (время прибывания электронов в зоне проводимости) и время жизни дырок (время прибывания дырок в валентной зоне) соответственно:

$$\tau_n = \frac{1}{\upsilon S_n N_n} \tau_p = \frac{1}{\upsilon S_p N_p}$$
(53)

S_n, S_p – сечения захвата электронов и дырок на центрах рекомбинации N_n, N_p – концентрация центров захвата, υ - тепловая скорость электронов:

$$\upsilon = \sqrt{\frac{2kT}{m}} \approx 10^7 \,\mathrm{см/c}$$
 при T=300К.

Величина сечения захвата определяется распределением потенциала вблизи центра захвата. Предполагается, что свободный электрон (дырка) будет захвачен центром, если он приблизится к центру на расстояние, при котором энергия связи, обусловленная кулоновским притяжением, будет равна или больше kT.

$$\frac{e^2}{r\varepsilon} = kT \quad (54)$$

при Т=300К

$$S = \pi r^2 \approx \frac{10^{-10}}{\varepsilon^2} [\text{cm}^2] (55)$$

Сечение захвата электронов и дырок однократно заряженного донора соответственно S_n^+ , S_p^0 :

$$S_n^+ > S_p^0$$
 (56)

однократно заряженного акцептора соответственно S_n^0, S_p^-

$$S_p^- > S_n^0$$
 (57)

Если примесный атом в запрещенной зоне полупроводника создает два донорных уровня, то атом может находится в состоянии: N_d^0 , N_d^+ , N_d^{++} . Сечение захвата электронов и дырок на таких центрах: S_n^+ , S_n^{++} , S_p^0 , S_p^+ .

 $S_p^+ << S_n^{++}$ (58)

Такие центры называются центрами притяжения для электронов и отталкивания для дырок.

Если примесный атом в запрещенной зоне полупроводника создает два акцепторных уровня, то атом может находится в состоянии: N_a^0 , N_a^- , N_a^{--} . Сечение захвата электронов и дырок на таких центрах: S_n^0 , S_n^- , S_p^- , S_p^{--}

$$S_p^{--} >> S_n^{-}$$
 (59)

Такие центры называются центрами притяжения для дырок и отталкивания для электронов.

Обычно значение сечения захвата центров в зависимости от их зарядового состояния меняется в пределах:

$$S_n = 10^{-13} \div 10^{-21} \text{cm}^2$$
, $S_p = 10^{-13} \div 10^{-21} \text{cm}^2$. (60)

Скорость рекомбинации :

$$\gamma = \frac{n_t - n_0}{\tau_n} \ (61)$$

n_t, n₀ – концентрация неравновесных и равновесных электронов.

Фоточувствительность – это число носителей, проходящих между электродами в течение 1сек на каждый поглощенный в течение 1 сек фотон.

$$\frac{\Delta I}{e} = GM \ (62)$$

Δ*I* - фототок, М – число электронно – дырочных пар, G –коэффициент фотоэлектрического усиления:

$$G = \frac{\tau_n}{t_n} + \frac{\tau_p}{t_p} \tag{63}$$

t_n, t_p – время пролета электронов и дырок соответственно между электродами, которые определяются выражениями:

$$t_n = \frac{L^2}{\mu_n V}, \ t_p = \frac{L^2}{\mu_p V} \ (64)$$

L – расстояние между электродами, V – приложенное напряжение, μ_n , μ_p – подвижность электронов и дырок соответственно. Коэффициент усиления:

$$G = \left(\tau_n \mu_n + \tau_p \mu_p\right) \frac{V}{L^2}$$
(65)

§3.6. ВАХ Р – N ПЕРЕХОДА, БАРЬЕРА ШОТТКИ

Плотность диффузионного тока электронов I_{диф} пропорциональна градиенту их концентрации:

$$j_{\partial u\phi}^n = qD_n \frac{dn}{dx}$$
(66)

Плотность диффузионного тока дырок:

$$j_{\partial u\phi}^{p} = -qD_{p}\frac{dp}{dx}$$
(67)

где D_n, D_p – коэффициент диффузии электронов и дырок. Плотность дрейфового тока для электронов и дырок:

$$j_{\partial p}^{n} = q\mu_{n}nE \quad (68)$$
$$j_{\partial p}^{p} = q\mu_{p}pE \quad (69)$$

Общая плотность тока:

$$j_{n} = j_{\partial p}^{n} + j_{\partial u \phi}^{n} = q \mu_{n} n E + q D_{n} \frac{dn}{dx}$$
(70)
$$\varphi = kT \ln \frac{n_{n} p_{p}}{(n_{i})^{2}} = \frac{N_{d} N_{a}}{(n_{i})^{2}}$$
(71)

для кремния $D_n=38 \text{ cm}^2/c$, $D_p=13 \text{ cm}^2/c$.

Контактная разность потенциалов на р-п переходе:

$$j_n = j_{\partial p}^n + j_{\partial u\phi}^n = q\mu_n nE + qD_n \frac{dn}{dx}$$
(72)

где n_n, p_p – концентрация электронов в материале n типа и концентрация дырок в p типа. N_d, N_a – концентрация донорных и акцепторных примесных атомов.

$$n_n = N_d, p_p = N_a (73)$$

Барьерная емкость:

$$C = \left[\frac{\varepsilon \cdot q}{2(\varphi - V)} \frac{N_a N_d}{N_a + N_d}\right] (74)$$

Вольт-амперная характеристика p-n – перехода:

$$I = I_{\mu ac} \left(e^{\frac{\varphi - U}{kT}} - 1 \right) (75)$$

U – величина внешнего потенциала.

I_{нас} –ток насыщения.

$$I_{S0} = q \left(N_v N_c \right) \left[\frac{1}{N_d} \sqrt{\frac{D_p}{\tau_p}} + \frac{1}{N_a} \sqrt{\frac{D_n}{\tau n}} \right] e^{-\frac{E_g}{kT}}$$
(76)

 $\tau_n,\,\tau_p$ – время жизни электронов и дырок.

Вольт – амперная характеристика диодов Шоттки:

$$I = \left[AT^{2} \exp\left(-\frac{e\varphi_{k}}{kT}\right) \right] \cdot \left[\exp\left(\frac{eV}{kT}\right) - 1 \right] (77)$$

где $A = \frac{4\pi q m^{*} k^{2}}{h^{3}} (78)$
 $I = I_{S0} \left(e^{\frac{eV}{kT}} - 1 \right) (79)$
 $I_{S0} = AT^{2} \exp\left(-\frac{e\varphi_{k}}{kT}\right) (80)$

где ϕ_K величина потенциала барьера металл- полупроводник.

§3.7. ОСНОВНЫЕ ПАРАМЕТРЫ ФОТОЭЛЕМЕНТОВ

Напряжение холостого хода фотоэлемента:

$$Vxx = \frac{kT}{e} \ln \left[\frac{I_L}{I_S} + 1 \right] \approx \frac{kT}{e} \ln \left(\frac{I_L}{I_{S_0}} \right) (81)$$

Коэффициент заполнения ВАХ:

$$F = V_m I_m / V_{xx} I_{\kappa_3}$$
 (82)

Коэффициент полезного действия:

$$\eta = \frac{I_m V_m}{W} = \frac{F V_{xx} I_{\kappa_3}}{W}$$
(83)

V_{xx} – напряжение холостого хода фотоэлемента;

I_{кз} – ток короткого замыкания;

- W мощность солнечного излучения, падающего на поверхность фотоэлемента.
- I_m , V_m показано на рис. 3.1

Рис. 3.1. Вольт- амперная характеристика солнечных элементов

§3.8. СПРАВОЧНЫЕ ДАННЫЕ ПО ФИЗИЧЕСКИМ ВЕЛИЧИНАМ

Таблица 3.8.1.

Атом-	Название	Сим-	Атомная	Кристалл-	Плотность,	Темпера-	Темпе-
ный		вол	масса	лическая	г/см³	тура плав-	ратура
номер				структура		ления, °С	кипения,
-				10 01			°C
1	Водород	Н	1,00797	Газ	$8,988 \cdot 10^{-5}$	-259,1	-252,7
2	Гелий	He	4,0026	Газ	$1,785 \cdot 10^{-4}$	-272	-268,9
3	Литий	Li	6,939	ОЦК	0,534	186	1336
4	Бериллий	Be	9,0122	ГПл	1,845	1280	2970
5	Бор	В	10,811	ГПр	2,34	2300	2550**
6	Углерод	С	12,0111	ГЦК	3,51	3500	4200
7	Азот	N	14,0067	Газ	$1,25 \cdot 10^{-3}$	-209,9	-195,8
8	Кислород	0	15,9994	Газ	1,43.10-3	-2,18,4	-182,9
9	Фтор	F	18,9815	Газ	1,69.10-3	-223	-118
10	Неон	Ne	20,183	Газ	$9,0.10^{-4}$	-248,7	-245,9
11	Натрий	Na	22,9898	ОЦК	0,971	97,5	880
12	Магний	Mg	24,312	ГПл	1,74	651	1107
13	Алюминий	Al	26,9815	ГЦК	2,70	660	2060
14	Кремний	Si	28,086	ГЦК	2,42	1415	2355
15	Фосфор	Р	30,9738	Сложн.	1,83	44,1	280
16	Сера	S	32,064	Сложн.	2,07	112,8	444,6
17	Хлор	Cl	35,453	Газ	3.21.10-3	-101,6	-34,6
18	Аргон	Ar	39,948	Газ	$1,78 \cdot 10^{-3}$	-189,2	-185,7
19	Калий	Κ	39,102	ОЦК	0,87	62,3	760
20	Кальций	Ca	40,08	ГЦК	1,545	845	1240
21	Скандий	Sc	44,956	ГЦК	3,02	1200	2400
22	Титан	Ti	47,90	ГПл	4,5	1800	3300
23	Ванадий	V	50,942	ОЦК	5,96	1710	3000
24	Хром	Cr	51,996	ОЦК	7,14	1890	2480
25	Марганец	Mn	54,938	ОЦК	7,2	1260	1900
26	Железо	Fe	55,847	ОЦК	7,87	1535	3000
27	Кобальт	Co	58,933	ГЦК	8,9	1495	2900
28	Никель	Ni	58,71	ГЦК	8,9	1453	2900
29	Медь	Cu	63,54	ГЦК	8,93	1083	2340
30	Цинк	Zn	65,37	ГПл	7,14	419,5	907
31	Галлий	Ga	69,72	Сложн.	5,91	29,8	1983
32	Германий	Ge	72,59	ГЦК	5,36	958	2700
33	Мышьяк	As	74,922	ГПр	5,73	615**	_
34	Селен	Se	78,96	ГПр	4,8	217	688
35	Бром	Br	79,909	Жидк.	3,12	-7,2	58,8

Некоторые свойства химических элементов

Продолжение табл. 3.8.1.

26	TC	17	02.00	Г	0 74 10-3	1566	1.52.0
36	Криптон	Kr	83,80	1 a3	$3,74 \cdot 10^{-5}$	-156,6	-152,9
37	Рубидий	Rb	85,47	ОЦК	1,53	38,5	700
38	Стронций	Sr	87,62	ОЦК	2,60	757	1150
39	Иттрий	Y	88,906	ГПл	5,51	1490	2500
40	Цирконий	Zr	95,94	ГПл	6,44	1857	2900
41	Ниобий	Nb	(99)	ОЦК	8,57	2500	3700
42	Молибден	Mo	101,07	ОЦК	10,2	2620	4800
43	Технеций	Tc	102,905	ГПл	—	(2700)	
44	Рутений	Ru	106,4	ГПл	12,1	2450	4900
45	Родий	Rh	107,87	ОЦК	12,5	1966	4500
46	Палладий	Pd	112,40	ОЦК	12,16	1550	2200
47	Серебро	Ag	114,82	ОЦК	10,50	960,5	1950
48	Кадмий	Cd	118,69	ГПл	8,65	320,9	767
49	Индий	In	121,75	Т	7,28	156,4	2000
50	Олово	Sn	127,60	Т	7,30	231,9	2270
51	Сурьма	Sb	126,90	Р	6,69	630,5	1380
52	Теллур	Te	131,3	ГПр	6,24	452	1390
53	Йод	J	132,905	Сложн.	4,93	113,5	184,4
54	Ксенон	Xe	137,34	Газ	$5,9.10^{-3}$	-112	-107,1
55	Цезий	Cs	137,34	ОЦК	1,873	28,5	670
56	Барий	Ba	138,91	ОЦК	3,5	850	1140
57	Лантан	La	138,91	ГПл	6,16	866	4340
58	Церий	Ce	140,12	ГЦК	6,8	804	2400
59	Празеодим	Pr	140,97	ГЦК	6,5	940	3020
60	Неодим	Nd	144,24	ГПл	7,0	1024	3300
61	Промеций	Pm	(147)	Неизв.		—	_
62	Самарий	Sm	150,35	Р	7,5	1052	(1900)
63	Европий	Eu	151,96	ОЦК	5,2	1150	(1700)
64	Гадолиний	Gd	157,25	ГПл	7,9	(1350)	(3000)
65	Тербий	Tb	158,92	ГПл	8,3	325	(2800)
66	Диспрозий	Dy	162,5	ГПл	8,6	(1500)	(2600)
67	Гольмий	Но	164,93	ГПл	8,8	(1500)	(2700)
68	Эрбий	Er	167,26	ГПл	9,1	(1530)	(2600)
69	Тулий	Tm	168,93	ГПл	9,3	(1530)	(2400)
70	Иттербий	Yb	173,04	ГЦК	7,0	824	(1800)
71	Лютеций	Lu	174,94	ГПл	9,9	(1700)	(3500)
72	Гафний	Hf	178,49	ГПл	11,3	2130	3200
73	Тантал	Та	180,948	ГЦК	16,6	2996	4100
74	Вольфрам	W	183,85	ГЦК	19,3	3400	5900
75	Рений	Re	186,2	ГПл	20,5	3180	5050
76	Осмий	Os	190,2	ГПл	22,5	2700	5400

Продолжение табл. 3.8.1.

77	Иридий	Ir	192,2	ГЦК	22,4	2450	5300
78	Платина	Pt	195,09	ГЦК	21,37	1770	4300
79	Золота	Au	196,967	ГЦК	19,32	1063	2600
80	Ртуть	Hg	200,59	Жидк.	13,55	—38,9	356,9
81	Таллий	Tl	204,37	ГПл	11,85	303,5	1457
82	Свинец	Pb	207,19	ГЦК	11,35	327,3	1620
83	Висмут	Bi	209,98	Р	9,78	271,3	1440
84	Полоний	Po	(210)	М	—	260	_
85	Астат	At	(211)	Неизв.	—	—	—
86	Радон	Rn	222	Газ	$9,8.10^{-3}$	—71	-61,8
87	Франций	Fr	(223)	Неизв.	—	—	—
88	Радий	Ra	226,05	Неизв.	5,0	700	1140
89	Актиний	Ac	227,05	Неизв.	—	(1600)	
90	Торий	Th	232,038	ГЦК	11,5	1845	4500
91	Протактиний	Pa	231,1	Т	(15,4)	$(3\overline{000})$	_
92	Уран	U	238,03	Сложн.	19,05	1150	(3800)

Обозначения: ОЦК – объемно – центрированная кубическая; ГЦК – гранецентрированная кубическая; ГПл – гексагональная с плотной упаковкой; ГПр – гексагональная простая; Т – тетрагональная; М – моноклинная; Р – ромбическая.

§ 3.8.1. СООТНОШЕНИЕ МЕЖДУ ФИЗИЧЕСКИМИ ЕДИНИЦАМИ

Таблица 3.8.1.1

Единицы	Μ	КМ	СМ	ММ	МКМ	НМ
1 м	1	10 ⁻³	100	10^{3}	10 ⁶	109
1 M	10^{3}	10	$100 \\ 10^{5}$	10^{10}	10^{9}	10^{12}
1 KM	10	1 10 ⁻⁵	10	10	10^{10^4}	10
	0,01	10	1	10	10	10
I MM	10-5	10-0	0,1	1	105	10°
1 мкм	10-6	10-9	10 ⁻⁴	10^{-3}	1	10^{3}
1 нм	10-9	10 ⁻¹²	10-7	10-6	10-3	1

Соотношение между единицами длины

Таблица 3.8.1.2

Соотношение между единицами массы

Единицы массы	КТ	Мт	Т	ц	Г	МΓ	а.е.м.				
1 кт	1	10-9	10 ⁻³	0,01	10 ³	10 ⁶	$6,02 \cdot 10^{26}$				
1 Мт	10 ⁹	1	10 ⁶	10 ⁷	10 ¹²	10 ¹⁵	$6,02 \cdot 10^{33}$				
1 т	10^{3}	10-6	1	10	10^{6}	10^{9}	$6,02 \cdot 10^{29}$				
1 ц	100	10-7	0,1	-1	10^{5}	10^{8}	$6,02 \cdot 10^{28}$				
1 г	10-3	10 ⁻¹²	10-6	10 ⁻⁵	1	10^{3}	$6,02 \cdot 10^{23}$				
1 мг	10-6	10 ⁻¹⁵	10 ⁻⁹	10 ⁻⁸	10 ⁻³	1	$6,02 \cdot 10^{20}$				
1 а.е.м.	1,66.10-27	1,66.10-36	$1,66 \cdot 10^{-30}$	1,66.10-29	1,66.10-24	1,66. 10-21	1				
Примечан	Примечание. Более точное значение атомной единицы массы: 1а.е.м. =										
1,66057.10) ⁻²⁷ кг										

Таблица 3.8.1.3

Единицы времени	с	Mc	сут	Ч	МИН	мкс	нс
1 c	1	10-6	1,16.10-5	$2,78 \cdot 10^{-4}$	1,67.10-2	10 ⁶	10^{9}
1 Mc	10^{6}	1	11,6	278	$1,67 \cdot 10^4$	10^{12}	10^{15}
1 сут	86400	8,64·10 ⁻²	1	24	1440	8,64·10 ¹⁰	8,64·10
1ч	3600	3,6.10-3	0,04167	1	60	$3,6.10^9$	$3,6\cdot10^{12}$
1 мин	60	$6 \cdot 10^{-5}$	6,9445·10 ⁻⁴	$1,67 \cdot 10^{-2}$	1	$6 \cdot 10^{7}$	$6 \cdot 10^{10}$
1 мкс	10 ⁻⁶	10 ⁻¹²	1,16·10 ⁻¹¹	$2,78 \cdot 10^{-10}$	1,67·10 ⁻⁸	1	10^{10}
1 нс	10 ⁻⁹	10 ⁻¹⁵	$1,16\cdot10^{-14}$	$2,78 \cdot 10^{-13}$	$1,67 \cdot 10^{-11}$	10 ⁻³	1
При	мечание	. 1 год = 3	65,2421987	8 cyt = 315	56925,9747	c ≈3,16.10	⁷ c

Соотношение между единицами времени

Таблица 3.8.1.4

Соотношение между единицами силы

Единицы силы	Н	тс	кгс	гс	дин	мгс				
1 H	1	1,02.10-6	0,102	102	10 ⁵	$1,02 \cdot 10^5$				
1 тс	$9,81 \cdot 10^3$	1	10^{3}	10^{6}	$9,81 \cdot 10^8$	10^{9}				
1 кгс 9,81 10^{-3} 1 10^3 9,81 $\cdot 10^5$										
1 гс	9,81.10-3	10 ⁻⁶	10 ⁻³	1	981	10^{3}				
1 дин	10 ⁻⁵	1,02.10-9	1,02.10-6	1,02.10-3	1	1,02				
1 мгс	9,81.10-6	10-9	10 ⁻⁶	10-3	0,981	1				
Примечан	ие. 1 кгс=	=9,80655 H	[(точно)=9	980,665·10 ³	дин;					
	1 гс =9,80655·10 ⁻³ Н (точно)= 980665 мН (точно);									
	1 тс=9,80655·10 ³ Н (точно);									
	1 дин-	$= 10^{-5} \text{ H} = 1$,01972.10	⁶ кгс.						

Единицы	There				D	- D			
энергии	Дж	кгс•м	эрг	кал	Вт∙ч	эв			
(раооты)	(работы)								
1 Дж	1	0,102	10 ⁷	0,239	$2,78 \cdot 10^{-4}$	$6,24 \cdot 10^{18}$			
1 кгс•м	I кгс·м 9,81 1 9,81·10 ⁷ 2,34 2,72·10 ⁻³								
1 эрг	1 эрг 10 ⁻⁷ 1,02·10 ⁻⁸ 1 2,39·10 ⁻⁸ 2,78·10 ⁻¹¹								
1 кал	4,19	0,427	$4,19.10^{7}$	1	$1,16\cdot10^{-3}$	$2,61 \cdot 10^{19}$			
1 Вт.ч	3600	367	$3,60 \cdot 10^{10}$	860	1	$2,25 \cdot 10^{22}$			
1 эВ	1,60·10 ⁻¹⁹	1,63.10 ⁻²⁰	$1,60.10^{-12}$	3,83·10 ⁻²⁰	$4,45 \cdot 10^{-23}$	1			
Примечан	ие. 1 Вт.ч	н=3,6 МДж	к (точно)=3	3,6·10 ⁶ Дж=	3,6·10 ¹³ эрі				
=367098 к	сгс∙м=224	,71·10 ²³ эВ	в=859,845 н	ккал=1,3596	бл.с. ·ч;				
1 кка	л=4186,8	Дж (точно	о)= 10 ⁻³ Мк	ал=4,1868∙	10 ¹⁰ эрг (то	чно)=			
=4,26,935	кгс•м=2,6	5147·10 ²² э	B=1,163.10) ⁻³ кВт∙ч=1,	5812·10 ⁻³ л	.с. •ч;			
1 кгс⋅м=9,80665 Дж (точно)= 9,80665⋅10 ⁷ эрг=2,72407⋅10 ⁻⁶ кВт⋅ч=									
=2,34228	кал=3,703	570·10 ⁻⁶ л.с	с. •ч;						
1 эВ=	=10 ⁻⁶ МэВ:	=1,60219.1	10 ⁻¹⁹ Дж=0,	160219 аДж	$x = 4,4502 \cdot 10$) ⁻²⁶ кВт∙ч			

Соотношение между единицами энергии (работы)

Таблица 3.8.1.6

Соотношение между единицами мощности

Единицы мошности	Вт	кВт	МВт	кгс•м/с	эрг	л.с.		
1 Вт	1	10 ⁻³	10-6	0,102	10 ⁷	1,36.10-3		
1 кВт	10^{3}	1	10 ⁻³	102	10^{10}	1,36		
1МВт	10^{6}	10^{3}	1	$1,02.10^{5}$	10^{13}	$1,36 \cdot 10^3$		
1кгс•м/с	9,81	9,81·10 ⁻³	9,81·10 ⁻⁶	1	9,81·10 ⁷	$1,33 \cdot 10^{-2}$		
1 эрг	10 ⁻⁷	10 ⁻¹⁰	10 ⁻¹³	1,02.10-8	1	1,36.10-10		
1 л.с.	735,5	0,7355	7,355.10-4	75	$7,355 \cdot 10^9$	1		
Примечание	е. 1 Вт=0,	101972 кг	$c \cdot M/c = 10^{-3}$	⁶ кВт=10 ⁻⁶ М	MBT=			
=367098 кгс	с∙м =1,359	6·10 ⁻³ л.с.	=0,238846	бккал/с;				
1 кВт=10 ⁻³ М	ИВт= 100	0 Вт=101	,972 кгс·м/	с=1,3596 л.	с.=367098 в	кгс∙м/ч;		
1 кгс·м	/c=9,8066	5 Вт (точ	но)= 9,806	65·10 ⁷ эрг/с	с (точно);			
1 л.с. =	735,499 E	Вт=75 кгс∙	м/ч=27000	0 кгс•м/ч;				
1 кал/с=4,1868 Вт (точно)=41,868·10 ⁶ эрг/с (точно)=0,0426935								
кгс•м/с;								

Таблица 3.8.1.6

Соотношение между единицами массы и энергии

Единицы	КГ	Г	эB	МэВ	эрг	Дж	кВт∙ч	а.е.м.
1 кг	1	10^{3}	$5,61 \cdot 10^{35}$	5,61·10 ²⁹	$8,99 \cdot 10^{23}$	8,99·10 ¹⁶	$2,50 \cdot 10^{10}$	$6,02 \cdot 10^{26}$
1 г	10-3	1	$5,61 \cdot 10^{32}$	$5,61 \cdot 10^{26}$	8,99·10 ²⁰	8,99·10 ¹⁵	$2,50.10^7$	$6,02 \cdot 10^{23}$
1 эВ	1,78.10-36	1,78.10-33	1	10^{6}	$1,60.10^{-12}$	1,60.10 ⁻¹⁹	4,45·10 ⁻²⁶	1,074·10 ⁻⁹
1 МэВ	$1,78 \cdot 10^{-30}$	$1,78 \cdot 10^{-27}$	10-6	1	1,60.10-6	$1,60.10^{-13}$	$4,45 \cdot 10^{-20}$	1,074·10 ⁻³
1 эрг	1,11.10 ⁻²⁴	1,11.10 ⁻²¹	$6,24 \cdot 10^{11}$	$6,24 \cdot 10^5$	1	10^{7}	$2,78 \cdot 10^{-14}$	$6,70.10^2$
1 Дж	1,11.10-17	1,11.10 ⁻¹⁴	$6,24 \cdot 10^{18}$	$6,24 \cdot 10^{12}$	10-7	1	$2,78 \cdot 10^{-7}$	$6,70.10^9$
1 кВт.ч	4,00.10 ⁻¹¹	4,00.10-3	$2,25 \cdot 10^{25}$	$2,25 \cdot 10^{19}$	$3,60.10^{13}$	$3,60.10^{6}$	1	$2,41 \cdot 10^{16}$
1 а.е.м.	1,66.10 ⁻²⁷	1,66.10 ⁻²⁴	9,21·10 ⁸	$9,21 \cdot 10^2$	1,49.10-3	1,49.10 ⁻¹⁰	$4,14.10^{-17}$	1
Примеча	ние. Энер	гетически	ій эквива.	пент атом	ной едини	цы массы	(1 а.е.м=	
=1,6605.1	.0 ⁻²⁷ кг≈1,0	66·10 ⁻²⁷ кг) равен ≈	1,49·10 ⁻¹⁰ ,	Дж ≈ 149	пДж (931,	48 МэВ)	
Энергети	ческий эк	вивалент	массы эл	іектрона ($m_e = 9,109$	-10 ⁻³¹ кг=5	,486·10 ⁻⁴ a	.е.м) ра-
вен 8,16∙1	∣0 ⁻³ пДж =	= 0,511 Ma	θB					

§3.8.2. ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ (КОНСТАНТЫ)

Таблица 3.8.2.

Физические постоянные (константы)

Физическая постоянная	Обозначение	Значение постоянной
Скорость распространения электромаг- нитных волн (скорость света) в вакууме (в свободном пространстве)	с	399792458 м/с
Элементарный заряд электрона	e	1,60219·10 ⁻¹⁹ Кл
Масса покоя электрона	m _e	9,10953·10 ⁻³¹ кг
Масса покоя нейтрона	$m_n(1839 \cdot m_e)$	1,67495·10 ⁻²⁷ кг
Масса покоя протона	$m_p(1836 \cdot m_e)$	1,67265·10 ⁻²⁷ кг
Постоянная Больцмана	k	1,381·10 ⁻²³ Дж/К
Газовая постоянная (молярная)	R	8,314 Дж/(моль·К)
Гравитационная постоянная	G	6,672·10 ⁻¹¹ H·м ² /кг ²
Постоянная Планка	$h = \frac{h}{2\pi}$	6,626·10 ⁻³⁴ Дж·с 1,055·10 ⁻³⁴ Дж·с
Постоянная Фарадея	F	96484,56 Кл/моль
Молярный объем идеального газа при нормальных условиях (t=0°C, p=101,325 кПа)	V_{m}	2,241·10 ⁻² м ³ /моль
Постоянная Авогадро	N _a	6,022·10 ²³ моль ⁻¹
Постоянная Лошмидта	N _t	2,687·10 ²⁵ м ⁻³
Температурный коэффициент объемного	ρ	1/273,16 K ⁻¹ =0,00367
расширения газов	р	К-1
Абсолютный нуль температуры	T ₀	0К=-273,15°С
Температура замерзания воды (плавле- ния льда)		0°C=273,15K
Атомная единица массы	u	1,66057·10 ⁻²⁷ кг
Электрон – вольт	eV	1,602·10 ⁻¹⁹ Дж
Нормальное атмосферное давление	р _{атм.н}	101325 Па
Скорость звука в воздухе при нормальных условиях	с	331,5 м/с
Ускорение свободного падения (нор- мальное)	g _n	9,80665 м/с ²
Радиус первой электронной орбиты в атоме водорода	a ₀	5,29·10 ⁻⁶ кг/Кл
Электрохимический эквивалент серебра	k _{Ag}	13595 кг/м ³
Плотность ртути при нормальных усло- виях (t=0°C, p=101,325 кПа)	Q _{Hg}	
Плотность воздуха при нормальных ус- ловиях (t=0°C, p=101,325 кПа)	Q _{вод}	1,293 кг/м ³

Название частицы		Символ		Macca	200 00	Среднее
		Постино	Анти-	покоя	Заряд	время жиз-
		частица	частица	$m_e=1$	Q	ни, с
	Фотон	γ	γ	0	0	-
	Нейтрино	γ		0	0	Стабильная
HbI	Антинейтрино		$\overline{\gamma}$	0	0	
ПТС	Электрон	e		1	-е	Стабильная
Лe	Позитрон		e^+	1	+e	
	Мюон	μ	μ^+	207	∓e	$2,2.10^{-6}$
	π-мезон	π^0	π^0	264	0	$0,8.10^{-16}$
30H Ы		π^{-}	π^+	273	∓e	$2,6.10^{-8}$
	η- мезон	η^0	η^0	1074	0	<10 ⁻¹⁶
Me	17	K ⁰	$\overline{\mathrm{K}}_{\mathrm{0}}$	974	0	10 ⁻¹⁰
	К- мезон	K^+	K ⁻	966	±e	1,2.10-8
	Протон	p^+		1836	+e	Стабильная
	Антипротон		\overline{p}	1836	-е	
	Нейтрон	n		1839	0	10^{3}
Барионы	Антинейтрон		n	1057	0	10
	Л-гиперон	Λ^0	$\overline{\Lambda}^0$	2183	0	$2,6\cdot 10^{-10}$
		Σ^+	$\overline{\Sigma}^{-}$	2328	±e	$0,8.10^{-10}$
	Σ- гиперон	Σ^0	$\overline{\Sigma}{}^{0}$	2334	0	<10 ⁻¹⁴
	÷	Σ^{-}	$\overline{\Sigma}^+$	2343	∓e	$1,5.10^{-10}$
	Ξ- гиперон	Ξ^0	[<u></u>]	2573	0	$3 \cdot 10^{-10}$
		Ξ^-	+ [1]	2586	∓e	$1,7.10^{-10}$
	Ω- гиперон	Ω^{-}	Ω^+	3278	±e	$1,3.10^{-10}$

Элементарные частицы

Электронные состояния

Оболочка	n	l	Обозначение	m	S	Число со- стояний	Число со- стояний в каждой оболочке
K	1	0	1s	0	$\pm 1/2$	2	2
L	2	0	2s	0	$\pm 1/2$	2	8
		1	2p	0	$\pm 1/2$	2	
				± 1	$\pm 1/2$	4	
М	3	0	3s	0	$\pm 1/2$	2	18
		1	3p	0	$\pm 1/2$	2	
				± 1	$\pm 1/2$	4	
		2	3d	0	$\pm 1/2$	2	
				± 1	$\pm 1/2$	4	
				± 2	$\pm 1/2$	4	
N	4	0	4s	0	$\pm 1/2$	2	32
		1	4p	0	$\pm 1/2$	2	
				± 1	$\pm 1/2$	4	
		2	4d	0	$\pm 1/2$	2	
				± 1	$\pm 1/2$	4	
				± 2	$\pm 1/2$	4	
		3	4f	0	$\pm 1/2$	2	
				± 1	$\pm 1/2$	4	
				±2	$\pm 1/2$	4	
				± 3	$\pm 1/2$	4	

n-главное квантовое число; l-орбитальное квантовое число; m-магнитное квантовое число; s-спиновое квантовое число

Спектр атома водорода

m	n	Серия	Область спектра	Длина волны λ, нм
5	1	Лаймана	Ультрафиолетовая	94
4	1			97
3	1			103
2	1			122
7	2	Бальмера	Видимая	397
6	2			410
5	2			434
4	2			486
3	2			656
7	3	Пашена	Инфракрасная	1005
6	3			1094
5	3			1282
4	3			1875
7	4	Брекета	Инфракрасная	2165
6	4			2625
5	4			4051
7	5	Пфунда	Инфракрасная	4652
6	5			7458
Электрические величины

Величина	Уравнение	Единица
Сила тока	$I = \frac{dQ}{dt}$	А
Заряд	Q=It	Кл=А·с
Напряжение	U=Ed	В
Напряженность поля	$E = \frac{U}{d}$	В/м
Электрическое смещение	$D = \frac{Q}{A}$	Кл/м ²
Электрическая постоянная	$\varepsilon_0 = \frac{1}{\mu_0 c^2}$	$\Phi/_{ m M}$
Относительная диэлектрическая проницаемость	3	-
Абсолютная диэлектрическая проницае- мость	$\epsilon_m = \epsilon_0 \epsilon$	Ф/м
Емкость	$C = \frac{Q}{U}$	Ф=Кл/В
Емкость плоского конденсатора	$C = \frac{\varepsilon_m A}{d}$	Φ
Энергия поля	$W = \frac{CU^2}{2}$	Дж=Вт∙с
Энергия плоского конденсатора	$W = \frac{\varepsilon_a E^2 V}{2}$	Дж=Вт·с
Плотность энергии	$w = \frac{\varepsilon_a E^2}{2} = \frac{DE}{2}$	Дж/м ³

Величина	Уравнение	Единица
Напряжение индукции	$U = -N\frac{d\Phi}{dt}$	В
Магнитный поток	Ф=BA	Вб=В∙с
Магнитодвижущая сила	F=H1	А
Напряженность поля	$H = \frac{IN}{l}$	А/м
Магнитная индукция	$B = \frac{\Phi}{A}$	$T\pi = B \cdot c/M^2$
Магнитная постоянная	$\mu = \frac{1}{\varepsilon_0 c^2}$	Гн/м
Относительная магнитная проницае- мость	μ	-
Абсолютная магнитная проницаемость	$\mu_m = \mu_0 \mu$	Гн/м
Индуктивность	$L = \frac{\Phi N}{I}$	Гн=В·с/А
Индуктивность тороидальной катушки	$L = \frac{\mu_m A N^2}{l}$	Гн
Энергия поля	$W = \frac{LI^2}{2}$	Дж=Вт·с
Энергия тороидальной катушки	$W = \frac{\mu_m H^2 V}{2}$	Дж=Вт·с
Плотность энергии	$w = \frac{\mu_m H^2}{2} = \frac{BH}{2}$	Дж/м ³

Магнитные величины

Полупроводник	ρ	OM:M	Изоляторы	ρ, Ом∙м
Апюминий	0.027	$2.7 \cdot 10^{-8}$	Бакелит	10 ¹⁶
Провол	0,027	2,710 2 87.10 ⁻⁸	Бензол	10^{15} 10^{16}
Вольфрам	0,055	5,5.10-8	Бумага	10 ¹⁵
Графит	8,0	8,0·10 ⁻⁶	Вода дистиллирован- ная	10 ⁴
Железо чистое	0,1	1,0.10-7	Вода морская	0,3
Золото	0,022	2,2.10-8	Дерево сухое	10^910^{13}
Иридий	0,0474	4,74.10-8	Земля влажная	10 ²
Константан	0,50	5,0.10-7	Кварцевое стекло	10 ¹⁶
Литая сталь	0,13	$1,3.10^{-7}$	Керосин	$10^{10}10^{12}$
Магний	0,044	$4, 4.10^{-8}$	Мрамор	10^{8}
Манганин	0,43	$4,3.10^{-7}$	Парафин	$10^{14}10^{16}$
Медь	0,0172	$1,72 \cdot 10^{-8}$	Парафиновое масло	10^{14}
провод	0,0178	$1,78 \cdot 10^{-8}$	Плексиглас	10 ¹³
Молибден	0,054	$5,4.10^{-8}$	Полистирол	10^{16}
Нейзильбер	0,33	3,3.10-7	Полихлорвинил	10^{13}
Никель	0,087	8,7·10 ⁻⁸	Полиэтилен	$10^{10}10^{13}$
Нихром	1,12	$1,12 \cdot 10^{-6}$	Силиконовое масло	10^{13}
Олово	0,12	$1,2.10^{-7}$	Слюда	10^{14}
Платина	0,107	$1,07 \cdot 10^{-7}$	Стекло	10^{11}
Ртуть	0,96	9,6·10 ⁻⁷	Трансформаторное	$10^{10}10^{13}$
Свинец	0,208	$2,08 \cdot 10^{-7}$	масло	
Серебро	0,016	1,6.10-8	Фарфор	10^{14}
Серый чугун	1,0	1,0.10-6	Шифер	10 ⁵
Угольные щетки	40	$4,0.10^{-5}$	Эбонит	10^{16}
Цинк	0,059	$5,9.10^{-8}$	Янтарь	10^{18}

Удельное электрическое сопротивление ρ (при 20°С)

		q		
	Т _{пл} , °С	кДж/кг	ккал/кг	
Азот	-210,0			
Алюминий	660,1	397	98,4	
Аммиак	-77,7			
Ацетон	-949	98	23,4	
Бензол	5,53	128	30,6	
Висмут	271,3	52,2	12,5	
Вода	0	333,7	79,7	
Водород	-259,2	58,6	14	
Вольфрам	3380	192	45,9	
Глицерин	18,4	201	48	
Двуокись углерода	-56,6			
Диэтилэфир	-116,3	98,4	23,5	
Железо чистое	1535	277	66,2	
Золото	1063	65,7	15,7	
Иридий	2454	117	27,9	
Кислород	-218,8			
Кремний	1420	164	39	
Латун	920			
Медь	1083	205	49	
Цинк	419,5	111	25,8	
Никель	1453	303	72,4	
Цезий	28,64	16,4	3,9	
Олово	231,9	59,6	14,2	
Парафин	54			
Платина	1769,3	111	26,5	
Ртуть	-38,87	11,8	2,8	
Свинец	327,4	23,0	5,5	
Серебро	960,8	104,5	25	
Цинк	419,5	111	26,6	
Этиловый спирт	-114,5	108	25,8	

Температура плавления $t_{\mbox{\tiny пл}}$ и удельная теплота плавления q

			r		
	t _ĸ ,°C	кДж/кг	ккал/кг		
Азот	-195,82	198	47,3		
Алюминий	2450	10900	2603		
Аммиак	-33,4	1370	327		
Ацетон	56,25	525	125		
Бензол	80,1	394	94,1		
Вода	100	2256	538,9		
Водород	-252,77	454	108		
Гелий	-268,94	20,6	4,92		
Глицерин	290,5				
Двуокись серы	-10,02	390	93,1		
Диметилэфир	-24,8	467	112		
Диэтилэфир	34,5	384	91,7		
Железо чистое	2735	6340	1514		
Золото	2700	1650	394		
Кислород	-182,97	213	50,9		
Криптон	-153,4	108	25,8		
Медь	2590	4790	1140		
Метан	-161,5	510	122		
Метиловый спирт	64,6	1100	263		
Никель	2800	6480	1550		
Олово	2430	2450	585		
Пентан	36,1	360	86		
Ртуть	356,58	285	68,1		
Свинец	1750	8600	2054		
Сера	444,6	290	69,3		
Толуол	110,62	364	86,9		
Углерод	4350	5.10^4	12000		
Фосфор	280	400	96		
Фреон 12 (CCl ₂ F ₂)	-24,9	162	38,7		
Хлороформ	61,3	279	66,6		
Цинк	907	1755	419		
Четыреххлористый углерод	76,6	195	46,6		
Этиловый спирт	78,33	840	201		

Температура кипения t_{κ} и удельная теплота парообразования r

	Скорость электрона		Масса электрона		
Ускоряющее на- пряжение U, В	$\frac{\upsilon}{c}$	υ, км/с	$\frac{m_e}{m_{e0}}$	т, кг	
1	1,95.10-3	548	1,000	0,911.10-30	
10	6,24·10 ⁻³	1872	1,000	0,911	
10^{2}	0,0198	5929	1,000	0,911	
10^{3}	0,0625	18728	1,002	0,913	
10^{4}	0,195	58455	1,020	0,929	
10 ⁵	0,548	174352	1,196	1,089	
1.10^{6}	0,941	282128	2,957	2,694	
$2 \cdot 10^{6}$	0,979	293519	4,914	4,476	
$3 \cdot 10^{6}$	0,989	296600	6,870	6,258	
5.10^{6}	0,996	298501	10,78	9,824	
8.10^{6}	0,998	299252	16,66	1,517.10 ⁻²⁹	
1.10^{7}	0,999	299438	20,57	1,874	
2.10^{7}	1-3,1.10-4	299699	40,14	3,656	
$3 \cdot 10^7$	$1-1, 4\cdot 10^{-4}$	299750	59,71	5,439	
5.10^{7}	1-5,12.10-5	299777	97,85	8,913	
8.10^{7}	1-2,02.10-5	299786	157,6	1,435.10-28	
1.10^{8}	1-1,3.10-5	299789	196,7	1,792	
1.10^{9}	1-2.10-7	299792	1958	1,784.10-27	

Зависимость массы электрона от скорости

с=2,998·10⁸ м/с-скорость света в вакууме

m_e- масса электрона, движущегося со скоростью υ

 $m_{e0}=9,11\cdot 10^{-31}$ кг – масса покоя электрона

Единицы измерения важнейших физических величин

Физическая величина	Обозначение	Единица измерения, краткие обо-
		значения
Длина	l,s	метр, м
Площадь	А	M ²
Объем	V	M ³
Время	t	секунд, с
Частота	ν	герц, Гц=1/с
Частота вращения	n	оборот/секунд
Угловая частота	ω	1/c
Скорость	υ	м/с
Масса	m	килограмм, кг
Плотность	ρ	кг/м ³
Сила	F	ньютон, Н=кг·м/с ²
Bec	G	килограмм-сила, кгс=9,80665Н
Момент силы	М	ньютон-метр, Н·м=кг·м ² /с ²
Коэффициент упругости	k	кгс/см==980,665Н/м
Коэффициент трения	β	кг/с
Работа	W,A	Джоуль, Дж=Н·м
Энергия	W,E	кгс·м=9,80665Дж
Количество теплоты	Q	киловатт-час, кВт·ч=3,6·10 ⁶ Дж электрон-вольт, эВ=1,60219·10 ⁻ ¹⁹ Дж
Мощность	Р	ватт, Вт=Дж/с=кг·м ² /с ²
Давление	р	паскаль, Па=Н/м ² =кг/(с ² ·м)
Импульс	р	Н•с=кг•м/с
Температура по шкале Кельвина	Т	кельвин, К градус Кельрина °К=К
Температура по шкале Цельсия	t	градус Цельсия, °С t=T-T ₀ ; T ₀ =273.15К
Теплоемкость	С	$Дж/K=BT\cdot c/K=H\cdot m/K=\kappa r\cdot m^2/(c^2\cdot K)$

Продолжение

Теплопроводимость	λ	$BT/(M \cdot K) = K\Gamma \cdot M/(c^3 \cdot K)$
		ккал/(м·ч·К)=1,163Вт/(м·К)
Сила электрического тока	Ι	ампер, А
Количество электричества,	Q	кулон, Кл=А·с
заряд		
Электрическое напряжение	U	вольт, B=Bт/A=кг·м ² /(c ³)
Электрическое сопротивле-	R	Ом, Ом= $B/A = \kappa \Gamma \cdot M^2 / (c^3 \cdot A^2)$
ние		
Электрическая проводи-	G	сименс,
МОСТЬ		$C_M=1/O_M=A/B=c^3 \cdot A^2/(\kappa_{\Gamma} \cdot M^2)$
Удельное электрическое со-	ρ	Ом метр,
противление		$O_{M} \cdot M = B \cdot M / A = \kappa \Gamma \cdot M^3 / (c^3 \cdot A^2)$
Удельная электрическая	σ	$C_M/M=1/O_M \cdot M = c^3 \cdot A^2/(\kappa \Gamma \cdot M^3)$
проводимость		4 2 2
Электрическая емкость	С	Фарад, $\Phi = K \pi / B = c^4 \cdot A^2 / (\kappa \Gamma \cdot M^2)$
Напряженность электриче-	Е	$B/M = \kappa \Gamma \cdot M / (c^3 \cdot A)$
ского поля		
Напряженность магнитного	Н	А/м
поля		эрстед, Э=79,5775 А/м
Магнитный поток	F	вебер, $B \overline{b} = B \cdot c = \kappa \Gamma \cdot M^2 / (c^2 \cdot A)$
Магнитная индукция	В	Тесла, Тл= $B6/M^2 = B \cdot c/M^2 = \kappa r/(c^2 \cdot A)$
Индуктивность	L	генри, Гн= $B6/A = \kappa r \cdot m^2/(c^2 \cdot A^2)$
Поток излучения	$\Phi_{\rm e}$	$B_T = \kappa \Gamma \cdot M^2 / c^2$
Энергетическая сила света	Ie	$BT/cp=\kappa \cdot M^2/(c^3 \cdot cp)$
Сила света	Ι	кандела, кд
Яркость	В	кд/м ²
Световой поток	Φ	люмен, лм=кд·ср
Освещенность	Е	люкс, лк=лм/м ² =кд·ср/m ²
Световая энергия	Q	люмен секунд, лм с=с кд ср
Количество вещества	n	моль, моль
Молярная масса	М	кг/мол
Молярный объем	V _m	м ³ /мол
Молярная теплоемкость	C _m	Дж/(моль·К)=кг·м ² /(c^2 ·моль·К)

Строение атома

Рис. 3.2. Зависимость давления паров от температуры твердых элементов

Рис. 3.3. Зависимость давления паров от температуры для жидких элементов

§3.8.4. СПЕКТР ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Рис. 3.3. Диаграмма электромагнитного спектра.

§3.8.5. ИЗОТОПЫ НЕКОТОРЫХ ЭЛЕМЕНТОВ

Первый, наиболее легкий элемент периодической системы Менделеева – водород имеет три изотопа: два стабильных (протий и дейтерий) и один радиоактивный – тритий (период его полураспада 12,3 года)

Таблица 3.8.3.1

	Название изотопа			
Помороточи	Протий*	Дейтерий**	Тритий ***	
показатели	(легкий водород)	(тяжелый водо-	(сверхтяжелый	
		род)	водород)	
Название ядра атома водоро-				
да	протон	деитрон	тритон	
Число протонов в ядре	1	1	1	
Число нейтронов в ядре	-	1	2	
Число электронов в атоме	1	1	1	
Массовое число изотопа	1	2	3	
Встречающиеся обозначения		² H; ² ₁ H; D;	³ H; ³ ₁ H; T;	
изотопа	н, н, ін, р	${}^{2}D; {}^{2}_{1}D; d$	${}^{3}T; {}^{3}_{1}T; t$	
Природный изотопный со- став водорода, %	99,985	≈0,0156	≈10 ⁻¹⁵ -10 ⁻¹⁶	

Изотопы водорода

Примечание 1. В соединениях с кислородом протий образует обычную воду (H₂O), дейтерий – тяжелую (D₂O), тритий – сверхтяжелую воду (T₂O).

2. Тяжелая вода содержится в природной воде в очень небольшом количестве (0,016%): на одну молекулу тяжелой воды приходится примерно 6800 молекул обычной воды. Сверхтяжелая вода в природе образуется в ничтожно малых количествах (например, в дождевой воде 1 атом трития приходится примерно на 10¹⁸ атомов протия). Во всей воде Земли содержится лишь 15 – 20 кг сверхтяжелой воды.

3. В промышленности тритий получают при облучении лития нейтронами.

* Протий от греч. protos – первый.

** Дейтерий от греч. deuteros – второй.

***Тритий от греч. tritos – третий.

Таблица 3.8.3.2

Изотопный состав некоторых элементов

Атомный	Обозначение	Обозначение	Содержание	В соста	в изотопа в	ходят
номер	элемента	изотопа	изотопа в	электронов	протонов	нейтронов
элемента			данном эле-			
			менте, %			
2	Не	$^{3}_{2}$ He	0,0001	2	2	1
2	Не	⁴ ₂ He	99,9999	2	2	2
3	Li	⁶ ₃ Li	7,52	3	3	3
3	Li	⁷ ₃ Li	92,48	3	3	4
4	Be	⁹ ₄ Be	100	4	4	5
5	В	$^{10}_{5}{ m B}$	19,6	5	5	5
5	В	$^{11}_{5}{ m B}$	80,4	5	5	6
6	С	${}^{12}_{6}C$	98,88	6	6	6
6	С	$^{13}_{6}C$	1,12	6	6	7
7	Ν	$^{14}_{7}{ m N}$	99,64	7	7	7
7	Ν	$^{15}_{7}{ m N}$	0,36	7	7	8
8	0	$^{16}_{8}{ m O}$	99,759	8	8	8
8	0	$^{17}_{8}{ m O}$	0,037	8	8	9
8	0	¹⁸ / ₈ O	0,204	8	8	10
9	F	$^{19}_{9}{ m F}$	100	9	9	10
92	U	²³⁴ ₉₂ U	0,0056	92	92	142
92	U	²³⁵ ₉₂ U	0,7205	92	92	143
92	U	²³⁸ ₉₂ U	99,2739	92	92	146

§3.8.6. ВЛИЯНИЕ СКОРОСТИ НА ПАРАМЕТРЫ ТЕЛ

Изменение массы тела при его движение. Масса тела m, движущегося со скоростью v, возрастает с увеличением скорости. Эта зависимость массы тела от скорости выражается формулой:

$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
, (1)

где m₀ – масса тела в покое; с – скорость распространения света в вакууме. График, выражающий зависимость массы тела от скорости его движения, показан на рис. 3.8.6.1.

В таблице 3.8.6.1 при расчетах по указанной формуле значение скорости света *с* округлено и принято 300000 км/с.

	Масса т движущего
Скорость и движения тела	тела при указанной
	скорости
8,0 км/с (1-я космическая скорость)=0,000027 с	m=1,00000000355m ₀
11,2 км/с (2-я космическая скорость)=0,000037 с	m=1,00000000697m ₀
16,7 км/с (3-я космическая скорость)=0,000056 с	m=1,0000000155m ₀
30 км/с (скорость движения Земли вокруг Солнца)=0,0001 с	m=1,00000005m ₀
30000 км/с=0,1с	m=1, 005m ₀
70000 км/с (скорость электронов в телевизионной труб-	$m=1.032m_{\odot}$
ке)≈0,23 с	iii 1, 052iii)
150000 км/с=0,5 с	m=1, 155m ₀
270000 км/с=0,9	m=2,294m ₀
297000 км/с=0,99 с	m=7,089m ₀
299700 км/с=0,999 с	m=22,366m ₀
299999,7 км/с=0,9999999 с	m=706,667m ₀
299999,97 км/с=0,9999999 с	m=2209,709m ₀

Изменение длины тела при его движении. Длина тела *l*, движущего со скоростью υ, уменьшается с увеличением скорости. Эта зависимость продольных размеров тела от скорости выражается формулой:

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$
, (2)

где l_0 – длина тела в покое; *с* – скорость распространения света в вакууме. График, выражающий зависимость массы тела от скорости его движения, показан на рис. 3.8.6.2.

В таблице 3.8.6.2 при расчетах по указанной формуле значение скорости света *с* округлено и принято 300000 км/с.

	Длина <i>l</i> движущего
Скорость и движения тела	тела при указанной
	скорости
8,0 км/с (1-я космическая скорость)=0,000027 c	<i>l</i> =0,999999999645 <i>l</i> ₀
11,2 км/с (2-я космическая скорость)=0,000037 с	<i>l</i> =0,999999999303 <i>l</i> ₀
16,7 км/с (3-я космическая скорость)=0,000056 с	<i>l</i> =0,99999999845 <i>l</i> ₀
30 км/с (скорость движения Земли вокруг Солнца)=0,0001 с	<i>l</i> =0,99999995 <i>l</i> ₀
30000 км/с=0,1с	<i>l</i> =0,995 <i>l</i> ₀
70000 км/с (скорость электронов в телевизионной труб-	$l = 0.966 l_{0}$
ке)≈0,23 с	
150000 км/с=0,5 с	<i>l</i> =0,866 <i>l</i> ₀
270000 км/с=0,9	<i>l</i> =0,436 <i>l</i> ₀
297000 км/с=0,99 с	<i>l</i> =0,141 <i>l</i> ₀
299700 км/с=0,999 с	<i>l</i> =0,0447 <i>l</i> ₀
299999,7 км/с=0,999999 с	<i>l</i> =0,00142 <i>l</i> ₀
299999,97 км/с=0,9999999 с	<i>l</i> =0,00045 <i>l</i> ₀

Рис. 3.8.6.1. Зависимость массы тела от скорости его движения.

Рис. 3.8.6.2. Зависимость длины тела от скорости его движения.

Литература:

- 1. Ч. Китель Введение в физику твердого тела. Под ред. Гусева, М.:1963.
- 2. **Н. Ашкрофт**, **Н. Мертап** Физика твердого тела. Под ред. Каганова, М.: Мир, 1979.
- 3. М.П. Шаскольская Кристаллография. М.: Высшая школа, 1984.
- 4. Рейвн Дефекты и примеси в полупроводниковом кремнии. Под редакцией С.Н. Горина, М: Мир, 1984.
- 5. **Бьюб Р.** Физика и химия соединений А^{II}В^{VI}. М.: Мир, 1970.
- 6. **К.Д. Глинчук**. Полупроводниковая техника и микроэлектроника Примеси в германии, кремнии и арсениде галлия. 1972. №7 57-70с.
- 7. А. Милнс Примеси с глубокими уровнями в полупроводниках. М.: Мир, 1972.
- 8. Р. Бьюб Фотопроводимость твердых тел. М.: 1962.
- 9. Физика и химия соединений А^{II}В^{VI}. Под ред. С.А Медведова, 1970.
- 10.Полупроводниковые соединений А^ШВ^V. Под ред. **Роберта Виллардсона** и **Харвия Гёринга**, М: 1962.
- 11. **К. Хилсум, А. Рауз инг** Полупроводники типа $A^{III}B^V$ М: 1963.
- 12. А.С. Енохович Справочник по физике и техники, М: Просвещение, 1989.
- 13.**В.И. Фистуль** Введение в физику полупроводников, М: Высшая школа, 1975.
- 14. Технология полупроводниковых соединений. Под ред. Нашельского, М: Металлургия, 1962.
- 15. **Л. Росада** Физическая электроника и микроэлектроника. М: Высшая школа, 1991.
- 16.**Т.Д. Джафаров** Дефекты и диффузия в эпитаксиальных структурах. Ленинград, Наука, 1978.
- 17. М. Омельяновский, В.И. Фистуль Примеси переходных металлов в полупроводниках. М.: Металлургия, 1981.
- 18. Б.И. Болтакс Диффузия и точечные дефекты в полупроводниках. Ленинград, Наука, 1971.
- 19. В.В. Пасынков, В.С. Сорокин Материалы электронной техники. М.: Высшая школа, 1981.
- 20. М.К. Бахадирханов Докторская диссертация. Ленинград, 1982.
- 21.А.Т. Мамадалимов Докторская диссертация. 1975.
- 22. **Stanley Middleman** Process engineering analysis in semiconductor device fabrication. New York, 1993.
- 23. Jacob Millman, Ph.D. Microelectronics. New York Book company, 1994.
- 24.S.M. She Physics of semiconductor divices, New Delhi, 1993.
- 25. **П.В. Павлов**, **А.Ф. Хохлов** Физика твердого тела. М.: Высшая школа, 2000.

- 26. Adolf Goerzherger, Joachim Knobloch, Bepnhard Voss Crystalline silicon solar cells, New York, 1998.
- 27. С.З. Зайнобиддинов, А.Т. Тешабоев Қаттиқ жисмлар физикаси. Тошкент, 2000.
- 28. Ф.М. Толипов Докторская диссертация. Ташкент, 2002.
- 29. Н.Ф. Зикриллаев Докторская диссертация. Ташкент, 2002.
- 30. Х.М. Илиев Докторская диссертация. Ташкент, 2002.
- 31. Silicon compounds: silanes and silicones. 2004.
- 32. Solar energy, Special issues thin film PV, v. 77, №6, 2004.
- 33.<u>www.jhsilicon.com</u>
- 34.<u>www.siliconquest.com</u>
- 35.<u>www.svmi.com</u>)
- 36.www.sumcosi.com
- 37.www.silicon-wafers.com
- 38.www.girmet.com
- 39.<u>www.Comsecore.com</u>
- 40.www.fcm-semicon.com
- 41.<u>www.waferworld.com</u>