Ф. М. КОСТЕРЕВ, В. И. КУШНЫРЕВ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ

Допущено Министерством энергетики и электрификации СССР в качестве учебника для учащихся энергетических и энергостроительных техникумов

МОСКВА ЭНЕРГИЯ 1978

Костерев Ф. М., Кушнырев В. И.

К 72 Теоретические основы теплотехники: Учебник для энергетических и энергостроительных техникумов. — М.: Энергия, 1978. — 360 с., ил.

В пер.: 75 к.

В книге изложены основные положения технической термодинамики и теплопередачи, знание которых необходимо для понимания принципов работы теплотехнического оборудования. Рассмотрены первый и второй законы термодинамики, термодинамические процессы, циклы двигателей внутреннего сгорания и паротурбинных установок, истечение и дросселирование газов и паров. Изложены основы переноса теплоты теплопроводностью, конвекцией и излучением. Книга снабжена справочными таблицами и расчетными примерами.

Книга является учебником для учащихся энергетических и энергостроительных техникумов и может быть использована как пособие для повышения квалификации.

 $K \frac{30302-385}{051(01)..78} 6-78$

ББҚ 31.31 6П2.2

ФЕДОР МИХАЙЛОВИЧ КОСТЕРЕВ ВАЛЕРИЙ ИОСИФОВИЧ КУШНЫРЕВ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ

Редактор В. А. Андрианова Редактор издательства Н. М. Пеунова Переплет художника П. П. Перевалова Художественный редактор Т. А. Алябьева Технический редактор Г. Г. Хацкевич Корректор Г. А. Полонская

ИБ № 1269

Сдано в набор 31.0	5.78 Под	писано	к печати	18.07.78	T-138	45	
Формат 84×1081/32	Бумага ти	пографс	кая № 2	Гарн	. шрифта лит	ература	ная
Печять высокая	Усл. пе	ч. л. 1	8,9	Уч	изд. л. 19,	18	
Тираж 40 000 экз.		Зак.	702		Цена 75	к.	
Издательство «Эн	нергия», 11	3114, 1	Москва,	M-114,	Шлюзовая	наб.,	10
Московская типог комитете Совста и кыяжпей то	рафия № 10 Министров рговли. 113) Союз СССР 114, М	вполигра по дела осква, М	фпрома ім изда I-114, Ш	при Государ тельств, пол люзовая на	ственн пиграф б., 10	ом ии
		© I	Издател	ьство	«Энергия»,	1978	г.

ПРЕДИСЛОВИЕ

Книга предназначена для использования в качестве учебника по курсу «Теоретические основы теплотехники» для средних технических учебных заведений. Содержание книги соответствует программе для теплоэнергетических специальностей, утвержденной Управлением учебных заведений Министерства энергетики и электрификации СССР.

Книга состоит из двух частей: первая посвящена технической термодинамике, вторая-теплопередаче. В первой части рассматриваются основные понятия, первое и второе начала термодинамики, термодинамические процессы идеальных и реальных газов, циклы двигателей внутреннего сгорания, паротурбинных установок и компрессоров, процессы истечения газов. Во второй части освещены вопросы переноса теплоты теплопроводностью, конвекцией и излучением, метод подобия и основы теплового расчета теплообменников. При изложении материала авторы старались обращать особое внимание на физическую сущность изучаемых явлений, формировать у учащихся научное понимание основ теплотехники и прививать им практические навыки в решении задач прикладного характера. При этом авторы исходили из того, что изучение теоретических основ теплотехники должно предшествовать изучению специальных курсов, посвященных парогенераторам, паротурбинным установкам, автоматизации тепловых процессов, эксплуатации теплоэнергетических установок.

Первая часть книги «Техническая термодинамика» написана Ф. М. Костеревым, вторая часть «Теплопередача» — В. И. Кушныревым.

Авторы с благодарностью примут все критические замечания и пожелания читателей, которые можно направлять по адресу: 113114, Москва, М-114, Шлюзовая наб., 10, издательство «Энергия».

Авторы

ВВЕДЕНИЕ

Интересы развития нашей страны требуют всесторонней интенсификации производства, ускорения научнотехнического прогресса, роста производительности труда. Важным фактором в решении этих проблем является энергетика. В решениях XXV съезда КПСС были поставлены грандиозные задачи ее дальнейшего развития. Производство электроэнергии в 1980 г. будет доведено до 1340—1380 млрд. кВт.ч, будут построены новые электростанции мощностью 67—70 млн. кВт, в том числе на атомных станциях будут введены мощности 13—15 млн. кВт.

Поставленные задачи представляют собой очередной крупный этап в реализации идеи В. И. Ленина о том, что «коммунизм — это есть Советская власть плюс электрификация всей страны». В 1913 г. производство электроэнергии на душу населения в России составляло 14 кВт.ч, а в 1975 г. этот показатель в СССР превысил 4000 кВт.ч.

В нашей стране около 81% электроэнергии вырабатывается на тепловых электростанциях (примерно такая же цифра характерна для США). В последние годы в нашей стране сооружены крупнейшие тепловые электростанции: Криворожская — мощностью 3 млн. кВт, Приднепровская, Бурштынская, Змиевская — каждая по 2,4 млн. кВт, Углегорская и Запорожская — каждая по 3,6 млн. кВт. Сооружается Чигиринская тепловая электростанция мощностью до 5 млн. кВт. Идет строительство новых атомных станций — Курской, Чернобыльской, Южно-Украинской и др.

Специалист в области современной теплобнергетики должен обладать глубокими знаниями физико-технических процессов, связанных с получением энергии на тепловых и атомных электрических станциях. Изучение теоретических основ теплотехники (технической термодинамики и теплопередачи) преследует цель создания общей базы, необходимой для последующего усвоения особенностей устройства и работы теплоэнергетических установок и систем. Изучением последних занимаются специальные дисциплины, имеющие более конкретный прикладной характер.

Основная задача технической термодинамики заключается в создании общей теории тепловых машин. Предметом такой теории являются взаимные превращения двух видов энергии — механической и тепловой. Теплоту получают при сжигании топлива на тепловой Электростанции и преобразуют в механическую энергию вращающегося вала паровой турбины. Преобразование осуществляется путем организации так называемого цикла теплосиловой установки. В технической термодинамике изучаются методы построения циклов и методы анализа их эффективности, что является необходимым для обеспечения экономичности производства энергии.

Отдельные процессы цикла осуществляются в соответствующих агрегатах тепловой электростанции: в парогенераторах происходит получение и перегрев пара, в турбине — расширение пара с получением механической работы, в конденсаторе — конденсация пара, после чего цикл повторяется. Расчет и проектирование указанных агрегатов производится с учетом параметров цикла, определяемых на основе термодинамического анализа, а также с учетом интенсивности теплопередачи. Так, например, определение температуры и давления перегретого пара производится на основе термодинамического анализа, а расчет и проектирование пароперегревателя осуществляется методами теплопередачи. Предметом теплопередачи является изучение различных способов переноса теплоты — теплопроводности, конвек-ции и теплового излучения. Знание интенсивности переноса теплоты позволяет определять площадь поверхности и тем самым размеры теплообменных теплообмена аппаратов.

Историческое развитие термодинамики связано с именами выдающихся ученых. Закон сохранения энергии был сформулирован М. В. Ломоносовым и позволил получить первое начало термодинамики, создателями которого считаются Майер, Джоуль, Гельмгольц. Открытие второго начала термодинамики, указывающего направленность термодинамических процессов, связано с именами Карно, Клаузиуса, Томсона, Больцмана

⁶

и других ученых. Промышленное использование паросиловых двигателей началось в XVIII в. Впервые в мире универсальную паровую машину непрерывного действия сконструировал и построил русский изобретатель Ползунов (1765 г.). В 1784 г. свою паровую машину построил англичанин Уатт. В конце XIX в. появилась паровая турбина, получившая в настоящее время самое широкое распространение.

Теплопередача является относительно молодой наукой, и развивалась она в основном в текущем столетии. Большой вклад в развитие учения о теплообмене сделали советские ученые В. М. Кирпичев, М. А. Михеев и др. Особенно бурное развитие теплопередачи происходит в последние десятилетия в связи с внедрением интенсивных способов переноса теплоты в тепловой и атомной энергетике, ракетной и космической технике и т. п.

Изложение материала в книге предполагает знакомство читателя с такими первоначальными понятиями математического анализа, как производная и интеграл, а также с разделами физики, посвященными механике и теплоте. По ходу изложения в книге приводятся примеры решения задач. Для знакомства с практическими методами решения задач и закрепления материала можно рекомендовать задачники: Рабинович О. М. «Сборник задач по технической термодинамике». М., «Машипостроение», 1969; Краснощеков Е. А., Сукомел А. С. «Задачник по теплопередаче». М., «Энергия», 1975 (материал этого задачника был частично использован при составлении примеров).

В книге используется Международная система единиц измерения (СИ).

Часть первая

ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА

ГЛАВА ПЕРВАЯ

ОСНОВНЫЕ ПОЛОЖЕНИЯ. ЗАКОНЫ ИДЕАЛЬНЫХ ГАЗОВ

1-1. Предмет технической термодинамики и ее задачи

Термодинамика изучает закономерности превращения энергии в разнообразных физических и химических процессах. Предметом технической термодинамики является изучение процессов взаимного превращения теплоты и работы в различных тепловых машинах. Поскольку главным элементом с точки эрения превращений энергии в таких машинах служит так называемое рабочее тело (например, пар в паровой турбине), то представляют интерес и свойства рабочих тел. Термодинамика не использует в явном виде известных представлений о молекулярном строении вещества и лишь привлекает их для дополнительного объяснения протекающих процессов или полученных конечных результатов.

Основой термодинамики как науки являются два закона, полученных на основании опыта — первый и второй законы термодинамики. Первый закон термодинамики устанавливает количественную меру при переходе одного вида энергии в другой и является частным случаем всеобщего закона сохранения и превращения энергии. В торой закон термодинамики имеет более ограниченный характер и приложим к телам, имеющим конечные размеры, но состоящим из большого числа частиц — атомов и молекул. Этот закон устанавливает направление тепловых процессов, протекающих в природе, и условия преобразования теплоты в работу.

Применяя основные законы, техническая термодинамика исследует процессы, протекающие в тепловых двигателях, и устанавливает наиболее экономичные условия их работы. В тепловых машинах применяется рабочее тело газ, который при любом взаимодействии с внешней окружающей средой изменяет свое состояние. Физические макроскопические величины, характеризующие состояние рабочего тела, называются термодинамическими параметрами состояния или просто параметрами состояния. Основными параметрами состояния являются давление, температура и удельный объем. Эти параметры определяют состояние газа в том случае, когда в любой момент давление и температура, а следовательно, и удельный объем по всей массе будут иметь одно и то же значение. Такое состояние газа называется равновесным.

Давление. Давление газа есть средний результат ударов большого количества частиц (атомов или молекул) о стенки сосуда, в котором находится газ. Давление измеряется силой, приходящейся на единицу поверхности тела и направленной перпендикулярно этой поверхности; обозначается давление буквой *p*.

В Международной системе единиц (СИ) исходная единица давления представляет собой действие силы в один ньютон на площади в один квадратный метр и называется паскалем (Па), т. е.

Эта единица давления очень мала, и поэтому на практике применяются производные внесистемные единицы: кПа=10³ Па (килопаскаль); МПа=10⁶ Па (мегапаскаль); весьма распространена также внесистемная единица — бар, равная 10⁵ Па. Между приведенными единицами существуют следующие соотношения:

1 бар=10⁵ Па=10² кПа=0,1 МПа.

В технике применяется также внесистемная единица измерения давления, называемая технической атмосферой и представляющая собой действие килограмм-силы (кгс) на площади в 1 см². Следовательно,

1 ат=1 кгс/см²=10⁴ кгс/м².

Известно, что 1 Н — это сила, которая массе 1 кг сообщает ускорение 1 м/с², а килограмм-сила сообщает

той же массе ускорение в 9,81 м/с². Отсюда вытекает соотношение 1 кгс/м²=9,81 Па. Очевидно,

1 Па=0,101927 кгс/м²≈0,102 кгс/м².

Давление атмосферного воздуха измеряется барометром, поэтому оно называется барометрическим, или атмосферным, и обозначается p_{6ap} . Давление газа, большее атмосферного, измеряется манометром. Оно называется избыточным, или манометрическим, и обозначается $p_{из6}$ или $p_{ман}$. Если давление газа меньше атмосферного, то оно называется разреже-

Рис. 1-1. Измерение избыточного давления жидкостным манометром ($p_{abc} > p_{bap}$).

Рис. 1-2. Измерение разрежения (вакуума) жидкостным вакуумметром (Рабо < Рбар).

нием, или вакуумом, измеряется вакуумметром и обозначается $p_{\text{вак}}$. Избыточное и вакуумметрическое давления не являются параметрами состояния, так как при одном и том же давлении газа в сосуде показания манометра или вакуумметра будут различны в зависимости от атмосферного давления воздуха в момент измерения.

Параметром состояния является абсолютное давление, обозначаемое p_{abc} , которое может быть найдено из следующих соображений. Рассмотрим прибор, состоящий из сосуда A, наполненного газом с абсолютным давлением p_{abc} , и U-образной трубки, частично заполненной жидкостью (рис. 1-1). С левой стороны на жидкость действует абсолютное давление таза p_{abc} , а с правой — атмосферное давление воздуха p_{5ap} . Если $p_{abc} > p_{5ap}$, то жидкость будет перемещаться в трубке слева направо до тех пор, когда образующийся столб жидкости высотой h уравновесит разность давлений p_{abc} .

В этом случае прибор показывает, насколько давление газа в сосуде *А* больше атмосферного, т. е. избыточное давление. На основании изложенного можно написать:

$$p_{abc} = p_{bap} + p_{usb}.$$
 (1-1)

Таким образом, абсолютное давление газа в сосуде равно сумме показаний барометра и манометра.

Если $p_{abc} < p_{bap}$, то жидкость в правом колене трубки опустится, а в левом поднимется и займет положение, указанное на рис. 1-2. В этом случае прибор показывает, насколько давление газа в сосуде *A* меньше атмосферного, и высота столба жидкости *h* определяет вакуумметрическое давление $p_{вак}$. Следовательно, абсолютное давление газа равно разности показаний барометра и вакуумметра, т. е.

$$p_{abc} = p_{bap} - p_{bak}.$$
 (1-2)

Отсюда видно, что давление измеряется либо в единицах «сила/поверхность», либо в единицах высоты столба жидкости. Соотношение между этими величинами устанавливается уравнением

$$p = h \rho g,$$
 (1-3)

где h — высота столба жидкости, м; ρ — плотность жидкости, кг/м³; g — ускорение свободного падения, равное 9,81 м/с².

В качестве примера выразим давление в 1 бар соответствующей высотой столба жидкости.

1. При заполнении трубки ртутью

$$h = \frac{p}{\rho g} = \frac{10^8}{13\,595 \cdot 9.81} = 0.75 \text{ M} = 750 \text{ MM},$$

где $\rho = 13595 \text{ кг/м}^3 - плотность ртути при 0°С.$

2. При заполнении трубки водой

$$h = \frac{p}{\rho g} = \frac{10^6}{1000 \cdot 9,81} = 10,2 \text{ M} = 10\,200 \text{ MM},$$

где $\rho = 1000 \text{ кг/м}^3 - плотность воды при 4°С.$

В технической термодинамике используется также единица — физическая атмосфера, равная среднему давлению атмосферного воздуха на уровне моря; эта величина составляет:

11

Физическая атмосфера принимается как некое стандартное давление и называется нормальным давлением.

В Международной системе единиц нормальное давление равно:

p=10332·9,81=101325 Па=1,01325 бар.

Соотношения между различными единицами измерения давления приводятся в табл. 1-1.

Таблица 1-1

	Единицы измерения	Па	бар	кгс/см²	мм рт. ст.	мм вод. ст.
1	Па	1	10-5	1,02.10-5	7,502.10-3	0,102
1	бар	105	1	1,02	7,502·10 ²	1,02.104
1	кгс/см²	9,807.104	0,9807	1	73 5	104
1	мм рт. ст.	133	1,33.10-3	1,36.103	1	13,6
1	мм вод. ст.	9,807	9,807.10-5	10-4	7,35.10-2	1
1 1 1 1	бар кгс/см ² мм рт. ст. мм вод. ст.	1 10 ⁵ 9,807 · 10 ⁴ 133 9,807	1 0,9807 1,33.10 ⁻³ 9,807.10 ⁻⁵	1,02 1,02 1 1,36.10 ³ 10-4	7,502.10 ² 7,502.10 ² 735 1 7,35.10 ⁻²	1,02 1 13, 1

Соотношения между единицами измерения давления

Показания ртутных приборов давления изменяются в зависимости от температуры ртути вследствие ее расширения с повышением температуры. Поэтому показания барометра (манометра, вакуумметра), измеренные высотой ртутного столба, приводятся к 0°С, для чего используется уравнение

 $p^{\bullet}_{\text{fap}} = p^{t}_{\text{fap}} (1 - 0,000172 \ t),$

где $p^{\circ}_{\text{бар}}$ — показание барометра, приведенное к 0°С; $p^{t}_{\text{бар}}$ — действительная высота ртутного столба барометра при температуре ртути t, °С; 0,000172 — коэффициент объемного расширения ртути.

Температура. Температура характеризует тепловое состояние тела, например газа. Из физики известно, что температура газа изменяется пропорционально средней кинетической энергии поступательного движения молекул.

В технике температура измеряется по Международной стоградусной шкале (шкала Цельсия) и обозначается через t, °C. В этой шкале при нормальном давлении (760 мм рт. ст.) состоянию тающего льда соответствует температура 0°C, а точке кипения чистой воды — 100°C. Для измерения температуры используется также термодинамическая шкала температур (шкала абсолютных температур, или шкала Кельвина). Нуль абсолютной шкалы температур соответствует значению $t = -273,15^{\circ}$ С. Градус абсолютной шкалы температур носит название кельвина, обозначается через T, K, и равен градусу по шкале Цельсия. Из сказанного следует связь между значениями одной и той же температуры, выраженными в различных шкалах:

$$T = t + 273, 15,$$

 $T \approx t + 273.$ (1-4)

или округленно

Параметром состояния является абсолютная температура.

Удельный объем. Удельным объемом называется объем l кг газа, он обозначается буквой v, т. е.

$$v = \frac{V}{m}, \qquad (1-5)$$

где V — полный объем газа, м³; т — масса газа, кг.

Плотностью р называется масса газа, содержащаяся в единице объема, т. е.

$$\rho = \frac{m}{V}.$$
 (1-6)

Из формул (1-5) и (1-6) следует, что удельный объем и плотность газа — величины взаимно обратные и их произведение равно единице:

$$\rho v = 1.$$
 (1-7)

1-3. Законы идеальных газов. Уравнение состояния идеального газа

Реально существующие газы состоят из атомов и молекул, которые находятся в непрерывном хаотическом движении; между молекулами действуют силы притяжения и отталкивания, объем частиц имеет конечную величину. Однако очень часто газы находятся в таком состоянии, когда силы взаимодействия ничтожны, как и объем молекул, поэтому и тем и другим можно пренебречь.

Газ, у которого отсутствуют силы взаимодействия между молекулами, а их объем равен нулю, называется идеальным.

Такие газы, как кислород, водород, азот, воздух при относительно низких давлениях и высоких температурах по своим свойствам близки к свойствам идеального газа. Поэтому при термодинамических исследованиях процессов, протекающих в этих газах, используют законы и уравнение состояния идеального газа. Введение понятия идеального газа облегчило задачу термодинамических исследований, позволило получить простые математические уравнения для подсчета различных физических величин, характеризующих изменение состояния рабочего тела.

Из изложенного вытекает необходимость изучения законов идеального газа.

Закон Бойля — Мариотта. Опытным путем было установлено, что если постоянное количество газа, например 1 кг, при постоянной температуре $(T_1=T_2)$ будет переходить из одного состояния с параметрами p_1 и v_1 в другое — с параметрами p_2 и v_2 , то его давление будет изменяться обратно пропорционально объему, т. е.

$$\frac{p_1}{p_2} = \frac{v_2}{v_1}$$
 (1-8)

или

$$p_1 v_1 = p_2 v_2 = \text{const.}$$
 (1-9)

Следовательно, при постоянной температуре произведение давления на объем данной массы газа есть величина постоянная.

Закон Гей-Люссака. Если нагревать или охлаждать одно и то же количество газа при постоянном давлении $(p_1 = p_2)$, то объем газа изменяется прямо пропоршионально его абсолютной температуре; для 1 кг газа можно записать:

$$\frac{v_1}{v_2} = \frac{T_1}{T_2}.$$
 (1-10)

Закон Авогадро. В равных объемах разных газов содержится одинаковое число молекул, если эти газы будит иметь одинаковые температуру и давление.

Из закона Авогадро вытекает, что при одинаковых температурах и давлениях плотность газов пропорциональна их молекулярным массам и, т. е.

$$\frac{\rho_1}{\rho_2} = \frac{\mu_1}{\mu_2};$$
 (1-11)

так как

$$\rho = 1/v$$

$$\frac{v_2}{v_1} = \frac{\mu_1}{\mu_2}$$

откуда

$$\mu_1 v_1 = \mu_2 v_2 \dots = \mu v = \text{idem}.$$
 (1-12)

Количество газа в граммах, равное числу единиц молекулярной массы, называется молем.

Моль определяется как количество вещества, содержащее столько молекул, сколько содержится атомов в углероде-12 массой 0,012 кг. Один киломоль содержит 1000 молей. Введем для киломоля обозначение µ, кг/кмоль. Тогда произведение µv есть объем киломоля газа V_u, м³/кмоль.

Из уравнения (1-12) следует, что при одинаковых давлении и температуре объем 1 киломоля любого газа будет иметь одно и то же значение (idem). Так, например, при нормальных условиях (p=760 мм рт. ст.; $t=0^{\circ}$ C) объем 1 киломоля любого газа равен 22,4 м³/кмоль, поэтому

$$\mu v = V_{\mu} = 22, 4.$$
 (1-13)

Отсюда плотность и удельный объем любого газа при нормальных условиях определяются из простых соотношений:

$$v = \frac{22, 4}{\mu};$$
 (1-14)

$$\rho = \frac{\mu}{22,4}.$$
 (1-15)

Уравнение состояния идеального газа. Для равновесного состояния газа существует вполне определенная, однозначная зависимость между его основными параметрами *p*, *v* и *T*. Эта зависимость выражается аналитическим уравнением, которое называется уравнением состояния. Впервые уравнение состояния идеального газа было получено Клапейроном в 1834 г. путем использования опытных законов Бойля — Мариотта и Гей-Люссака; это уравнение имеет вид:

для 1 кг газа

$$pv = RT;$$
 (1-16)

для произвольной массы газа т

$$pV = mRT, \qquad (1-17)$$

15

ŤÛ

Наиболее общее выражение имеет уравнение состояния для 1 кмоля газа, предложенное Д. И. Менделеевым и называемое уравнением Менделеева — Клапейрона. Это уравнение имеет вид:

$$pV_{\mu} = \mu RT. \tag{1-18}$$

Величина μR называется универсальной газовой постоянной, так как для всех газов и в любом состоянии она имеет одно и то же значение. Определить это числовое значение можно по уравнению (1-18), если параметры состояния p и T газа взять при нормальных условиях (p=101 325 Па, T=273,15 K):

$$\mu R = \frac{pV_{\mu}}{T} = \frac{101\,325\cdot22,4}{273,15} = 8314 \, \text{Дж/(кмоль·K)}.$$

Величина *R*, Дж/(кг·К), является индивидуальной характеристикой данного вещества и называется газовой постоянной. Газовая постоянная определяется выражением

$$R = \frac{8314}{\mu}.$$
 (1-19)

Напомним, что джоуль (Дж) в системе СИ есть работа силы 1 ньютон на пути в 1 м, т. е. 1 Дж=1 Н·м. Эта единица работы очень мала, поэтому в технических расчетах применяются производные единицы: килоджоуль (1 кДж=10³ Дж), мегаджоуль (1 МДж==10⁶ Дж) и др.

Как видно, μR и R по единицам измерения есть работа, которую совершает либо 1 кмоль, либо 1 кг газа при изменении температуры на один градус.

Ниже будет показано, что такую работу совершает соответствующее количество газа в процессе при постоянном давлении.

Свойства реально существующих газов отличаются от • свойств идеальных газов и тем больше, чем в лше давление и ниже температура. В этом случае реальные газы не подчиняются законам идеальных газов и уравнению Менделеева — Клапейрона. Для реальных газов было предложено значительное количество эмпирических уравнений состояния, однако эта задача не может считаться решенной окончательно.

Приведем в качестве примера известное в физике уравнение Ван-дер-Ваальса, которое имеет вид:

$$-(p+\frac{a}{v^2})(v-b) = RT;$$
 (1-20)

здесь a/v^2 — величина, учитывающая силы взаимодействия между молекулами; b — величина, учитывающая объем молекул в объеме газа.

Коэффициенты *a* и *b* для каждого газа находятся опытным путем, но могут быть также вычислены и теоретически.

Уравнение Ван-дер-Ваальса является приближенным уразнением, его отклонение от опыта тем больше, чем выше давление и ниже температура газа, т. е. чем больше плотность газа.

1-4. Газовые смеси

В энергетике и в других отраслях промышленности в большинстве случаев в качестве рабочего тела или теплоносителя используются не однородные газы, а газовые смеси. Такими газовыми смесями являются продукты сгорания различных топлив в топках парогенераторов, в камерах сгорания газотурбинных установок и в цилиндрах двигателей внутреннего сгорания. Типичными представителями газовых смесей можно считать также природные газы, газы, являющиеся побочными продуг ами различных технологических процессов, и, наконец, атмосферный воздух.

Все эти газы являются механическими смесями, в которых никаких химических реакций не происходит. Эти газовые смеси рассматриваются как смеси идеальных газов, подчиняющихся законам идеальных газов и уравнению Менделеева — Клапейрона. Каждый газ, входящий в смесь, занимает объем смеси, имеет температуру смеси, но находится под своим давлением, которое называется парциальным.

По¹ закону Дальтона давление смеси газов равно сумме парциальных давлений:

$$p = p_1 + p_2 + \ldots + p_n,$$
 (1-21)

17

где p — давление смеси; p_1, p_2, \ldots, p_n — парциальные давления первого, второго и т. д. газов, составляющих смесь.

Составляющие газовую смесь однородные газы называются компонентами газовой смеси.

Если при температуре смеси поднять давление какого-либо компонента от парциального до давления смеси, то этот компонент займет объем, который называется парциальным.

Способы задания смеси. При расчетах с газовыми смесями необходимо знать значения ряда величин, характеризующих смесь, например: газовую постоянную смеси, плотность, молекулярную массу и др. Чтобы можно было найти необходимые характеристики, нужно знать состав газовой смеси. Состав смеси может быть задан или массами компонентов и их объемами, или массовыми и объемными долями.

Пусть газовая смесь состоит из n компонентов, массы которых равны m_1, m_2, \ldots, m_n соответственно для первого, второго и т. д. компонентов. Так как в смеси не происходит никаких химических реакций, то масса смеси m равна сумме масс компонентов

$$m = m_1 + m_2 + \ldots + m_n.$$
 (1-22)

Отношение массы компонента m_i к массе смеси mесть массовая доля этого компонента, она обозначается g_i , т. е.

$$g_1 = \frac{m_1}{m}; \quad g_2 = \frac{m_2}{m}; \ldots; \quad g_n = \frac{m_n}{m}, \quad (1.23)$$

где g_1, g_2, \ldots, g_n — массовые доли первого, второго и т. д. компонентов газовой смеси.

Очевидно, что сумма массовых долей равна единице, т. е.

$$g_1 + g_2 + \ldots + g_n = 1.$$
 (1-24)

Смесь может быть задана объемами компонентов V_i , взятыми при давлении и температуре смеси, т. е. парциальными объемами. Пусть V_1, V_2, \ldots, V_n — соответственно парциальные объемы первого, второго и т. д. компонентов, тогда объем смеси V равен их сумме, т. е.

$$V = V_1 + V_2 + \ldots + V_n. \tag{1-25}$$

Отношение парциального объема компонента к объему смеси называется его объемной долей и обозначается г.:

$$r_1 = \frac{V_1}{V}; r_2 = \frac{V_2}{V}; \dots; r_n = \frac{V_n}{V},$$
 (1-26)

где r₁, r₂, ..., r_n есть объемная доля первого, второго и т. д. компонентов; сумма их равна единице:

$$r_1 + r_2 + \ldots + r_n = 1.$$
 (1-27)

Между массовыми и объемными долями существуют простые соотношения, которые имеют вид:

$$g_{i} = \frac{m_{i}}{m} = \frac{V_{i\rho_{i}}}{V\rho} = r_{i} \frac{\rho_{i}}{\rho} = r_{i} \frac{r_{\mu_{i}}}{\mu} = r_{i} \frac{R}{R_{i}}$$
(1-28)

или

$$r_i = \rho \frac{g_i}{\rho_i} = \mu \frac{g_i}{\mu_i} = \frac{g_i R_i}{R}, \qquad (1-29)$$

где р, µ, *R* — плотность, кажущаяся * молекулярная масса и газовая постоянная смеси; $\rho_i = m_i / V_i - плот$ ность компонента, взятая при температуре и давлении смеси.

Приведенные соотношения позволяют произвести пересчет состава смеси, заданной массовыми долями, в объемные и наоборот.

Основные формулы для определения параметров смеси при задании смеси объемными долями приведены ниже.

Плотность р. Пусть смесь состоит из *n* компонентов. Из уравнения (1-Ž8) для каждого компонента можно написать:

$$g_1 = r_1 \frac{\rho_1}{\rho}; \quad g_2 = r_2 \frac{\rho_2}{\rho}; \ldots; \quad g_n = r_n \frac{\rho_n}{\rho}.$$

Суммируя почленно левые и правые части всех соотношений с учетом уравнения (1-24), получаем:

$$g_1 + g_2 + \ldots + g_n = 1 = 1 / \rho (r_1 \rho_1 + r_2 \rho_2 + \ldots + r_n \rho_n),$$

откуда

$$\rho = r_1 \rho_1 + r_2 \rho_2 + \ldots + r_n \rho_n, \qquad (1-30)$$

причем плотности компонентов $\rho_1, \rho_2, \ldots, \rho_n$ должны быть взяты при температуре и давлении смеси.

^{*} Молекулярная масса названа эдесь «кажущейся» в связи с условностью этого понятия для смеси, представляющей собой совокупность различных молекул со своими молекулярными массами. 2* 19

Кажущаяся молекулярная масса смеси μ . Согласно закону Авогадро плотности газов пропорциональны их молекулярным массам, поэтому после замены ρ на μ уравнение (1-30) приводится к виду:

$$\mu = r_1 \mu_1 + r_2 \mu_2 + \ldots + r_n \mu_n. \tag{1-31}$$

Газовая постоянная *R*. Из уравнения (1-28) для каждого компонента имеем:

$$g_1 = \frac{r_1}{R_1} R; \ g_2 = \frac{r_2}{R_2} R; \ldots; \ g_n = \frac{r_n}{R_n} R.$$

Так как

$$\Sigma g_i = R \Sigma \frac{r_i}{R_i} = 1,$$

TO

$$R = \frac{1}{\Sigma \frac{r_i}{R_i}} = \frac{1}{\frac{r_1}{R_1} + \frac{r_2}{R_2} + \dots + \frac{r_n}{R_n}}.$$
 (1-32)

Газовую постоянную смеси можно также определить по уравнению (1-19)

$$R = \frac{8314}{\mu} = \frac{8314}{r_1\mu_1 + r_2\mu_2 + \dots + r_n\mu_n},$$

где µ — кажущаяся молекулярная масса смеси.

Парциальное давление p_i . Любой компонент газовой смеси занимает объем смеси V, но находится под своим парциальным давлением p_i ; если же при постоянной температуре смеси поднять его давление p_i до давления смеси p, то объем компонента уменьшится до парциального V_i . Используя закон Бойля — Мариотта, можно написать:

 $p_i V = V_i p_i$

откуда

$$p_i = \frac{V_i}{V} p = r_i p, \qquad (1-33)$$

т. е. парциальное давление компонента определяется как произведение его объемной доли на давление смеси.

Основные формулы для определения параметров смеси при задании смеси массовыми долями имеют следующий вид. Плотность р. Пусть смесь состоит из *n* компонентов. Для каждого компонента из уравнения (1-29) можно написать:

$$r_1 = \rho \frac{g_1}{\rho_1}; \quad r_2 = \rho \frac{g_2}{\rho_2}; \ldots; \quad r_n = \rho \frac{g_n}{\rho_n}.$$

Складывая раздельно левые и правые части соотношений с учетом уравнения (1-24), получаем:

$$r_1+r_2+\ldots+r_n=1=\rho(g_1/\rho_1+g_2/\rho_2+\ldots+g_n/\rho_n),$$

откуда

$$\rho = \frac{1}{g_1/\rho_1 + g_2/\rho_2 + \dots + g_n/\rho_n} \,. \tag{1-34}$$

Кажущаяся молекулярная масса смеси μ. В соответствии с уравнением (1-11) молекулярные массы газа пропорциональны их плотностям, поэтому, заменяя в уравнении (1-34) ρ на μ, получаем:

$$\mu = \frac{1}{g_1/\mu_1 + g_2/\mu_2 + \dots + g_n/\mu_n}.$$
 (1-35)

Газовая постоянная R. Из уравнения (1-29)

$$r_1 = g_1 R_1 / R; \quad r_2 = g_2 R_2 / R; \quad \dots; \quad r_n = g_n R_n / R.$$

Так как $\Sigma r_i = 1$, то после почленного суммирования получим:

$$R = g_1 R_1 + g_2 R_2 + \ldots + g_n R_n. \tag{1-36}$$

Следовательно, газовая постоянная смеси равна сумме произведений массовой доли на газовую постоянную каждого компонента.

Парциальное давление *p_i*. Напишем уравнение состояния для компонента

$$p_i V = m_i R_i T \tag{a}$$

и для смеси газов

$$pV = mRT.$$
 (6)

Разделив уравнение (а) на (б) и выполнив элементарные преобразования, получим необходимое уравнение для определения парциального давления

$$p_l = g_l \frac{R_l}{R} p = g_l \frac{\mu}{\mu_l} p.$$
 (1-37)

Пример 1-1. Давление 1 мм рт. ст. и 1 мм вод. ст., взятые соответственно при 0°С и 4°С, выразить в паскалях.

Решение. При принятых температурах для ртути $\rho = = 13595 \text{ кг/м}^3$, для воды $\rho = 1000 \text{ кг/м}^3$. Ускорение свободного падения $g = 9.81 \text{ м/c}^2$.

По формуле (1-3) имеем: для 1 мм рт. ст.

$$p = h \rho g = 0,001 \cdot 13595 \cdot 9,81 = 133,3$$
 Па;

для 1 мм вод. ст.

$$p = h \rho g = 0,001 \cdot 1000 \cdot 9,81 = 9,81$$
 Па.

Пример 1-2. Разрежение в конденсаторе по вакуумметру равно 700 мм рт. ст. при $t=50^{\circ}$ С, атмосферное давление по барометру составляет 750 мм рт. ст. при $t=20^{\circ}$ С.

Определить абсолютное давление в кгс/см² и МПа.

Решение. Приводим показания ртутных приборов давления к 0°С:

$$p_{\text{Bak}}^{\bullet} = p_{\text{Bak}}^{t} (1 - 0,000172t^{\circ}\text{C}) =$$

$$= 700 (1 - 0,000172 \cdot 50) = 694 \text{ MM pt. ct.;}^{\circ}$$

$$p_{\text{6ap}}^{\bullet} = p_{\text{6ap}}^{t} (1 - 0,000172t^{\circ}\text{C}) =$$

$$= 750 (1 - 0,000172 \cdot 20) = 747,4 \text{ MM pt.}^{\circ}\text{ct.;}$$

$$p_{a6c} = p_{\text{6ap}}^{\bullet} - p_{\text{Bak}}^{\bullet} = 747,4 - 694 = 53,4^{\circ}\text{MM pt. ct.;}$$

$$p_{a6c} = \frac{53,4}{735,6} = 0,0726 \text{ krc/cm}^{\circ};$$

$$p_{a6c} = \frac{53,4}{750} = 0,0713 \text{ 6ap} = 0,00713 \text{ MIA}.$$

Пример 1-3. Давление * в парогенераторе по манометру составляет 15 МПа. Найти абсолютное давление в парогенераторе.

Решение. При больших избыточных давлениях атмосферное давление обычно не задается и его принимают равным 0,1 МПа (1 бар). Поэтому

$$p_{abc} = p_{abc} + p_{bap} = (15 + 0, 1 = 15, 1 M \Pi a)$$

Пример 1-4. Определить газовую постоянную для воздуха, водорода, кислорода и азота.

Решение. По формуле (1-19) имеем:

$$R_{\rm B} = \frac{8314}{\mu_{\rm B}} = \frac{8314}{28,95} = 287^{3} \, \text{Д} \text{ж} / (\text{kr} \cdot \text{K});$$

$$R_{\rm H_{2}} = \frac{8314}{\mu_{\rm H_{3}}} = \frac{8314}{2,016} = 4124 \, \text{Д} \text{ж} / (\text{kr} \cdot \text{K});$$

$$R_{\rm O_{2}} = \frac{8314}{\mu_{\rm O_{3}}} = \frac{8314}{32} = 260 \, \text{Д} \text{ж} / (\text{kr} \cdot \text{K});$$

$$R_{\rm N_{2}} = \frac{8314}{\mu_{\rm N_{2}}} = \frac{8314}{28} = 297,0 \, \text{Д} \text{ж} / (\text{kr} \cdot \text{K}).$$

^{*} Во всех случаях, когда не указано, о каком давлении идет речь, имеется в виду абсолютное давление.

Пример 1-5. Определить плотность кислорода и азота при нормальных условиях (760 мм рт. ст., 0°С).

Решение. По формуле (1-15) имеем:

$$\begin{split} \rho_{O_{a}} &= \frac{\mu_{O_{a}}}{22,4} = \frac{32}{22,4} = 1,429 \text{ kr/m}^{3};\\ \rho_{N_{a}} &= \frac{\mu_{N_{a}}}{22,4} = \frac{28}{22,4} = 1,251 \text{ kr/m}^{3}. \end{split}$$

Пример 1-6. Определить плотность кислорода при *р*===4,0 МПа и *t*==127°С.

Решение. По уравнению (1-16)

$$\rho = \frac{p}{RT} = \frac{1}{260 \cdot 400} = 38.5 \text{ Kg/m}^3.$$

Пример 1-7. Атмосферный воздух состоит по объему из 21% кислорода и 79% азота. При нормальных условиях определить плотность, газовую постоянную и кажущуюся молекулярную массу смеси. Найти также парциальное давление компонентов.

Решение. Плотность

$$\rho = (r\rho)_{O_a} + (r\rho)_{N_a} = 0,21 \cdot 1,429 + 0,79 \cdot 1,251 = 1,293 \text{ kg/m}^3.$$

Молекулярная масса

$$\mu = (r\mu)_{O_a} + (r\mu)_{N_a} = 0,21 \cdot 32 + 0,79 \cdot 28 = 28,95.$$

Газовая постоянная

Парциальное давление:

$$p_{O_2} = r_{O_2} p = 0.21.760 = 159.5$$
 MM pt. ct.;

 $p_{N_*} = r_{N_*} p = 0,79.760 = 600,5 \text{ MM pt. ct.}$

ГЛАВА ВТОРАЯ ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

2-1. Эквивалентность теплоты и работы

Закон сохранения и превращения энергии устанавливает, что энергия не уничтожается и не создается вновь, а лишь переходит из одной формы в другую в различных физических, химических и других процессах. Переход энергии одного вида в другой происходит по закону эквивалентности, т. е. определенному количеству энергии данного вида всегда соответствует одно и то же количество энергии другого вида.

Экспериментальное подтверждение закона сохранения энергии было получено в работах русских и зарубежных ученых. В 1840 г. русский академик Г. Гесс впервые после М. В. Ломоносова сформулировал закон сохранения энергии применительно к термохимическим процессам: в 1844 г. русский академик Р. Ленц установил количественное соотношение между электрической энергией и теплотой. Немецкий ученый Р. Майер, изучая тепловые процессы, теоретически вычислил механический эквивалент теплоты, положив в основу расчета значения теплоемкостей воздуха. Так как эти теплоемкости были весьма неточны, то и конечный результат, т. е. значение механического эквивалента, значительно отличался от истинного. Позднее на основе большого количества опытов с использованием различных веществ английский исследователь Д. Джоуль также определил механический эквивалент.

Эквивалентность между теплотой и работой выражается уравнением

Q = AL

или

$$L = EQ$$
,

где L — работа, перешедшая в теплоту, кгс м; Q — теплота, полученная за счет работы, ккал; A — коэффициент пропорциональности, называемый термическим эквивалентом работы; E — механический эквивалент теплоты.

В настоящее время значение механического эквивалента принимают равным

Е=427 кгс.м/ккал

и, следовательно,

A ==
$$\frac{1}{427}$$
 ккал/(кгс⋅м).

В последующем изложении для измерения теплоты и работы используется единица системы СИ — джоуль (1 Дж).

2-2. Термодинамический процесс

Всякое изменение парамстров состояния рабочего тела называется термодинамическим процессом, или просто процессом. Каждый процесс со-24 вершается при тепловом и механическом взаимодействии рабочего тела с внешней окружающей средой, при этом состояние последней также изменяется. При бесконечно медленном изменении состояния внешней среды процесс будет совершаться с бесконечно малой скоростью, вследствие чего температура и давление внешней среды и рабочего тела в каждый момент будут различаться на бесконечно малую величину. При осуществлении такого процесса можно считать, что температура и давление по всей массе рабочего тела (которым чаще всего служит газ) будут иметь одно и то же значение и, следовательно, газ находится в равновесном состоянии.

Термодинамический процесс, состоящий из непрерывного ряда равновесных состояний, называется равновесным.

Равенство давлений по всей массе газа характеризует его механическое равновесие, а равенство темпера-

тур — термическое равновесие. Используя эти понятия, можно установить, что необходимым условием протекания равновесных процессов является существование механического и гермического равновесия газа.

При изучении термодинамических процессов используется их графическое изображение в различных координатных системах, в частности, в систе-

Рис. 2-1. Изображение обратимого процесса.

ме координат *p* и *v*, которое называется *p*, *v*-диаграммой. По оси ординат откладываются абсолютные давления, а по оси абсцисс — удельные объемы газа. При заданных *p* и *v* равновесное состояние изображается точкой, а равновесный процесс — в общем случае кривой линией.

Изобразим в *p,v*-диаграмме произвольный равновесный процесс линией 1—2 (рис. 2-1). Из графика видно, что при переходе газа из начального 1 в конечное состояние 2 происходит понижение давления и увеличение удельного объема газа. Это есть процесс расширения газа, который считается прямым процессом. Обратным процессом считается процесс сжатия газа, когда он из состояния 2 переходит в начальное состояние 1; при этом происходит уменьшение удельного объема и повышение давления. Характерным свойством равновесных процессов является их обратимость. Это значит, что если при расширении из состояния 1 газ проходит через промежуточные равновесные состояния a, b, c, f, m (рис. 2-1), то при обратном процессе сжатия из состояния 2 газ пройдет через те же состояния, но в обратной последовательности m, f, c, b, a и возвратится в начальное состояние 1.

В связи с этим равновесные процессы называются обратимыми процессами.

Вышеизложенное позволяет сделать вывод, что в результате протекания сначала прямого, а затем обратного равновесных процессов в термодинамической системе «рабочее тело — окружающая среда» никаких изменений не произойдет.

Равновесные обратимые процессы являются идеальными процессами, которые в первую очередь рассматриваются термодинамикой.

Все реальные процессы протекают с большой скоростью и при наличии конечной разности температур и давлений между газом и внешней средой. В связи с этим термическое и механическое равновесие газа не соблюдается, поэтому эти процессы будут неравновесными и, следовательно, необратимыми. Как при расширении, так и при сжатии газа с большой скоростью в нем возникают вихревые движения, энергия которых вследствие трения переходит в тепло и усваивается газом. Наличие трения является характерным признаком необратимых процессов и сопровождается потерей внешней работы.

При отсутствии механического и термического равновесия газа его состояние не определяется однозначно величинами *p* и *v* и поэтому изображение состояния и процесса в *p,v*-диаграмме, как и в других координатах, будет условно.

Изучать реальные необратимые процессы затруднительно, и поэтому термодинамика изучает только теоретические обратимые процессы. Это оправдывается также и тем, что чаще всего на практике отклонение реальных процессов от идеальных незначительно и не принимается во внимание. В случаях больших отклонений переход от идеальных процессов к реальным осуществляется путем введения поправочных коэффициентов, полученных на основании опыта. В технической термодинамике понятие внутренней энергии газа распространяется лишь на ту часть энергии, которая в термодинамических процессах подвергается изменениям. Это есть внутренняя кинетическая и внутренняя потенциальная энергии, сумма их и составляет внутреннюю энергию газа.

Внутренняя кинетическая энергия зависит от скорости движения и массы молекул и состоит из энергии поступательного и вращательного движения молекул, а также энергии колебательного движения атомов в самих молекулах. Согласно кинетической теории перечисленные виды энергии зависят только от температуры и при ее повышении увеличиваются.

Внутренняя потенциальная энергия обусловливается силами взаимодействия между молекулами и зависит от расстояния между ними и, следовательно, от удельного объема газа, который в свою очередь зависит от давления и температуры газа.

Таким образом, внутренняя энергия реального газа зависит от основных параметров газа: *p*, *v* и *T*.

В идеальных газах силы взаимодействия между молекулами отсутствуют и поэтому внутренняя энергия идеального газа равна его внутренней кинетической энергии и зависит только от температуры.

В каждом состоянии газ обладает вполне определенным запасом внутренней энергии, поэтому сама внутренняя энергия характеризует его состояние, т. е. является параметром состояния. Внутренняя энергия 1 кг газа обозначается буквой *и* и в системе СИ измеряется в Дж/кг; используется также внесистемная единица ккал/кг, между ними существует соотношение

1 ккал/кг=4186,8 Дж/кг=4,19 кДж/кг.

В технической термодинамике определяется не абсолютное значение внутренней энергии, а ее изменение при переходе газа из одного состояния в другое; поэтому совершенно безразлично, в каком состоянии принять ее значение равным нулю. Обычно считают, что внутренняя энергия газа равна нулю при нормальных условиях, т. е. при t=0°C и при p=760 мм рт. ст.

Поскольку изменение внутренней энергии зависит только от начального и конечного состояний газа и не зависит от свойств процесса, то с математической точки

зрения это означает, что дифференциал внутренней энергии есть полный дифференциал, т. е.

$$\int_{1}^{2} du = u_{\mathbf{s}} - u_{\mathbf{s}}, \qquad (2-1)$$

где u_1 и u_2 — внутренняя энергия 1 кг газа в начальном и конечном состояниях.

Известно, что дифференциалом независимой переменной величины, например температуры, называют просто ее приращение. Дифференциал функции, которая зависит только от одного аргумента, представляет собой основную часть приращения функции (но не равняется ему в точности). Полным дифференциалом называют дифференциал функции, зависящей от нескольких аргументов, который получен в результате того, что все эти аргументы получили приращения. Методами высшей математики можно вычислить полный дифференциал, но с точки зрения термодинамики в данном случае важно лишь одно: является ли дифференциал функции нескольких переменных полным или нет. Важно это потому, что только для полного дифференциала справедливо выражение (2.1). Например, из курса физики известно, что для вычисления работы сил тяготения достаточно взять значение потенциальной энергии перемещаемого тела в конечной точке и вычесть из него значение потенциальной энергии тела в начальной точке. В то же время очевидно, что вычисление работы сил трения не может быть произведено таким простым способом: в этом случае необходимо умножить силу трения на путь, пройденный телом. В первом случае малое приращение работы будет являться полным дифференциалом, а во втором — нет. В последующем изложении всегда будет указано, для какой функции приращение представляет собой полный дифференциал, а для какой — не представляет. Первые являются функциями состояния (параметрами состояния), вторыефункциями процесса.

2-4. Работа расширения

Работа совершается только при изменении объема газа. Если происходит расширение газа, то в этом случае работа совершается против внешних сил; при сжатии, наоборот, газ воспринимает работу внешних сил.

Пусть в цилиндре тепловой машины перемещается без трения невесомый поршень площадью F из положения I в другое положение — II. Это перемещение происходит при расширении газа с абсолютным давлением p, который находится в цилиндре с левой стороны поршня (рис. 2-2).

При перемещении поршня на бесконечно малое расстояние ds 1 кг газа совершит элементарную работу, равную

$$dl = pF ds$$
,

где *pF* — полная сила, действующая на поршень. Одновременно *Fds* = *dv* есть приращение объема газа, поэтому элементарная работа расширения газа равна:

$$dl = p \, dv. \tag{2-2}$$

Так как абсолютное давление p — величина положительная, то dl и dv по знаку одинаковы. Поэтому если dv>0, т. е. когда газ расширяется, то и dl>0, следовательно, работа расширения положительна. Если dv<0, т. е. газ сжимается, то и dl<0, следовательно, работа сжатия отрицательна.

Рис. 2-2. Расширение газа в цилиндре.

Рис. 2-3. Изображение работы расширения газа в *р*, *v*-диаграмме.

Предположим, что при перемещении поршня из положения I в другое крайнее положение II удельный объем газа изменяется от значения v_1 до значения v_2 . Тогда полная работа 1 кг газа будет найдена путем суммирования бесконечно большого числа элементарных работ, т. е. интегрированием (2-2) в пределах от v_1 до v_2 , следовательно,

$$l = \int_{v_1}^{v_2} p \, dv. \tag{2-3}$$

В общем случае при изменении объема газа давление его также изменяется. Поэтому для определения работы по уравнению (2-3) нужно знать зависимость p от vв данном процессе, т. е. знать характер или свойства процесса.

Пусть в *p*,*v*-диаграмме линия 1—2 изображает равновесный процесс расширения 1 кг газа (рис. 2-3). Из *p*,*v*-диаграммы видно, что при изменении объема газа на *dv* заштрихованная площадка с основанием *dv* и высотой *p* изображает элементарную работу *dl*=*p dv*. Следовательно, вся площадь a12b, равная бесконечно большому числу элементарных площадок, изображает полную работу 1 кг газа в процессе 1—2, которая измеряется интегралом

$$l = \pi \pi. a^{l} 2b = \int_{1}^{2} p \, dv.$$

Таким образом, в *p*,*v*-диаграмме работа расширения (или сжатия) изображается площадью *a12b*, ограничен-

Рис. 2-4. Зависимость работы расширения от характера процесса.

ной кривой процесса, осью абсцисс и крайними ординатами. Отсюда следует, что работа расширения газа зависит от характера процесса или от пути, которым газ переходит из начального в конечное состояние. Например, при переходе из начального 1 в конечное состояние 2 в процессе 1-m-2 работа газа изображается площадью a1m2b, а в процессе 1-m-2 площадью a1n2b(рис. 2-4). Следовательно, работа расширения не является функцией состояния и ее дифференциал d1 не является полным дифференциалом.

2-5. Аналитическое выражение первого закона термодинамики. Энтальпия

Пусть 1 кг газа совершает произвольный процесс за счет тепла q, подводимого извне, при этом температура и объем газа увеличиваются. В результате повышения температуры и увеличения объема газа его внутренняя энергия возрастает. Если в начале процесса внутренняя энергия газа равна u_1 , а в конце u_2 , то полное изменение внутренней энергии равно:

 $\Delta u = u_2 - u_1.$

Кроме того, увеличение объема газа означает, что газ совершает работу против внешних сил, т. е. работу расширения *l*.

Если в процессе не изменяется внешняя кинетическая энергия газа и в нем не происходят химические и какие-либо другие изменения, то по закону сохранения энергии для рассматриваемого процесса баланс энергик выражается уравнением

$$q = u_2 - u_1 + l.$$
 (2-4)

Это уравнение является математическим выражением первого закона термодинамики для конечного процесса. Из уравнения (2-4) следует, что в общем случае подводимая теплота расходуется на изменение внутренней энергии газа и на совершение внешней работы.

С учетом уравнения (2-3) полученное выражение первого закона термодинамики можно представить в следующем виде:

$$q = u_{s} - u_{1} + \int_{v_{1}}^{v_{s}} p \, dv,$$
 (2-5)

или в дифференциальной форме

$$dq = du + p \, dv. \tag{2-6}$$

Как известно, изменение внутренней энергии зависит только от начального и конечного состояния и не зависит от свойств процесса, а работа есть функция процесса, поэтому и теплота, равная их сумме, также зависит от свойств или характера процесса и, следовательно, dq не является полным дифференциалом.

Каждая величина, входящая в уравнения (2-4) — (2-6), может быть положительной, отрицательной или равной нулю. В технической термодинамике подводимое к телу тепло считается положительным, отводимое отрицательным. Изменение внутренней энергии газа считается положительным при возрастании температуры газа и отрицательным при ее уменьшении.

Во многих тепловых расчетах используется величина *i*, называемая энтальпией, которая определяется из выражения

$$i = u + pv. \tag{2-7}$$

Отсюда следует, что энтальпия является величиной, определяемой состоянием тела, и, в свою очередь, она определяет состояние тела, т. е. является параметром состояния. Действительно, для идеального газа внутренняя энергия и, произведение pv, равное RT, зависят только от температуры, поэтому энтальпия идеального газа зависит только от температуры.

Изменение энтальпии как функции состояния не зависит от характера процесса и определяется только начальным и конечным состояниями газа, т. е. значениями температуры газа в этих состояниях, и поэтому является полным дифференциалом.

Дифференцируя выражения (2-7), получаем:

$$di = du + p \, dv + v \, dp, \tag{2-8}$$

откуда

$$du = di - p \, dv - v \, dp. \tag{2-9}$$

Подставляя выражение (2-9) в уравнение (2-6), после преобразования получаем:

$$dq = di - v \, dp, \tag{2-10}$$

т. е. уравнение первого закона термодинам и к и, выраженное через энтальпию. Из уравнения (2-10) при *р*=const находим:

$$dq = di. \tag{2-11}$$

Таким образом, для идеальных газов изменение энтальпии равно теплоте процесса при p=const.

ГЛАВА ТРЕТЬЯ

ТЕПЛОЕМКОСТЬ ГАЗОВ

3-1. Определения. Истинная и средняя теплоемкость

Удельной теплоемкостью или просто теплоемкостью называется количество теплоты, которое необходимо сообщить единице количества газа для изменения температуры на 1°С в данном процессе.

В зависимости от единицы количества газа теплоемкости могут быть массовые, объемные и мольные.

Теплоемкость 1 кг газа называется массовой, она обозначается буквой с и измеряется в Дж/(кг.К).

Теплоемкость 1 м³ газа, взятого при нормальных условиях, называется объемной, обозначается буквой с' и измеряется в Дж/(м³·К). Теплоемкость 1 киломоля газа называется мольной, обозначается ис и измеряется в Дж/ (кмоль · К).

Между указанными теплоемкостями существуют простые соотношения, например:

$$c = c' v_{\rm H} = \mu c / \mu \tag{3-1}$$

или

 $c' = c \rho_{\rm H} = \mu c / 22, 4,$

где $v_{\rm H}$, $\rho_{\rm H}$ и 22,4 — соответственно удельный объем, плотность и объем одного киломоля газа при нормальных условиях.

Различают теплоемкости истинные и средние. Истинной теплоемкостью называется отношение количества тепла dq, сообщенное в элементарном процессе 1 кг газа, к бесконечно малому изменению температуры dt:

$$c = dq/dt. \tag{3-3}$$

Средней теплоемкостью c_m называется количество тепла, которое в среднем расходуется в процессе нагревания 1 кг газа на 1°С в интервале температур от t_1 до t_2 :

$$c_m = q/(t_2 - t_1).$$
 (3-4)

3-2. Изобарная и изохорная теплоемкость идеального газа

В гл. 2 было установлено, что количество теплоты зависит от характера процесса, поэтому и теплоемкость газа также зависит от свойств процесса.

Обычно изучают теплоемкости только двух наиболее важных процессов нагревания газов: изохорного (v = = const) и изобарного (p = const).

Теплоемкость газа в изохорном процессе (v=const) называется и зохорной и обозначается: c_v — массовая, c'_v — объемная и μc_v — мольная.

Теплоемкость газа в изобарном процессе (p=const) называется изобарной и обозначается: c_p — массовая, c'_p — объемная и μc_p — мольная.

Между изохорной и изобарной теплоемкостями существует вполне определенное соотношение, которое устанавливается следующим образом.

Используя уравнение первого закона термодинамики (2-6) и уравнение (3-3), напишем выражение для определения теплоемкости газа в произвольном процессе

$$c = \frac{dq}{dt} = \frac{du}{dt} + \frac{p \, d\mathbf{v}}{dt}.$$
(3-5)

В процессе v=const работа расширения p dv=0. Тогда изохорная теплоемкость равна:

$$c_v = \frac{dq_v}{dt} = \frac{du}{dt}, \qquad (3-6)$$

3-702

33

$$du = c_v dt. \tag{3-7}$$

Внутренняя энергия идеального газа зависит только от температуры и не зависит от свойств процесса (§ 2-3). Поэтому полученное уравнение (3-7) является единственным для подсчета изменения внутренней энергии в любом термодинамическом процессе.

Подставляя в исходное уравнение (3-5) найденное значение изохорной теплоемкости с_v из выражения (3-6), получаем уравнение для определения изобарной теплоемкости в следующем виде:

$$\cdot c_{\rho} = c_{\sigma} + \frac{\rho \, dv}{dt} \,. \tag{3-8}$$

Дифференцируя уравнение *pv*=*RT* при *p*=const, получаем:

$$p \, dv = R \, dT = R \, dt, \tag{3-9}$$

откуда

$$\frac{p\,dv}{dt} = \frac{R\,dt}{dt} = R. \tag{3-10}$$

После подстановки полученного выражения в уравнение (3-8) получим окончательно

 $c_p = c_v + R. \tag{3-11}$

Это выражение действительно и для средних теплоемкостей.

Уравнение (3-11) впервые было получено немецким ученым Р. Майером в 1842 г., и поэтому оно называется уравнением Майера.

Из выражения (3-10) следует, что газовая постоянная R есть работа 1 кг газа в изобарном процессе, измеряемая в джоулях, при изменении температуры на 1°C.

Умножая обе части уравнения (3-11) на µ, получаем соотношение между мольными теплоемкостями тех же процессов:

$$\mu c_p = \mu c_v + \mu R. \tag{3-12}$$

С учетом уравнения (1-21)

$$\mu c_p = \mu c_v + 8314. \tag{3-13}$$

Разделив обе части уравнения (3-13) на объем 1 киломоля при нормальных условиях. (22,4 м³/кмоль) и учтя выражение (3-2), получим соотношение между объемными теплоемкостями газа:

$$c'_p = c'_v + 371, 2.$$
 (3-14)

34

Из уравнений (3-11), (3-12) и (3-14) видно, что изобарная теплоемкость больше изохорной на значение удельной работы соответствующего количества газа.

3-3. Зависимость теплоемкости газов от температуры

Теплоемкости всех газов, кроме одноатомных, с повышением температуры увеличиваются. В небольшом температурном интервале для двухатомных и, реже, для трехатомных газов зависимость теплоемкости от температуры принимается линейной (рис. 3-1).

В этом случае истинная массовая теплоемкость выражается уравнением вида

$$c = a + bt, \qquad (3-15)$$

где а — значение теплоемкости при t=0°С; b — постоянный коэффициент, характеризующий скорость возрастания теплоемкости с повышением температуры.

Рис. 3-1. Линейная зависимость теплоемкости от температуры.

Рис. 3-2. Нелинейная зависимость теплоемкости от температуры.

Теплоемкость газа, подчиняющаяся уравнению (3-15), называется линейной.

• Однако для трех- и многоатомных газов зависимость теплоемкости от температуры носит более сложный характер и не может быть выражена линейным уравнением. Скорость изменения теплоемкости газа с возрастанием температуры непрерывно увеличивается и гразависимость c = f(t) изображается фическая кривой линией (рис. 3-2). Теплоемкость газа, имеющая подобную зависимость от температуры, называется нелинейной. Сложная зависимость c=f(t) для многоатомных газов объясняется тем, что вместе с повышением температуры увеличивается интенсивность колебаний атомов в молекулах и расход энергии на повышение температуры газа непрерывно увеличивается. 3*

Из уравнений (3-3) и (3-4) видно, что теплоту процесса можно подсчитать либо через истинную, либо через среднюю теплоемкость. Обычно при тепловых расчетах применяется средняя теплоемкость и для ее определения используются эмпирические уравнения, полученные на основании опыта. Такие уравнения для определения массовых и объемных теплоемкостей процессов p=const и v=const при линейной зависимости от температуры для наиболее часто встречающихся газов приведены в табл. 3-1.

Таблица 3-1

Средние теплоемкости газов (линейная зависимость)

Наименование газа Массовая теплоемкость, кдж/(кг·К) Объемная теплоемкость, кдж/(мз·К)	•
---	---

В пределах от 0 до 1000 С

Кислород	$c_{pm} = 0,9127 + 0,00012724t$	$c'_{pm} = 1,3046 + 0,00018183t$
•	$c_{pm} = 0,0327 + 0,00012724t$ $c_{pm} = 1,0258 + 0,00008382t$	$c'_{pm} = 0.9337 + 0.00018183t$ $c'_{pm} = 1.2833 + 0.00010492t$
Воздух	$c_{vm} = 0,7289 + 0,00008382t$ $c_{pm} = 0,9952 + 0,00009349t$	$c'_{vm} = 0,9123 + 0,00010492t$ $c'_{pm} = 1,2870 + 0,00012091t$
Окысь углерода	$c_{vm} = 0,7084 + 0,00009349t$ $c_{pm} = 1,0304 + 0,00009575t$	$c'_{vm} = 0,9161 + 0,00012091t$ $c'_{pm} = 1,2883 + 0,00011966t$
	$c_{vm} = 0,7335 + 0,00009575t$	$c'_{vm} = 0,9173 + 0,00011966t$

При определении средней линейной теплоемкости по этим формулам вместо t нужно подставлять сумму температур ($t_1 + t_2$) начала и конца процесса.

Более точные значения средней теплоемкости получаются при учете ее нелинейной зависимости от температуры.

Из уравнения (3-3) имеем:

$$q = \int_{t_1}^{t_2} c \, dt = \int_0^{t_2} c \, dt - \int_0^{t_1} c \, dt, \qquad (3-16)$$

откуда после интегрирования получим:

$$c_m|_{t_1}^{t_1}(t_1-t_1)=c_m|_0^{t_1}t_2-c_m|_0^{t_1}t_1.$$
(3-17)

Окончательное выражение средней нелинейной теплоемкости имеет вид:

$$C_m \Big|_{t_1}^{t_2} = \frac{c_m \Big|_0^{t_2} t_2 - c_m \Big|_0^{t_1} t_1}{t_2 - t_1}, \qquad (3-18)$$
где $c_m |_0^{t_1}$ и $c_m |_0^{t_1}$ — средние нелинейные теплоемкости от 0°С до t_2 и от 0°С до t_1 , которые берутся из табл. П1 — П4.

Аналогично уравнению (3-18) могут быть написаны формулы для определения средней нелинейной объемной и мольной теплоемкостей.

При выполнении расчетов, не требующих большой точности, или в случаях, когда изменение температуры газов в процессе незначительно, можно пользоваться значениями теплоемкостей, которые получены на основании кинетической теории газов без учета зависимости от температуры и поэтому постоянны. Кинетическая теория газов позволила получить уравнение для определения мольной изохорной теплоемкости газа в зависимости от его атомности. Теплоемкость зависит от числа степеней свободы газа z*, которое равно 3, 5 и 6 для одно-, двух- и трехатомных газов соответственно, в системе СИ, кДж/(кмоль·К):

$$\mu c_v = 4,155z;$$
 (3-19)

$$\mu c_p = \mu c_v + 8,314, \qquad (3-20)$$

или, ккал/(кмоль °С),

$$\mu c_v = 0.9925z;$$
 (3-21)

$$\mu c_{p} = \mu c_{v} + \frac{8,314}{4,1868} = \mu c_{v} + 1,985,$$

или округленно

$$\mu c_p \approx \mu c_v + 2. \tag{3-22}$$

Для одно- и двухатомных газов опытные значения мольных теплоемкостей в пределах до 100°С достаточно хорошо согласуются со значениями, полученными на основании кинетической теории. Для трех- и многоатомных газов между опытными значениями теплоемкостей и найденными по формулам (3-19)—(3-22) имеются значительные расхождения. В связи с этим, чтобы получить даже при приближенных расчетах значения теплоемкостей, близкие к действительным значениям, число степеней свободы трех- и многоатомных газов увеличивается на единицу.

Приближенные значения мольных теплоемкостей, подсчитанные по формулам (3-19)—(3-22), с некоторым

^{*} Число степеней свободы газа z определяется числом координат, описывающих движение молекулы газа. Подробнее этот вопрос излагается в курсах физики.

округлением и с указанной поправкой приведены в табл. 3-2.

Таблица 3-2

Атомнесть газа	۳c	۳c ^b	۳°u	µc _p
	ккал /(кмоль∙°С)		кДж/(кмоль•К)	
Одногтомный Двухатомный Трех- и много- атомный	3 5 7	5 7 9	12,6 20,9 29,2	20,9 29,2 37,5

Киломольная теплоемкость при постоянном объеме и постоянном давлении

При термодинамических исследованиях часто используется отношение изобарной теплоемкости к изохорной. Оно обозначается буквой k:

$$k = \frac{c_p}{c_v} = \frac{c'_p}{c'_v} = \frac{\mu c_p}{\mu c_v}.$$
(3-23)

Численные значения коэффициента k для газов получим, если используем значения мольных теплоемкостей, приведенные в табл. 3-2:

> Для одноатомных газов $k = \frac{5}{3} = 1,67$ Для двухатомных газов $k = \frac{7}{5} = 1,4$ Для трехатомных газов $k = \frac{9}{7} = 1,29$

Теплоемкости газов изменяются вместе с изменением температуры, а следовательно, изменяется и коэффициент k. Так, из уравнения (3-23) имеем:

$$k = \frac{c'_{p}}{c_{v}} = \frac{c_{v} + R}{c_{v}} = 1 + \frac{R}{c_{v}}, \qquad (3-24)$$

т. е. с повышением температуры теплоемкость с_v увеличивается и, следовательно, коэффициент k уменьшается.

Из уравнения (3-24) можно получить выражение для определения массовой изохорной теплоемкости в виде

$$c_v = \frac{R}{k-1}; \tag{3-25}$$

умножая это уравнение на k, получаем выражение для изобарной теплоемкости

$$c_p = \frac{k}{k-1}R. \tag{3-26}$$

3-4. Теплоемкость смеси газов

При задании смеси массовыми долями массовая теплоемкость смеси определяется по формуле:

$$c = g_1 c_1 + g_2 c_2 + \ldots + g_n c_n, \qquad (3-27)$$

где $g_1c_1, g_2c_2, \ldots, g_nc_n$ — произведения массовой доли на массовую теплоемкость каждого газа из состава смеси в данном процессе.

При задании смеси объемными долями объемная теплоемкость смеси может быть найдена по формуле

$$c' = r_1 c'_1 + r_2 c'_2 + \ldots + r_n c'_n, \qquad (3-28)$$

где $r_1c'_1$, $r_2c'_2$, ..., $r_nc'_n$ — произведения объемной доли на объемную теплоемкость каждого газа из состава смеси в данном процессе.

Пример 3-1. Определить массовую и объемную теплоемкости кислорода процессов p = const и v = const, считая, что теплоемкость не зависит от температуры.

Решение. Для решения используем значение мольной теплоемкости (табл. 3-2).

Массовая теплоемкость по формуле (3-1) равна:

$$c_v = \frac{20,9}{32} = 0,655 \text{ кДж/(кг·К);}$$

$$c_p = c_v + R = 0.655 + 0.26 = 0.915 \text{ KJm}/(\text{Kr} \cdot \text{K}).$$

Объемная теплоемкость по формулам (3-2) и (3-14) равна:

$$c'_{v} = 0.655 \cdot 1.429 = 0.935 \text{ KJ} \times /(\text{M}^{3} \cdot \text{K});$$

 $c'_{p} = c'_{v} + 0.371 = 0.935 + 0.371 = 1.306 \text{ KJ} \times /(\text{M}^{3} \cdot \text{K}).$

Пример 3-2. Определить среднюю объемную теплоемкость азота c'_{pm} в интервале от $t_1 = 100^{\circ}$ С до $t_2 = 1000^{\circ}$ С. Зависимость теплоемкости от температуры нелинейная.

Решение. Из табл. ПЗ находим значения объемных теплоемкостей:

 $c'_{p}|_{0}^{100} = 1,300 \text{ кДж}/(\text{M}^{3} \cdot \text{K}); c'_{pm}|_{0}^{1000} = 1,397 \text{ кДж}/(\text{M}^{3} \cdot \text{K}).$ По формуле (3-18)

$$c'_{pm} = \frac{c'_{pm} |_{0}^{t_{s}} t_{2} - c'_{pm} |_{0}^{t_{1}} t_{1}}{t_{2} - t_{1}} = \frac{1,397 \cdot 1000 - 1,300 \cdot 100}{1000 - 100} = 1,405 \text{ KJ} \text{K/(M}^{3} \cdot \text{K}).$$

Пример 3-3. Дана газовая смесь следующего состава:

$$r_{\rm CO_3} = 0,1; r_{\rm N_3} = 0,8; r_{\rm H_2O} = 0,1.$$

Требуется определить среднюю объемную теплоемкость заданной смеси при изобарном нагревании ее от $t_1 = 200^{\circ}$ С до $t_2 = 1200^{\circ}$ С. Зависимость теплоемкости от температуры нелинейная.

Решение. По формуле (3-18)

$$c'_{pm} = \frac{c'_{pm} |_{0}^{t_{1}} t_{2} - c'_{pm} |_{0}^{t_{1}} t_{1}}{t_{2} - t_{1}};$$

пользуясь табл. ПЗ, находим:

для азота

$$c'_{pm} = \frac{1,4202 \cdot 1200 - 1,3038 \cdot 200}{1200 - 200} = 1,437 \text{ K} \exists \text{K} \exists \text{K} (\text{M}^3 \cdot \text{K});$$

для углекислоты

$$c'_{pm} = \frac{2,2638 \cdot 1200 - 1,7873 \cdot 200}{1200 - 200} = 2,363 \text{ кДж/(м3 · K)};$$

для водяных паров

По формуле (3-28)

$$(c'_{pm})_{CM} = (rc'_{pm})_{N_a} + (rc'_{pm})_{CO_a} + (rc'_{pm})_{H_aO} = 0.8 \cdot 1.437 + 0.1 \cdot 2.363 + 0.1 \cdot 1.825 = 1.568 \text{ K} \ \text{K} \ \text{K} \ \text{K} \ \text{K}.$$

ГЛАВА ЧЕТВЕРТАЯ

ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ В ГАЗАХ

4-1. Основные процессы и их исследование

Изменение состояния газа характеризуется в общем случае изменением всех его основных параметров p, v, t, при этом теплота либо подводится к газу, либо от него отводится. Такие процессы называются политропными. Наибольший практический и теоретический интерес представляют такие процессы, в которых какой-либо из основных параметров не меняется или процесс осуществляется без теплообмена с внешней средой. Таких процессов всего четыре: изохорный (v=const), изобарный (p=const), изотермический (t=const) и адиабатный (dq=0). Эти процессы называются основными.

При изучении процесса определяют:

1) зависимости между изменяющимися параметрами состояния газа;

2) количество теплоты, подводимой к газу, и изменение его внутренней энергии;

3) работу, совершаемую газом при расширении.

Все процессы рассматриваются как равновесные и обратимые, при исследовании применяются уравнение состояния идеального газа и первый закон термодинамики.

4-2. Изохорный процесс

Изохорным называется процесс, протекающий при постоянном объеме; его уравнение:

$$v = \text{const.}$$
 (4-1)

Зависимость между изменяющимися параметрами находим из уравнения состояния:

$$\frac{p}{T} = \frac{R}{v} = \text{const}$$

или

$$\frac{p_1}{p_2} = \frac{T_1}{T_2},$$
 (4-2)

т. е. давление изменяется пропорционально абсолютной температуре. Это значит, что при подводе теплоты к газу (нагревание) его давление и температура увеличиваются, при отводе теплоты (охлаждение) — уменьшаются. При v=const имеем: dv=0 и dl=p dv=0; следова-

При v—const имеем: dv—0 и dl—p dv—0; следовательно, в этом процессе работа не совершается и поэтому подводимая теплота расходуется полностью на изменение внутренней энергии газа:

$$dq_v = du = c_v dt. \tag{4-3}$$

Поэтому для конечного процесса имеем: при постоянной теплоемкости

$$q_{\boldsymbol{v}} = \Delta \boldsymbol{u} = c_{\boldsymbol{v}}(t_2 - t_1); \qquad (4-4)$$

при переменной теплоемкости

$$q_v = \Delta u = c_{vm}(t_2 - t_1). \tag{4-5}$$

Изменение внутренней энергии идеального газа не зависит от свойств или характера процесса, поэтому полученные уравнения (4-4) и (4-5) действительны для любых процессов.

Изменение энтальпии подсчитывается по уравнению (2-11), как теплота процесса *p*=const:

$$\Delta i = \int_{1}^{2} c_{p} dt,$$

откуда получим:

при постоянной теплоемкости

$$\Delta i = c_p (t_2 - t_1); \qquad (4-6)$$

при переменной теплоемкости

$$\Delta i = c_{pm}(t_2 - t_1). \tag{4-7}$$

В соответствии со свойствами энтальпии можно отметить, что уравнения (4-6) и (4-7) действительны для любых процессов в идеальных газах.

Рис. 4-1. Изохорный процесс.

Рис. 4-2. Изобарный процесс.

В координатах *p*, *v* изохора изображается вертикальной линией, при нагревании направленной вверх, при охлаждении — вниз (рис. 4-1).

4-3. Изобарный процесс

Процесс, протекающий при постоянко... давлении, называется изобарным. В координатной системе p, v изобара изображается прямой 1—2, параллельной оси абсцисс (рис. 4-2); уравнение ее

$$p = \text{const.}$$
 (4-8)

Зависимость между переменными значениями удельных объемов и абсолютных температур известна из закона Гей-Люссака:

$$\frac{v_1}{v_2} = \frac{T_1}{T_2}.$$
 (4-9)

Таким образом, при увеличении объема газа темиература его повышается, при уменьшении объема — понижается.

Работа расширения на рис. 4-2 изображается заштрихованной площадью под линией 1—2 и определяется по уравнению

$$l = \int_{1}^{2} p \, dv = p \, (v_{1} - v_{1}) = R \, (T_{2} - T_{1}). \tag{4-10}$$

Количество теплоты, подведенной к газу в изобарном процессе, можно найти по уравнению (3-3)

$$q = \int_{\Gamma}^{2} c_{p} dt,$$

откуда имеем:

при постоянной теплоемкости

$$q = c_p (t_2 - t_1) = i_2 - i_1;$$
 (4-11)

при переменной теплоемкости

$$q = c_{pm}(t_2 - t_1).$$
 (4-12)

При термодинамических исследованиях процессов используют коэффициент а, который определяет долю теплоты процесса, идущую на изменение внутренней энергии:

$$\alpha = \frac{\Delta u}{q}.$$
 (4-13)

Если в изобарном процессе рабочим телом служат двухатомные газы, при *с*=const имеем:

$$\alpha = \frac{\Delta u}{q} = \frac{c_v \Delta t}{c_p \Delta t} = \frac{1}{k} = \frac{1}{1,4} = 0,715,$$

т. е. в этом процессе 71,5% всей теплоты расходуется на изменение внутренней энергии и, следовательно, остальные 28,5% — на работу расширения.

4-4. Изотермический процесс

Процесс, протекающий при постоянной температуре (T=const), называется изотермическим.

В соответствии с уравнением состояния для идеального газа получим:

$$pv = RT = const,$$

поэтому уравнение процесса, выражающее закон Бойля — Мариотта, имеет вид:

$$pv = const.$$
 (4-14)

В координатах *рv* изотермический процесс изображается гиперболической кривой, т. е. линией, симметрично расположенной относительно координатных осей

Рис. 4-3. Изотермический процесс.

Таким образом, при постоянной температуре давление газа изменяется обратно пропорционально его объему (закон Бойля — Мариотта).

Изменения внутренней энергии и энтальпии идеального газа зависят только от температуры, поэтому в изотермическом процессе

$$\Delta u = c_v (t_2 - t_1) = 0$$
 и $u = \text{const};$
 $\Lambda i = c_v (t_2 - t_1) = 0$ и $i = \text{const}.$

Тогда в соответствии с первым законом термодинамики по уравнению (2-4) получим:

$$a = l$$
.

т. е. в изотермическом процессе вся теплота, сообщаемая газу, расходуется полностью на работу расширения.

Найдем работу процесса, воспользовавшись уравнением (2-3):

$$l = \int_{1}^{2} p \, dv.$$

Так как

$$pv = p_1v_1 \lor p = \frac{p_1v_1}{v},$$

то

$$l = \int_{1}^{2} p_{1}v_{1} \frac{dv}{v} = p_{1}v_{1}\ln\frac{v_{2}}{v_{1}} = RT\ln\frac{v_{2}}{v_{1}}, \qquad (4-17)$$

или при замене натурального логарифма десятичным

$$l = 2,303 p_1 v_1 \lg \frac{v_2}{v_1} = 2,303 RT \lg \frac{v_2}{v_1}.$$
 (4-18)

Путем замены отношений объемов обратным отношением давлений из уравнения (4-18) можно получить другие уравнения для определения работы изотермиче-ского процесса.

В рассматриваемом процессе

$$a = \frac{\Delta u}{q} = 0$$
$$c = \frac{dq}{dt} = \infty.$$

4-5. Адиабатный процесс

Адиабатным называется процесс, который осуществляется без теплообмена между газом и внешней средой. Известно, что любой термодинамический процесс можно представить как последовательность элементарных (бесконечно малых) процессов. В каждом таком процессе в данном случае теплота не подводится и не отводится, поэтому характеристикой процесса служит равенство

$$dq = 0$$

следовательно, для конечного процесса теплота q=0.

Уравнение процесса найдем путем совместного решения уравнений состояния и первого закона термодинамики. При dq=0 имеем:

du + p dv = 0

или

И

 $c_v dt + p dv = 0.$

Подставляя из уравнения (3-26) с_v=R/(k-1), получаем:

$$\frac{R}{k-1}dt + p\,dv = 0$$

или

$$R dt + (k-1) p dv = 0.$$
 (4-19)

Дифференцирование уравнения *pv=RT* дает выражение

$$p \, dv + v \, dp = R \, dT.$$

Подставив его в уравнение (4-19), получим:

$$v \, dv + v \, dp + (k-1) \, p \, dv = 0$$
,

откуда

$$kp dv + v dp = 0.$$

Путем деления последнего уравнения на *pv* приве-• дем его к виду:

$$k\frac{dv}{v} + \frac{dp}{p} = 0.$$

Интегрируя это выражение при постоянном значении k, получаем:

 $k \ln v + \ln p = \text{const},$

или

$$pv^{k}$$
=const. (4-20)

Это и есть уравнение адиабаты, дающее аналитическую зависимость между переменными параметрами *р* и *v*. В *p,v*-диаграмме адиабатный процесс изображается кривой линией, близкой к гиперболе, которая смещена относительно координатных осей (рис. 4-4).

Из уравнения (4-20) следует:

$$\frac{p_1}{p_2} = \left(\frac{v_2}{v_1}\right)^k$$
 или $\frac{v_2}{v_1} = \left(\frac{p_1}{p_2}\right)^{\frac{1}{k}}$. (4-21)

Решая совместно уравнения (4-21) и уравнение состояния (1-16), получаем соотношение между температурами и объемами:

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} \qquad (4-22)$$

или между температурами и давлениями:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}.$$
 (4-23)

Рис. 4-4. •Адиабатный процесс.

Работа процесса. В аднабатном процессе теплота не подводится и не отводится (dq=0). Поэтому работа в этом процессе совершается за счет внутренней энергии газа, тогда

$$l = -\Delta u = c_v(t_1 - t_2), \qquad (4-24)$$

но $c_v = R/(k-1)$, поэтому можно записать:

$$l = \frac{R}{k-1}(t_1 - t_2). \tag{4-25}$$

Так как

 $p_1v_1 = RT_1$ и $p_2v_2 = RT_2$,

то

$$l = \frac{1}{k-1} (p_1 v_1 - p_2 v_2). \tag{4-26}$$

В результате дальнейших преобразований, имеем:

$$l = \frac{p_1 v_1}{k - 1} \left(1 - \frac{p_2 v_2}{p_1 v_1} \right) = \frac{p_1 v_1}{k - 1} \left(1 - \frac{T_2}{T_1} \right).$$
(4-27)

Если в уравнение (4-27) вместо отношения температур из уравнений (4-22) и (4-23) подставить отношения объемов и отношения давлений, то получим уравнения:

$$l = \frac{p_1 v_1}{k - 1} \left[1 - \left(\frac{v_1}{v_2} \right)^{k - 1} \right]$$
(4-28)

И

$$l = \frac{p_1 v_1}{k - 1} \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{k - 1}{k}} \right].$$
(4-29)

Коэффициент

$$a=\frac{\Delta u}{q}=\infty;$$

теплоемкость процесса

$$c = \frac{dq}{dt} = 0.$$

4-6. Политропные процессы

Политропным называется всякий обратимый термодинамический процесс, который подчиняется уравнению

$$pv^n = \text{const},$$
 (4-30)

где показатель n может иметь любое значение от $-\infty$ до $+\infty$. Для каждого процесса показатель n — величина постоянная. Ранее рассмотренные процессы являются также политропными, каждый из них имеет определенный показатель n. Действительно, уравнение pv^n =const приводится: при n=0 к уравнению изобарного процесса p=const, при n=1 к уравнению изотермического про-

цесса pv=const, при n=k к уравнению адиабатного процесса pv^k =const. Извлекая корень *n*-й степени из уравнения pv^n =const, приведем его к виду $p^{1/n}v$ =const, откуда при $n\pm\infty$ получим: v=const, т. е. уравнение изохорного процесса.

Из уравнения (4-30) можно получить соотношения между параметрами *p* и *v* для каких-либо произвольных состояний, характеризуемых точками 1 и 2, политропного процесса, а именно:

или

$$p_1v_1^n = p_2v_2^n$$

$$\frac{p_1}{p_2} = \left(\frac{v_2}{v_1}\right)^n \varkappa \frac{v_2}{v_1} = \left(\frac{p_1}{p_2}\right)^n.$$
(4-31)

Уравнение политропы отличается от уравнения адиабаты только показателем степени при v. Поэтому, чтобы получить соотношения между параметрами p и T, T и vдля политропного процесса, используются уравнения (4-22) и (4-23). Заменяем в них показатель адиабаты kна показатель политропы n:

$$\frac{T_2}{T_1} = \left(\frac{p_1}{p_1}\right)^{\frac{n-1}{n}};$$
 (4-32)

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{n-1}.$$
(4-33)

Аналогично, используя уравнения (4-25)—(4-29) для работы в адиабатном процессе, получаем уравнения для работы в политропном процессе, а именно:

$$l = \frac{R}{n-1} (t_1 - t_2); \qquad (4-34)$$

$$l = \frac{1}{n-1} (p_1 v_1 - p_2 v_2); \qquad (4-35)$$

$$l = \frac{p_1 v_1}{n - 1} \left(1 - \frac{T_2}{T_1} \right); \tag{4.36}$$

$$l = \frac{p_1 v_1}{n - 1} \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{n - 1}{n}} \right];$$
(4-37)

$$l = \frac{p_1 v_1}{n-1} \left[1 - \left(\frac{v_1}{v_2}\right)^{n-1} \right].$$
 (4-38)

В политропном процессе теплота расходуется на изменение внутренней энергии и на работу расширения

 $q = \Delta u + l$.

Если теплоемкость политропного процесса с_n, то

$$c_n(t_1 - t_1) = c_v(t_1 - t_1) - \frac{R}{n-1}(t_1 - t_1),$$

откуда

$$c_n = c_v - \frac{R}{n-1} = c_v - \frac{c_p - c_v}{n-1}.$$

После элементарных преобразований получим выражение для определения теплоемкости политропного процесса через показатель степени *n*:

$$c_n = c_v \frac{n-k}{n-1}.$$
 (4-39)

Таким образом, теплота, расходуемая в политропном процессе, может быть подсчитана непосредственно по уравнению

$$q = c_o \frac{n-k}{n-1} (t_s - t_1).$$
 (4-40)

Взяв отношение изменения внутренней энергии Δu к теплоте *q* соответственно по уравнению (4-4) и (4-40), получим общее выражение для определения коэффициента а в политропном процессе:

$$a = \frac{\Delta u}{q} = \frac{c_v \Delta t}{c_v \frac{n-k}{n-1} \Delta t}$$

или окончательно:

$$a = \frac{n-1}{n-k}.\tag{4-41}$$

где $k = c_p / c_v$ находится в зависимости от атомности газа.

Показатель политропы *п* можно найти расчетным путем, логарифмируя соотношения между любой парой основных параметров, определяемых из уравнений (4-31)—(4-33).

4-702

Например, если точки 1 и 2 принадлежат политропе, то из уравнения (4-31) имеем:

$$\frac{p_1}{p_2} = \left(\frac{v_2}{v_1}\right)^n,$$

откуда после логарифмирования находим:

$$n = \lg \frac{p_1}{p_2} / \lg \frac{v_2}{v_1}. \tag{4-42}$$

Таким же путем можно найти показатель n, если в начальном и конечном состояниях политропного процесса будут известны одновременно значения p и T или T и v.

4-7. Исследование политропных процессов

Проведем графики четырех основных процессов в координатной системе *pv* так, чтобы они проходили через одну и ту же точку *A* (рис. 4-5). Рассматривая график и зная свойства процессов, можно сделать ряд выводов:

1. При расширении газа кривые процессов будут располагаться тем ниже, чем больше показатель *n*; при

3. Все процессы расширения и сжатия, расположенные правее и выше адиабаты (n=k), протекают с под-

водом тепла и, наоборот, расположенные левее и ниже адиабаты — с отводом тепла.

По характеру преобразования энергии политропные процессы можно разделить на три группы, каждая из которых обладает определенными свойствами. Рас-

$$p$$
 $n=+\infty$ $n=+\infty$ v
Сжатие Расширение

Рис. 4-5. Три группы политропных процессов в *p*, *v*-диаграмме.

смотрим свойства каждой группы применительно к процессам расширения.

К первой группе относятся политропные процессы со значениями показателя от $-\infty < n < 1$, т. е. расположенные между изохорой и изотермой. В процессах расширения теплота подводится, причем часть ее расходуется на работу, а другая часть — на изменение внутренней энергии. При удалении от изохоры и приближении к изотерме, т. е. с увеличением показателя политропы *n*, доля теплоты, расходуемая на работу, будет непрерывно увеличиваться, а доля теплоты, идущая на изменение внутренней энергии, уменьшаться. Коэффициент $\alpha = \Delta u/q$ меньше единицы, но положителен. Поскольку в процессах dq > 0, $\Delta u > 0$ и dt > 0, то теплоемкость в этой группе политропных процессов положительна.

Вторая группа политропных процессов расположена между изотермой и адиабатой; следовательно, в эту группу входят процессы при 1 < n < k.

В процессах расширения работа совершается частично за счет подводимого тепла и частично за счет внутренней энергии, при этом с увеличением показателя политропы *n* и приближением к адиабате все большая часть работы будет совершаться за счет -внутренней энергии и все меньшая—за счет подводимого тепла. Коэффициент $\alpha = \Delta u/q$ будет величиной отрицательной, а по абсолютному значению может быть как меньше, так и больше единицы. Теплоемкость политропных процессов второй группы отрицательна. Это значит, что, несмотря на подвод тепла в процессе, температура газа понижается.

Третья группа процессов расположена между адиабатой и изохорой с отводом теплоты, следовательно, в эту группу входят процессы с показателем политропы

$$k < n < +\infty$$
.

В этих процессах работа совершается за счет внутренней энергии, но одновременно часть внутренней энергии в виде теплоты отдается холодному источнику. При удалении от адиабаты и приближении к изохоре, т. е. с увеличением показателя политропы *n*, все меньше внутренней энергии будет расходоваться на работу и все больше отдаваться холодному источнику. Коэффициент α положительный и больше единицы. Теплоемкость политропных процессов третьей группы положительна.

4*

Пример 4-1. В резервуаре вместимостью 2 м³ находится воздух при $p_1 = 0,1$ МПа и $t_1 = 27^{\circ}$ С. В результате подвода тепла (v = = const) температура газа повысилась до $t_2 = 500^{\circ}$ С. Определить конечное давление, а также количество подведенной теплоты и изменение энтальпии; теплоемкость нелинейная.-Решение. Из уравнения состояния находим:

$$m = \frac{p_1 v_1}{RT_1} = \frac{0.1 \cdot 10^6 \cdot 2}{287 \cdot 300} = 2.33 \text{ kr.}$$

Конечное давление

$$p_2 = p_1 \frac{T_2}{T_1} = 0, 1 \cdot \frac{773}{300} = 0,258$$
 MIIa.

Средняя теплоемкость газа (табл. ПЗ)

$$c_{vm} = \frac{c_{vm} |_{0}^{t_{1}} t_{2} - c_{vm} |_{0}^{t_{1}} t_{1}}{t_{2} - t_{1}} = \frac{0,7519 \cdot 500 - 0,7172 \cdot 27}{500 - 27} = 0,755 \text{ KL} \text{K/(KF \cdot K)}.$$

Средняя изобарная теплоемкость

$$c_{mp} = c_{vm} + R = 0.755 + 0.287 = 1.042 \text{ KJ} \text{K/(Kr \cdot K)}.$$

Количество подведенного тепла

 $Q = mc_{nm}(t_2 - t_1) = 2,33 \cdot 0,755(500 - 27) = 831 \text{ кДж.}$

Изменение энтальпии

/
$$\Delta I = \Delta im = mc_{pm} (t_2 - t_1) = 2,33 \cdot 1,042 (500 - 27) = 1146$$
 кДж.

Пример 4-2. Двуокись углерода в количестве 10 кг в результате изобарного подвода теплоты увеличивает температуру от $t_1 =$ =200°С до t₂=1200°С. Определить работу расширения, количество подведенной теплоты и изменение внутренней энергии. Постоянное давление p=1,5 МПа; теплоемкость нелинейная.

Решение. Используя табл. П1, по уравнению (3-18) находим массовую изобарную теплоемкость:

$$c_{pm} = \frac{1,153 \cdot 1200 - 0,9102 \cdot 200}{1200 - 200} = 1,20 \text{ кДж/(кг·K)}.$$

Изохорная теплоемкость (табл. П-2):

$$c_{vm} = \frac{0.9638 \cdot 1200 - 0.7214 \cdot 200}{1200 - 200} = 1.011 \text{ k} \text{ / (kf \cdot K)}.$$

Работа расширения

$$L = mR(t_2 - t_1) = 10.0,189(1200 - 200) = 1890 \text{ кДж.}$$

Изменение внутренней энергии

$$\Delta U = mc_{vm}(t_2 - t_1) = 10.1,011(1200 - 200) = 10.110 \text{ кДж.}$$

Количество подведенной теплоты

 $Q = mc_{pm}(t_2 - t_1) = 10.1,20(1200 - 200) = 12000 \text{ кДж.}$

Пример 4-3. Воздух в количестве 5 кг с начальным давлением $p_1 = 1,5$ МПа и температурой $t_1 = 157^{\circ}$ С изотермически расширяется до $V_2 = 4V_1$. Определить объемы V_1 и V_2 , конечное давление p_2 и работу расширения.

Решение. Начальный объем находим по уравнению (1-17):

$$V_1 = \frac{mRT_1}{p_1} = \frac{5 \cdot 287 \cdot 430}{1.5 \cdot 10^6} = 0.412 \text{ m}^3.$$

Конечный объем

 $V_2 = 4V_1 = 4 \cdot 0,412 = 1,648 \text{ m}^3.$

Конечное давление

$$p_2 = \frac{p_1}{4} = \frac{1.5}{4} = 0,375$$
 Mila.

Работа расширения

 $L=2.303mRT \lg V_2/V_1=2.303 \cdot 5 \cdot 0.287 \cdot 430 \lg 4=852 \text{ KIX}.$

Пример 4-4. Кислород в количестве 1 кг адиабатно расширяется от начального состояния, определяемого давлением $p_1 = = 1,0$ МПа и температурой $t_1 = 277^{\circ}$ С, до конечного состояния, определяемого давлением $p_2 = 0,1$ МПа. Определить конечные параметры газа и работу расширения.

Решение. По уравнению (1-16)

$$v_1 = \frac{RT_1}{p_1} = \frac{260 \cdot 550 \frac{3}{2}}{1.0 \cdot 10^6} = 0.143 \text{ M}^3/\text{Kr}.$$

• Конечный объем находим по уравнению (4-21):

$$v_2 = v_1 \left(\frac{p_1}{p_2}\right)^{\frac{1}{k}} = 0,143 \cdot 10^{\frac{1}{1.4}} = 0,74 \text{ m}^3/\text{Kg}.$$

Работа, совершаемая газом в процессе, определяется по уравнению (4-26):

$$l = \frac{1}{k-1} (p_1 v_1 - p_2 v_2) =$$

 $= \frac{10^6}{1,4-1} (1,0.0,143-0,1.0,74) = 173\ 000^{\circ}\ \square = 173\ \kappa \square = 173\ \kappa \square = 173$

Конечная температура газа

$$T_2 = \frac{p_2 v_2}{R} = \frac{0.1 \cdot 10^6 \cdot 0.74}{260} = 285$$
 K.

Пример 4-5. Азот объемом 6 м³ политропно расширяется от $p_1 = 0.6$ МПа и $t_1 = 90^{\circ}$ С до конечного давления $p_2 = 0.15$ МПа и объема $V_2 = 18$ м³. Определить показатель политропы, теплоту процесса, работу расширения и изменение внутренней энергии.

Решение. По формуле (4-42)

$$n = \frac{\lg \frac{p_1}{p_2}}{\lg \frac{V_2}{V_1}} = \frac{\lg \frac{0.6}{0.15}}{\lg \frac{18}{6}} = 1,26.$$

Таким образом, рассматриваемый процесс относится ко второй группе.

Из уравнения состояния находим массу азота:

$$m = \frac{p_1 V_1}{RT_1} = \frac{0, 6 \cdot 10^6 \cdot 6}{297, 0 \cdot 363} = 33,4 \text{ kr}.$$

По тому же уравнению находим конечную температуру газа

$$T_2 = \frac{p_2 V_2}{Rm} = \frac{0,15 \cdot 10^6 \cdot 18}{297,0 \cdot 33,4} = 272,5 \text{ K}.$$

По уравнению (3-1), используя табл. 3-2, имеем:

$$c_v = \frac{\mu c_v}{\mu} = \frac{20,9}{28} = 0,748 \text{ кДж/(кг·K)}.$$

Работа, совершаемая газом в процессе расширения, по уравнению (4-35) равна:

$$L = \frac{1}{n-1} \left(p_1 V_1 - p_2 V_2 \right) = \frac{10^3}{1,26-1} \left(0,6\cdot 6 - 0,15\cdot 18 \right) = 3470 \text{ kJm}.$$

Теплота, сообщенная газу в процессе, определяется по формуле (4-40):

$$Q = mc_v \frac{n-k}{n-1} (t_2 - t_1) = 33, 4 \cdot 0, 748 \frac{1, 26 - 1, 4}{1, 26 - 1} (-0.5 - 90) = 1215 \text{ KJж.}$$

Изменение внутренней энергии: $\Delta U = \Delta um = mc_v (t_2 - t_1) = 33,4 \cdot 0,748 (-0,5-90) = -2255$ кДж.

ГЛАВА ПЯТАЯ

второй закон термодинамики

5-1. Круговые процессы (циклы)

Процессы, в которых рабочее тело, пройдя ряд различных состояний, возвращается в исходное состояние, называются круговыми процессами или циклами (рис. 5-1). Циклы бывают прямые и обратные. Пря-

Рис. 5-1. Произвольный прямой круговой процесс (цикл).

мые циклы осуществляются в тепловых машинах, в которых теплота переходит в работу, а обратные — в холодильных установках, где работа переходит в теплоту.

Если процессы, входящие в цикл, равновесные и обратимые, то цикл обратимый. Если какой-либо процесс, входящий в цикл, неравновесный, то и весь цикл будет неравновесным и, следовательно, необрати*мым.* Все циклы протекают таким образом, что на некоторых его участках теплота подводится к рабочему телу, а на других, наоборот, рабочее тело отдает теплоту.

В прямых циклах источники, от которых рабочее тело получает теплоту, называются горячими источниками или теплоотдатчиками, а источники, которым рабочее тело отдает теплоту, называются холодными источниками или теплоприемниками. В обратных циклах роль источников меняется.

В обратимых циклах подвод и отвод теплоты должен происходить при бесконечно малой разности температур между рабочим телом и источниками теплоты. Поэтому если температура рабочего тела изменяется, то обратимый цикл можно осуществить только при наличии бесконечного большого числа источников теплоты, температуры которых отличаются друг от друга на бесконечно малую величину.

Рассмотрим произвольный прямой обратимый цикл *abcd*, изображенный на рис. 5-1. Из графика видно, что процессы расширения *ab* и *bc* расположены выше процессов сжатия *cd* и *da* и изменение состояния рабочего тела происходит по часовой стрелке. В этом случае положительная работа расширения l_1 =пл.*eabcf* больше отрицательной работы сжатия l_2 =пл.*eadcf*.

Полезная работа цикла l_{π} равна разности работ расширения и сжатия и изображается площадью *abcd*, ограниченной замкнутой линией цикла, т. е. $l_{\pi} = l_1 - l_2$.

В процессах расширения ab и bc к рабочему телу подводится теплота q_1 от горячих источников, а в процессах сжатия cd и da рабочее тело отдает теплоту q_2 холодным источникам или теплоприемникам.

Таким образом, полезно использованная теплота за цикл будет равна:

$$q_{\mathfrak{q}} = q_1 - q_2.$$

В круговых процессах начальное и конечное состояния рабочего тела совпадают, поэтому изменение его внутренней энергии равно нулю. Следовательно,

$$q_{\mathbf{u}} = l_{\mathbf{u}}.\tag{5-1}$$

Степень термодинамического совершенства прямого цикла характеризуется термическим коэффициентом полезного действия (к.п.д.), кото-

рый представляет собой отношение работы цикла $l_{\mathfrak{q}}$ к подводимой теплоте q_1 и обозначается η_t , т. е.

$$\eta_t = \frac{l_u}{q_1} = \frac{q_1 - q_2}{q_1} = 1 - \frac{q_2}{q_1}.$$
 (5-2)

Так как в прямых циклах q_1 всегда больше q_2 , то термический к.п. д. всегда меньше единицы.

В обратном цикле изменение состояния рабочего тела происходит в обратной последовательности, т. е. про-

тив часовой стрелки и процессы расширения ad и dc располагаются ниже процессов сжатия cb и ba (рис. 5-2).

При расширении газа совершается работа

которая будет меньше работы сжатия

$$l_1$$
=пл.eabcf.

Работа цикла, равная разности работ расширения и сжатия, изображается площадью цикла

 $l_{\Pi} = \Pi \pi.abcd;$

она отрицательна.

В процессах расширения ad и dc к рабочему телу подводится теплота в количестве q_2 от холодных источников, а в процессах сжатия cb и ba от рабочего тела отводится теплота q_1 к горячим источникам, следоватольно,

 $-q_{\mathbf{n}} = q_2 - q_1.$

В обратных циклах, как и в прямых,
$$\Delta u = 0$$
, поэтому

 $h_{0} = q_{2} - q_{1}$

$$-l_{\mathfrak{q}}=-q_{\mathfrak{l}},$$

или

$$q_1 = q_2 + l_{\rm II}. \tag{5-3}$$

Таким образом, горячим источникам передается теплота холодильника и теплота, эквивалентная работе цикла.

56

Рис. 5-2. Произволь-

ный обратный круговой процесс (цикл). Степень совершенства отбратного цикла характеризуется холодильным коэффициентом, который представляет собой отношение подводимой теплоты q_2 к работе цикла l_{μ} и обозначается буквой ε :

$$\epsilon = q_2 / l_{\rm II}. \tag{5-4}$$

Холодильный коэффициент может быть как больше, так и меньше единицы; в большинстве случаев он больше единицы.

5-2. Прямой обратимый цикл Карно

В 1824 г. французский инженер Сади Карно предложил простейший цикл, которому в дальнейшем было присвоено его имя. Прямой обратимый цикл Карпо является идеальным циклом тепло-

вых машин и осуществляется при наличии горячего источника постоянной температуры T_1 и холодного источника постоянной температуры T_2 . Цикл состоит из двух изотермических и двух адиабатных процессов. Его графическое изображение в координатах p, v приведено на рис. 5-3.

Рис. 5-3. Прямой об-

ратимый цикл Карно.

Рассмотрим свойства цикла Карно, в котором в качестве рабочего

тела используется 1 кг идеального газа. Из начального состояния a газ расширяется по изотерме ab при температуре T_1 , получая от горячего источника теплоту q_1 , которая полностью переходит в работу.

По уравнению (4-17) имеем:

$$q_1 = l_1 = RT_1 \ln(v_b/v_a) = \pi \pi. a'abb'.$$
 (a)

В точке *b* происходит отключение от горячего источника и газ расширяется по адиабате *bc*, совершая работу за счет внутренней энергии, вследствие чего температура газа понижается от T_1 до T_2 .

По уравнению (4-24) эта работа равна:

$$l_{bc} = -\Delta u_{bc} = c_v (T_1 - T_2) = пл. b'bcc'.$$
 (б)

В точке c газ сообщается с холодным источником и сжимается по изотерме cd, отдавая ему теплоту q_2 , эквивалентную работе сжатия, при постоянной темпе-

ратуре Т₂. По уравнению (4-17)

$$q_2 = l_2 = -RT_2 \ln(v_c/v_d) =$$
пл $d'dcc'$. (в)

Затем в точке d происходит отключение от холодного источника и газ адиабатным' сжатием da возвращается в начальное состояние. При адиабатном сжатии происходит увеличение внутренней энергии газа и температура его повышается от T_2 до T_1 .

В соответствии с уравнением (4-24)

$$l_{da} = -\Delta u_{da} = -c_v (T_1 - T_2) = \text{пл. } a'add'.$$
 (r)

Из уравнений (в) и (г) следует, что в цикле Карно работа адиабатных процессов расширения и сжатия равна по абсолютной величине и обратна по знаку и поэтому на результирующую работу цикла они не оказывают влияния. Таким образом, работа газа за цикл будет равна разности работ, которую он совершает при изотермическом расширении и сжатии.

Термический к.п.д. цикла Карно, как и любого другого, определяется по уравнению (5-2)

$$\eta_t = 1 - \frac{q_2}{q_1}.$$

Подставляя из уравнений (а) и (с) значения q₁ и q₂, получаем:

$$\eta_t = 1 - \frac{RT_2 \ln(\boldsymbol{v}_c/\boldsymbol{v}_d)}{RT_1 \ln(\boldsymbol{v}_b/\boldsymbol{v}_a)}.$$
(5-5)

Для адиабатных процессов bc и da имеем:

$$\left(\frac{\overline{v_b}}{v_c}\right)^{k-1} = \frac{T_c}{T_b} = \frac{T_2}{T_1};$$

$$\left(\frac{v_a}{v_d}\right)^{k-1} = \frac{T_d}{T_a} = \frac{T_2}{T_1};$$

поэтому

$$\frac{v_b}{v_c} = \frac{v_a}{v_d} \text{ ИЛИ } \frac{v_b}{v_a} = \frac{v_c}{v_d}.$$
 (5-6)

На основании уравнений (5-5) и (5-6) окончательное выражение термического к.п.д. цикла Карно будет иметь вид:

$$\eta_t = 1 - \frac{T_2}{T_1} = \frac{T_1 - T_2}{T_1}.$$
 (5-7)

Полученное уравнение (5-7) позволяет сделать некоторые выводы:

1. Термический к.п.д. цикла Карно зависит только от температуры горячего источника T_1 и температуры холодильника T_2 .

2. Чем выше температура горячего источника и чем ниже температура холодильника, тем выше термический к. п. д.

3. Так как температура холодного источника T_2 всегда положительна, термический к.п.д. цикла Карно всегда меньше единицы. Это значит, что теплоту q_1 , подводимую в цикле к рабочему телу, невозможно полностью превратить в работу, часть ее в количестве q_2 отдается холодному источнику.

4. В уравнение (5-7) не входят какие-либо величины, характеризующие свойства рабочего тела (R, k), поэтому можно утверждать, что термический к.п.д. цикла Карно не зависит от природы рабочего тела.

5-3. Обратный обратимый цикл Карно

Изображение обратного цикла Карно приведено на рис. 5-4. Цикл состоит из тех же процессов, что и прямой цикл, но изменение состояния газа происходит в направлении против часовой стрелки. Сна-

чала происходит адиабатное расширение ad и температура рабочего тела понижается от T_1 до T_2 . При последующем расширении по изотерме dc газ получает теплоту от холодильника в количестве q_2 при постоянной температуре T_2 . Последующим сжатием сначала по адиабате cb, а затем по изотерме ba газ возвращается в исходное состояние. При адиабатном сжатии температура газа повышается от T_2

Рис. 5-4. Обратный обратимый цикл Карно.

до T_1 ; при изотермическом сжатии газ отдает горячему источнику теплоту в количестве q_1 при постоянной температуре T_1 .

На осуществление обратного цикла Карно затрачивается внешняя работа $l_{\rm II}$, которая на диаграмме изображается площадью *abcd*. Эта работа переходит в эквивалентную теплоту и тоже передается горячему источнику.

Тепловой баланс данного цикла выражается уравнением

$$q_2 - q_1 = -l_{\mathbf{n}}.$$

Таким образом, в обратном цикле происходит передача теплоты q_2 от холодного источника к горячему путем затраты внешней работы.

Обратный цикл Карно является идеальным циклом холодильных установок. Это значит, что его холодильный коэффициент є при одинаковых условиях будет больше, чем в любом произвольном обратном цикле.

Как известно (§ 5-1), холодильный коэффициент равен:

$$\varepsilon = \frac{q_2}{l_{\rm II}} = \frac{q_2}{q_1 - q_2}$$

Используя соотношения, полученные при исследовании прямого цикла Карно (§ 5-2), получаем окончательное выражение холодильного коэффициента:

$$\varepsilon = \frac{T_2}{T_1 - T_2}.$$
 (5-8)

Поскольку в уравнение (5-8) не входят какие-либо величины, характеризующие физические свойства рабочего тела, то холодильный коэффициент цикла Карно не зависит от свойств или природы рабочего тела. Это уравнение показывает, что холодильный коэффициент увеличивается с понижением температуры T_1 и повышением температуры T_2 .

5-4. Второй закон термодинамики

Рассмотренные прямые и обратные круговые процессы отмечают особые свойства теплоты и устанавливают условия, необходимые для перехода теплоты в работу.

Из уравнения (5-7) видно, что если $T_1 = T_2$, то термический к. п. д. цикла равен нулю. Это значит, что при наличии одного температурного уровня имеющиеся запасы теплоты невозможно перевести в работу. Поэтому для перехода теплоты в работу наряду с горячим источником с температурой T_1 требуется и охладитель с более низкой температурой T_2 .

Поскольку нет естественного охладителя с температурой $T_2 = 0$, то в тепловом двигателе, работающем по 60 любому циклу, охладителю всегда отдается некоторое количество теплоты q_2 , составляющее часть подводимой теплоты q_1 . Таким образом, в работу можно перевести только часть подводимой теплоты, другая часть отдается охладителю, переходит на более низкий температурный уровень и не может быть использована.

Повседневный опыт показывает, что естественные тепловые процессы всегда сопровождаются переходом теплоты от тел с более высокой температурой к телам с меньшей температурой. Обратный переход теплоты от менее нагретых тел к телам, более нагретым, можно осуществить только при затрате работы.

Таким образом, на основании опытов и наблюдений за работой тепловых машин были установлены особые свойства теплоты, которые формулируются в виде закона, называемого вторым законом термодинамики.

Приводим некоторые наиболее распространенные формулировки второго закона термодинамики.

1. В круговом процессе подводимая теплота не может быть полностью превращена в работу.

2. Для превращения теплоты в работу необходимо иметь не только нагреватель, но и холодильник с более низкой температурой, т. е. необходим температурный перепад.

3. Теплота не может сама собой переходить от тел с низшей температурой к телам с более высокой температурой.

5-5. Математическое выражение второго закона термодинамики. Энтропия

Термический к.п.д. обратимого цикла Карно определяется по уравнению

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{T_2}{T_1},$$

откуда

$$\frac{q_2}{q_1} = \frac{T_2}{T_1}$$
 или $\frac{q_1}{T_1} = \frac{q_2}{T_2}$ и $\frac{q_1}{T_1} - \frac{q_2}{T_2} = 0.$

Согласно принятым знакам подводимая теплота q_1 — величина положительная, а отводимая q_2 — отрицательная. Тогда

$$\frac{q_1}{T_1} + \frac{q_2}{T_2} = 0. \tag{5-9}$$

Рис. 5-5. Произвольный цикл как сумма элементарных циклов Карно. Отношение теплоты к абсолютной температуре, при которой она подводится к телу или от него отводится, называется приведенной геплотой. Следовательно, для обратимого цикла Карно алгебраическая сумма приведенных теплот равна нулю.

Это будет справедливо и для любого обратимого цикла, что нетрудно доказать. Рассмотрим произвольный обратимый цикл abcd (рис. 5-5). Проведя ряд адиабат

на бесконечно малом расстоянни друг от друга, мы разобьем цикл *abcd* на большое число элементарных циклов *n*, каждый из которых состоит из двух аднабат и двух элементарных отрезков контура. Изменения температур по этим отрезкам будут бесконечно малы, и поэтому их можно считать изотермами, тогда каждый элементарный цикл будет элементарным циклом Карно, для которого

$$\left(\frac{\Delta q_1}{T_1} + \frac{\Delta q_2}{T_2}\right)_l = 0, \qquad (5-10)$$

а для всего произвольного цикла

$$\sum_{i=1}^{n} \left(\frac{\Delta q_1}{T_1} + \frac{\Delta q_2}{T_2} \right)_i = 0.$$
 (5-11)

Выражение (5-11) можно переписать следующим образом:

$$\sum_{i=1}^{n} \left(\frac{\Delta q_1}{T_1}\right)_i + \sum_{i=1}^{n} \left(\frac{\Delta q_2}{T_1}\right)_i = 0;$$

вдесь $\left(\frac{\Delta q_1}{T_1}\right)_i$ — отношение количества теплоты, которое подводится в *i*-м элементарном цикле, к температуре, при которой осуществляется этот подвод; $\left(\frac{\Delta q_2}{T_2}\right)_i$ — отношение количества теплоты, которое отводится в *i*-м элементарном цикле, к температуре, при которой осуществляется этот отвод; *i* — номер элементарного цикла. 62

При изменении *i* от 1 до *n* будут просуммированы величины $\frac{\Delta q}{T}$ по всему контуру рассматриваемого цикла *abcd*, т. е.

$$\Sigma \frac{\Delta q}{T} = 0. \tag{5-12}$$

Таким образом, анализ произвольного обратимого цикла показал, что существует некоторая величина, обладающая особыми свойствами. Обозначим приращение эток величины символом Δs , т. е.

$$\frac{\Delta q}{T} = \Delta s.$$

Пользуясь обозначениями дифференциального исчисления, получаем:

$$\frac{dq}{T} = ds. \tag{5-13}$$

Одно из особых свойств величины s, которая называется энтропией, состоит в том, что сумма ее небольших изменений по всему контуру произвольного обратимого цикла равна нулю. Более коротко эту мысль можно выразить следующим образом: изменение энтропии системы* в результате прохождения обратимого цикла равно нулю.

Более подробный анализ показывает, что указанное свойство энтропии равносильно тому, что ее дифференциал является полным дифференциалом и, следовательно, энтропия представляет собой параметр состояния вещества.

Таким образом, для того чтобы вычислить изменение энтропии в каком-либо процессе (не цикле), необходимо из значения энтропии в конечном состоянии вычесть значение энтропии в начальном состоянии вещества. Введение нового параметра состояния — энтропии позволяет существенно упростить многие расчеты, ввести *T*,*s*-диаграмму, весьма удобную для анализа процессов и циклов, а также создать количественное выражение второго закона термодинамики.

Поскольку энтропия является параметром состояния, она может быть использована и для анализа необрати-

^{*} Система в данном случае состоит из горячего источника, рабочего тела и холодного источника.

мых процессов и циклов. Рассмотрим необратимый процесс в изолированной системе^{**}, состоящей из двух тел, имеющих различную температуру, причем $T_1 > T_2$.

При переходе теплоты от более нагретого тела к менее нагретому энтропия первого изменится на величину

$$ds_1 = -\frac{dq}{T_1}$$

Энтропия второго тела изменится на величину

$$ds_2 = \frac{dq}{T_2}$$

Энтропия всей системы изменится на величину, представляющую собой сумму изменений энтропии составных частей системы

$$ds_{c} = dq \left(\frac{1}{T_{z}} - \frac{1}{T_{1}}\right). \tag{5-14}$$

Поскольку $T_1 > T_2$, $ds_c > 0$, при протекании необратимого процедса в изолированной системе энтропия этой системы возрастает.

Если осуществить необратимый цикл в системе, включающей горячий источник, рабочее тело и холодный источник, изменение энтропии горячего источника за цикл будет равно:

$$\Delta s_1 = -\frac{q_1}{T_1}.$$

Изменение энтропии холодного источника будет равно.

$$\Delta s_2 = \frac{q_2}{T_2}.$$

Анализ выражения для к.п.д. необратимого цикла показывает, что по абсолютной величине уменьшение энтропии горячего источника меньше, чем увеличение энтропии холодного источника; энтропия рабочего тела в результате осуществления цикла не изменяется. Таким образом, энтропия изолированной системы в результате осуществления необратимого цикла возрастает.

Покажем это на примере необратимого цикла Карно, осуществляемого в изолированной системе. Термический

^{**} Изолированной системой называется система, для которой невозможны теплообмен и механическое взаимодействие с окружающей средой.

к. п. д. необратимого цикла Карно всегда меньше, чем к. п. д. обратимого цикла, в связи с потерями. Соотношение между этими к. п. д. может быть записано в форме неравенства

 $\eta_{tH} < \eta_t$.

Поскольку

$$\eta_{t\mathrm{H}}=1-\frac{q_{2\mathrm{H}}}{q_1},$$

то

$$1 - \frac{q_{2H}}{q_1} < 1 - \frac{T_2}{T_1}.$$

Последнее неравенство можно переписать так:

$$-\frac{q_{2\mathrm{H}}}{\overline{T}_2} > -\frac{q_1}{\overline{T}_1}.$$

Отсюда получаем:

$$\Delta s_{\rm c} > 0. \tag{5-15}$$

Таким образом, энтропия системы возрастает (энтропия системы в конечном состоянии больше, чем в начальном). Соотношение, которое выражает собой второй закон термодинамики для изолированной системы, может быть представлено в виде

$$ds_{\rm c} \ge 0. \tag{5-16}$$

При этом знак равенства относится к обратимым процессам, а знак неравенства — к необратимым.

Найдем общие уравнения для подсчета изменения энтропии 1 кг идеального газа при постоянной теплоем-кости.

На основании первого закона термодинамики

$$ds = \frac{dq}{T} = \frac{du}{T} + \frac{p\,dv}{T};$$

HO $du = c_{t}dT$, a p/T = R/v, поэтому

$$ds = c_v \frac{dT}{T} + R \frac{dv}{v}.$$
 (5-17)

После интегрирования этого уравнения получим искомую зависимость изменения энтропии от параметров *T* и *v* в следующем виде:

$$s_2 - s_1 = c_v \ln T_2 / T_1 + R \ln v_2 / v_1.$$
 (5-18)

Дифференцируя уравнение *pv*=*RT*, находим:

$$p dv + v dp = R dT$$
.

5-702

Разделив левую часть уравнения на *pv*, а правую — на *RT*, получим:

$$\frac{dv}{v} + \frac{dp}{p} = \frac{dT}{T},$$
 (a)

или

$$\frac{dv}{v} = \frac{dT}{T} - \frac{dp}{p}.$$
 (6)

١

Подставляя выражение (а) в уравнение (5-17), получаем:

$$ds = c_v \left(\frac{dv}{v} + \frac{dp}{p} \right) + R \frac{dv}{v},$$

HO

 $R + c_v = c_\rho$,

поэтому

$$ds = c_p \frac{dv}{v} + c_v \frac{dp}{p}.$$

После интегрирования этого уравнения получим искомую зависимость от параметров *p* и *v* в следующем виде:

$$s_2 - s_1 = c_p \ln \frac{v_2}{v_1} + c_p \ln \frac{p_2}{p_1}.$$
 (5-19)

Если теперь в уравнение (5-17) подставить выражение (б), получим:

$$ds = c_v \frac{dT}{T} + R\left(\frac{dT}{T} - \frac{dp}{p}\right)$$

$$ds = c_p \frac{dT}{T} - R \frac{dp}{p}.$$

Интегрируя, получаем искомую зависимость от параметров *T* и *p* в следующем виде:

$$s_{2} - s_{1} = c_{p} \ln \frac{t_{2}}{T_{1}} - R \ln \frac{p_{2}}{p_{1}}.$$
 (5-20)

Как следует из уравнений (5-18) - (5-20), энтропия измеряется в тех же единицах, что и массовая теплоем-кость, т. е. в кДж/(кг·К).

В технической термодинамике при исследовании процессов широко применяется *T*, *s*-диаграмма, на которой по оси ординат откладываются значения абсолютных температур, а по оси абсцисс — энтропии.

Изобразим произвольный обратимый процесс линией *АВ* и рассмотрим свойства *T*, *s*-диаграммы (рис. 5-6). Как видно из диаграммы, заштрихованная элементарная

Рис. 5-6. Произвольный процесс с подводом тепла в *T*, *s*-днаграмме.

5*

Рис. 5-7. Изображение истинной теплоемкости газа в *T*, *s*диаграмме.

площадка с основанием ds и высотой T изображает теплоту $dq = T \ ds$. Тогда вся площадь aABb, равная сумме бесконечно большого числа элементарных площадок, будет изображать полную теплоту процесса A - B, т. е.

пл.
$$aABb = \int_{A}^{B} T \, ds = q.$$

В уравнении dq = T ds величина T всегда положительна, поэтому dq и ds по знаку одинаковы. Значит, если в процессе теплота подводится, то dq > 0, следовательно, и ds > 0, т. е. энтропия газа увеличивается. Если в процессе теплота отводится, то dq < 0, следовательно, и ds < 0, т. е. энтропия газа уменьшается. Таким образом, T, s-диаграмма позволяет определить количество теплоты, которое подводится к газу или отводится от него в термодинамическом процессе и изображается площадкой под кривой процесса. Кроме того, T, s-диаграмма позволяет определить в любом процессе теплоемкость рабочего тела в заданном состоянии и установить ее знак. Чтобы это доказать, проведем касательную к политропе AB через точку k и рассмотрим два подобных треугольника LkM и kfm (рис. 5-7). Из подобия этих треугольников получим

$$\frac{LM}{kM} = \frac{kf}{mf}$$

Так как

$$kM = T$$
, $kf = ds$ и $mf = dT$,

то

$$LM = kM \frac{kf}{mf} = T \frac{ds}{dT} = c,$$

что и требовалось доказать. Следовательно, в *T*, *s*-диаграмме массовая теплоемкость рабочего тела в состоянии *k* измеряется подкасательной кривой политропного процесса *AB*. Если подкасательная расположена слева от вертикали *kM*, то теплоемкость положительна, если справа — то отрицательна.

5-7. Термодинамические процессы газов в *Т*,*s*-диаграмме

Изохорный процесс. При v = const из уравнения (5-18) получим:

$$s_2 - s_1 = c_v \ln \frac{T_2}{T_1}$$

или

$$s_{2} - s_{1} = 2,303c_{v} \lg \frac{T_{2}}{T_{1}}.$$
 (5-21)

Рис. 5-8. Изохорный процесс в *T*, *s*-диа-грамме.

Следовательно, изохора изображается логарифмической кривой, обращенной выпуклостью в сторону

оси абсцисс. Площадь под кривой процесса изображает подводимую теплоту, которая в этом случае равна изменению внутренней энергии (рис. 5-8).

Изобарный процесс. При постоянном давлении уравнение (5-20) приводится к виду

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1},$$

или

$$s_2 - s_1 = 2,303c_p \lg \frac{T_2}{T_1}.$$
 (5-22)

Таким образом, изобарный процесс в T,s-диаграмме изображается также логарифмической кривой. Однако из уравнений (5-21) и (5-22) видно, что при одних и тех же значениях температур T_1 и T_2 изменение энтропии в изобарном процессе будет больше, чем в изохорном, так как $c_p > c_v$. Поэтому изобара будет более пологой линией, чем изохора (рис. 5-9).

CHARTUR PACUUPEHUE

Рис. 5-9. Изобарный процесс в *T*, *s*-диа-грамме.

Рис. 5-10. Изотермический процесс в *T*, *s*диаграмме.

Изотермический процесс. Так как процесс протекает при T = const, то изотерма — горизонтальная линия, причем при расширении — это линия 1-2, так как процесс протекает с подводом теплоты, и следовательно, с увеличением энтропии; при сжатии — линия 1-2', т. е. энтропия уменьшается, так как в этом случае теплота отводится (рис. 5-10).

Изменение энтропии в изотермическом процессе определяется из уравнений (5-18) и (5-20), которые приводятся к виду:

$$s_2 - s_1 = R \ln \frac{v_2}{v_1} = R \ln \frac{p_1}{p_2}, \qquad (5-23)$$

или

$$s_2 - s_1 = 2,303R \lg \frac{v_2}{v_1} = 2,303R \lg \frac{p_1}{p_2}.$$
 (5-24)

Адиабатный процесс. В адиабатном процессе dq == 0, поэтому

$$ds = \frac{dq}{T} = 0 \quad \text{is } s = \text{const.}$$

Следовательно, обратимый адиабатный процесс изображается вертикальной линией (рис. 5-11); процесс сжатия направлен в сторону повышения температуры вверх, а процесс расширения — вниз, в сторону понижения температуры.

На рис. 5-12 в координатах T, s изображены четыре процесса, проходящие через точку A. Из графика видно их взаимное расположение как при расширении, так и при сжатии. На этом графике показаны также три группы рассмотренных ранее политропных процессов.

Рис. 5-11. Адиабатный процесс в *T*, *s*-диаграмме.

Рис. 5-12. Три группы политропных процессов в *T*, *s*-диаграмме.

Для любого политропного процесса изменение энтропии рабочего тела можно найти из уравнений (5-18) — (5-20) или найти другое уравнение следующим образом. Очевидно,

$$ds = dq/T$$
,

но

$$dq = c_v \, \frac{n-k}{n-1} dT,$$

поэтому

$$ds = c_v \frac{n-k}{n-1} \frac{dT}{T},$$

откуда после интегрирования получим:

$$s_2 - s_1 = c_v \frac{n-k}{n-1} \ln \frac{T_2}{T_1}.$$

5-8. Круговые процессы в Т, s-диаграмме

Круговой процесс в *T*, *s*-диаграмме изображается, как и в *p*, *v*-диаграмме, замкнутой линией. В прямых циклах изменение состояния рабочего тела происходит по часовой стрелке и линии с подводом теплоты располагаются выше линий с отводом теплоты. В обратных циклах изменение состояния рабочего тела происходит против часовой стрелки и линии с подводом теплоты расположены ниже линий с отводом теплоты.

На рис. 5-13 изображен прямой обратимый цикл *dbcd*. На участке *abc* от горячего источника к рабочему телу подводится количество теплоты

а на участке *cda* от рабочего тела в холодильник отводится количество теплоты

q₂==пл. 1adc2.

Разность между подводимей теплотой и отводимой есть полезная теплота цикла q, она изображается площадью замкнутого контура *abcd* и равна работе цикла $l_{\rm q}$, т. е.

Рис. 5-13. Произвольный прямой обратимый цикл.

Рис. 5-14. Обратимый цикл Карно в *T*, *s*-диаграмме.

Термический к.п.д. кругового процесса определяется как отношение площади *abcd* к площади *labc2*.

Обратимый прямой цикл Карно, состоящий из двух изотерм и двух адиабат, в T,s-диаграме изображается прямоугольником ABCD (рис. 5-14) и протекает в интервале температур T_1 горячего источника теплоты и T_2 — холодного. Найдем термический к.п.д. цикла при помощи T,s-диаграммы.

На рис. 5-14 АВ — изотермический процесс расширения, в котором к газу подводится теплота

$$q_1$$
 == пл. $1AB2 == T_1 \Delta s;$

CD — изотермический процесс сжатия, в котором газ отдает теплоту

$$q_2$$
=пл. $IDC2=T_2\Delta s$.

Вертикальные линии *BC* и *DA* изображают соответственно адиабатные процессы расширения и сжатия.

Подставляя в уравнение (5-2) значения q_1 и q_2 , получаем уже известное выражение термического к. п. д. цикла

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{n\pi \cdot IDC2}{n\pi \cdot IAB2} = 1 - \frac{T_2 \Delta s}{T_1 \Delta s} = 1 - \frac{T_2}{T_1}.$$

Таким образом, выражение термического к.п.д. цикла Карно здесь получено значительно проще, чем ранее при использовании *p*,*v*-диаграммы.

Рис. 5-15. Сравнение произвольного цикла и цикла Карно при одинаковых температурах T₁ и T₂.

При помощи *T*, *s*-диаграммы можно показать еще одно важное свойство цикла Карно, которое устанавливается теоремой Карно. Согласно этой теореме в заданном интервале температур *T*₁ и *T*₂ термический к. п. д. цикла Карно имеет наибольшее значение по сравнению с любым другим произвольным циклом.

На рис. 5-15 показаны произвольный цикл *abcd* и цикл Карно *ABCD*, протекающие

в интервале температур T_1 и T_2 . Оба цикла прямые и обратимые.

Из общего уравнения (5-2) имеем:

$$\eta_t = 1 - \frac{q_2}{q_1},$$

откуда следует, что термический к.п.д. цикла будет тем больше, чем меньше отношение q_2/q_1 .

Из Ts-диаграммы видно, что в цикле Карно

$$\left(\frac{q_2}{r_{q_1}}\right)_{\mathrm{K}} = \frac{\mathrm{n.}\ 1DC2}{\mathrm{n.}\ 1AB2},$$

а для произвольного цикла

$$\left(\frac{q_2}{q_1}\right)_{\rm np} = \frac{{\rm nn.}\ label{eq:alpha}}{{\rm nn.}\ label{eq:alpha}}.$$

Так как

$$\left(\frac{q_2}{q_1}\right)_{\kappa} < \left(\frac{q_2}{q_1}\right)_{\pi p},$$

то

 $\eta_{t\kappa} > \eta_{tmp}$
Выше рассматривалось изменение энтропии изолированной системы, состоящей из горячего источника с постоянной температурой T_1 , рабочего тела и холодильника с постоянной температурой T_2 . При осуществлении в данной системе обратимого цикла Карно уменьшение энтропии горячего источника равно увеличению энтропии холодильника, а энтропия рабочего тела не меняется. Следовательно, энтропия изолированной системы остается постоянной. То же самое

остается постоянной. То же самое получается и при осуществлении любого обратимого цикла, так как его можно представить как сумму элементарных циклов Карно (§ 5-5).

При осуществлении любого необратимого цикла возрастание энтропии холодильника будет больше, чем уменьшение энтропии горячего источника, и энтропия изолированной системы возрастает, т. е. ds > 0. Возрастание энтропии сопровождается понижением работоспособности системы или деградацией энергии.

Рис. 5-16. Адиабатные процессы: обратимый (1-2) и необратимый (1-3).

мы или деградацией энергии. Пусть в изолированной системе протекает обратимый адиабатный процесс расширения газа 1—2 (рис. 5-16). В этом случае совершаемая работа, пропорциональная падению температуры газа, равна:

$$l_{06} = c_v (T_1 - T_2).$$

Так как процесс протекает без подвода и отвода теплоты, то энтропия системы остается неизменной и ds = 0. При протекании в такой системе необратимого адиабатного процесса часть работы, например, будет расходоваться на преодоление трения и перейдет в теплоту, которая усваивается газом. В связи с этим энтропия системы будет увеличиваться пропорционально теплоте трения. При одинаковом понижении давления конечная температура газа T_3 будет больше температуры T_2 обратимого процесса и работа расширения, пропорциональная падению температуры и равная

$$l_{\rm H0} = c_v (T_1 - T_3),$$

будет меньше, чем в обратимом процессе.

На рис. 5-16 необратимый адиабатный процесс условно изображен наклонной линией 1—3. Таким образом, необратимый процесс сопровождается увеличением энтропии системы и потерей работы.

Очевидно, чем больше будет необратимость процесса, тем больше будет увеличиваться энтропия системы и одновременно уменьшаться ее работоспособность. Таким образом, энтропия является мерой необратимости, мерой снижения работоспособности изолированной системы тел и в этом ее физический смысл.

Все действительные процессы необратимы, так как протекают при конечной разности температур между рабочим телом и источником теплоты. Они осуществляются с большой скоростью и сопровождаются трением, вследствие чего энтропия изолированной системы возрастает, а ее работоспособность уменьшается.

В свое время Клаузиус, который занимался обоснованием второго начала термодинамики после Карно, использовал положение о возрастании энтропии изолированной системы применительно ко всем реальным процессам, происходящим во Вселенной. При этом сама Вселенная трактовалась как изолированная система, в которой все реальные процессы ведут к возрастанию энтропии и, следовательно, возможности превращения теплоты в работу уменьшаются. Логическим следствием этого исходного положения явилась гипотеза о так называемой «тепловой смерти» Вселенной. Диалектический материалом показал глубокую ошибочность этих утверждений Клаузиуса. Вселенная не является изолированной системой, поэтому на нее нельзя распространять выводы второго закона термодинамики, подтверждаемые опытом в земных условиях. Во Вселенной возможно протекание процессов, сопровождающихся уменьшением энтропии. Убедительную критику гипотезы о «тепловой смерти» Вселенной дал Ф. Энгельс в своем произведении «Диалектика природы». Последние научные достижения подтверждают предвидение Ф. Энгельса.

ГЛАВА ШЕСТАЯ

ЦИКЛЫ ГАЗОВЫХ ТЕПЛОВЫХ ДВИГАТЕЛЕЙ

6-1. Циклы поршневых двигателей внутреннего сгорания.

Общие сведения

Тепловые поршневые машины, использующие в качестве рабочих тел продукты сгорания жидких и газообразных топлив, сжигаемых внутри цилиндра, называются двигателями внутреннего сгорания (ДВС). При исследовании циклов ДВС вводится ряд упрощений, реальные процессы заменяются более или менее тождественными термодинамическими процессами.

Основные упрощения, которые вносятся при термо-. динамических исследованиях циклов ДВС, сводятся к следующим положениям.

1. Процессы заполнения цилиндра двигателя горючей смесью или воздухом (всасывание) и выталкивания отработавших газов не принимаются во внимание. Эти процессы протекают при переменных количествах рабочего тела и поэтому не являются термодинамическими процессами.

2. Химические свойства и количество рабочего тела на всех стадиях кругового процесса полагаются неизменными.

3. Процессы горения топлива в цилиндре ДВС рассматриваются как процессы подвода эквивалентного количества теплоты к рабочему телу.

4. Удаление продуктов горения из цилиндра ДВС заменяется процессом отвода теплоты от рабочего тела в холодильник.

5. Потери теплоты в окружающую среду, на трение и т. п. не принимаются во внимание. Все процессы рассматриваются как равновесные и обратимые.

6. В качестве рабочего тела принимается 1 кг идеального газа с постоянной теплоемкостью.

В зависимости от способа подвода теплоты к рабочему телу циклы двигателей внутреннего сгорания (ДВС) сводятся к трем основным:

1) цикл с подводом теплоты при постоянном объеме;

2) цикл с подводом теплоты при постоянном давлении;

3) цикл со смешанным подводом теплоты, в котором теплота сначала подводится при постоянном объеме, а затем — при постоянном давлении.

Использование двигателей внутреннего сгорания в энергетике ограничено, что связано в первую очередь с их малой единичной мощностью в сравнении с мощностью современных турбогенераторов.

6-2. Цикл с подводом теплоты при постоянном объеме

По данному циклу работают карбюраторные ДВС, использующие легкое топливо с низкой температурой воспламенения; в цилиндре двигателя происходит сжатие смеси парообразного топлива и воздуха. Зажигание горючей смеси осуществляется от электрической искры.

 $\begin{array}{c} 1\\ 2\\ q = q_1 - q_2 \\ 1\\ \end{array} \begin{array}{c} q = q_1 - q_2 \\ q_2 \end{array} \begin{array}{c} q = q_1 - q_2 \\ q_2 \end{array}$

Рис. 6-2. *Т*, *s*-диаграмма цикла ДВС с подводом теплоты при постоянном объеме.

Рис. 6-1. *р*, *v*-диаграмма цикла ДВС с подводом теплоты при постоянном объеме.

Рассматриваемый теоретический цикл состоит из двух адиабатных и двух изохорных процессов, графическое его изображение в p,v- и T,s-координатах приведено на рис. 6-1 и 6-2. Изменение состояния рабочего тела осуществляется следующим образом. При движении поршня справа налево происходит адиабатное сжатие газа 1-2 и его объем уменьшается от v_1 до v_2 . Отношение начального объема v_1 к конечному v_2 называется *степенью сжатия* и обозначается через ε :

$$\varepsilon = v_1 / v_2. \tag{6-1}$$

Как известно, работа сжатия отрицательна.

В изохорном процессе 2-3 к газу подводится теплота q1, эквивалентная теплоте, выделяющейся при сгорании топлива, которая определяется по уравнению

$$q_1 = c_r (T_3 - T_2). \tag{6-2}$$

При обратном движении поршня направо газ расширяется по адиабате 3-4 до объема v4, равного начальному v1, при этом газ совершает положительную работу. Результирующая работа цикла равна разности работ адиабатных процессов расширения и сжатия н изображается в *р.v*-диаграмме площадью цикла 1234.

В изохорном процессе 4-1 от газа отводится теплота q2, что соответствует его охлаждению в атмосфере, эта теплота равна

$$q_2 = c_v (T_4 - T_1). \tag{6-3}$$

Полезно использованная теплота в цикле равна разности подводимой и отводимой теплот изохорных процессов и в T,s-диаграмме изображается площадью 1234.

Термический к.п.д. чаходим по общему уравнению (5-2)

$$\eta_t = 1 - \frac{q_2}{q_1}.$$

С учетом уравнений (6-2) и (6-3) имеем:

$$\eta_t = 1 - \frac{T_4 - T_1}{T_3 - T_2}.$$
 (6-4)

Разделив и умножив числитель на Т₁, а знаменатель на T_{2} , приводим уравнение (6-4) к виду:

$$\eta_t = 1 - \frac{T_1}{T_2} - \frac{\frac{T_4}{T_1} - 1}{\frac{T_3}{T_2} - 1}.$$
 (6-5)

Найдем отношения температур. Для адиабатного проuecca 1-2:

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} = \varepsilon^{k-1}, \tag{6-6}$$

откуда

$$\frac{T_1}{T_2} = \frac{1}{\epsilon^{k-1}}.$$
(6-7)

$$\eta_t = 1 - \frac{q_2}{q_1}.$$

Для адиабатного процесса 3-4:

$$\frac{T_s}{T_4} = \left(\frac{v_4}{v_s}\right)^{k-1} = \left(\frac{v_1}{v_2}\right)^{k-1} = \varepsilon^{k-1}.$$
(6-8)

Таким образом, в данном цикле степени расширения и сжатия равны, следовательно,

$$\frac{T_2}{T_1} = \frac{T_3}{T_4} \text{ или } \frac{T_4}{T_1} = \frac{T_3}{T_2}.$$
 (6-9)

Если подставить в уравнение (6-5) найденные отношения температур (6-7) и (6-9), то после сокращений получим окончательное выражение термического к.п.д.:

$$\eta_t = 1 - \frac{1}{\varepsilon^{k-1}}.$$
 (6-10)

Следовательно, термический к.п.д. рассматриваемого цикла возрастает при увеличении степени сжатия є.

Однако высокие степени сжатия в двигателях, работающих по данному циклу, недопустимы, так как температура горючей смеси при сжатии может превысить температуру воспламенения и топливо загорится раньше, чем поршень придет в свое крайнее положение, что может привести к аварии. Степень сжатия в этих двигателях зависит от свойств применяемого топлива и изменяется от 4 до 8.

Термический к.п.д. цикла зависит от физических свойств рабочего тела, на что указывает присутствие в формуле (6-10) коэффициента $k = c_p/c_v$. Однако этот коэффициент изменяется в узких пределах и поэтому его влияние на термический к.п.д. невелико.

6-3. Цикл с подводом теплоты при постоянном давлении

В двигателях, работающих по этому циклу (дизельных двигателях), подвергается сжатию только воздух, поступающий в цилиндр из атмосферы. В целях повышения термического к.п.д. в этих двигателях применяются высокие степени сжатия ($\epsilon = 14 \div 18$). Поэтому в цилиндре двигателя в конце сжатия давление воздуха повышается до 3,5—4,5 МПа, а температура — до 750—900°С, что намного выше температуры самовоспламенения применяемого топлива. При последующем расширении сжатого воздуха в него через форсунку подается мелко распыленное жидкое топливо, оно воспламеняется

и горит при постоянном давлений, что регулируется форсункой. Подача топлива производится при перемещении поршня на некотором участке его хода, после чего происходит адиабатное расширение полученных продуктов сгорания.

Теоретический цикл двигателя с подводом теплоты при постоянном давлении в *p,v*- и *T,s*-диаграммах показан на рис. 6-3 и 6-4.

Рис. 6-3. *р*, *v*-диаграмма цикла ДВС с подводом теплоты при постоянном давлении.

Рис. 6-4. *Т, s*-диаграмма цикла ДВС с подводом теплоты при постоянном давлении.

В этом цикле:

1-2 — адиабатный процесс сжатия воздуха, $\varepsilon = v_1/v_2$; 2—3 — изобарный процесс расширения с подводом теплоты q_1 , количество которой находим по уравнению

$$q_1 = c_p \left(T_3 - T_2 \right). \tag{6-11}$$

Отношение объема v₃ к v₂ называется степенью предварительного расширения и обозначается через ρ, т. е.

$$\rho = v_3 / v_2 = T_3 / T_2. \tag{6-12}$$

Последующие процессы цикла:

3-4 - адиабатное расширение рабочего тела;

4-1 — изохорный процесс с отводом тепла q_2 , что соответствует охлаждению отработанных газов в атмосфере и может быть найдено по формуле

$$q_2 = c_v (T_4 - T_1). \tag{6-13}$$

Подставляя в уравнение (5-2) выражения q_1 и q_2 из уравнений (6-11) и (6-13), получаем:

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{c_v \left(T_4 - T_1\right)}{c_p \left(T_3 - T_2\right)}.$$
 (6-14)

79

При $c_v = c_p = \text{const}$ уравнение (6-14) приводится к виду:

$$\eta_t = 1 - \frac{1}{k} \frac{\frac{T_4}{T_1} - 1}{\frac{T_3}{T_2} - 1} \frac{T_1}{T_2}.$$
 (6-15)

Определим отношение температур. Для адиабатных процессов 3—4 и 1—2 имеем:

$$p_4 v_4^k = p_5 v_5^k;$$
 (6-16)

$$p_1 v_1^k = p_2 v_2^k$$
. (6-17)

Так как $v_4 = v_1$ и $p_2 = p_3$, что после деления уравнения (6-16) на (6-17) получим:

$$\frac{p_4}{p_1} = \left(\frac{v_3}{v_2}\right)^k = \rho^k. \tag{6-18}$$

(6.19)

Но в изохорном процессе 4-1

$$\frac{p_4}{p_1} = \frac{T_4}{T_1},$$

следовательно,

$$T_1 = P$$
. (6.15)
ня в уравнение (6-15) вместо отношения

Подставляя в уравнение (6-15) вместо отношения температур выражения (6-7), (6-12) и (6-19), получаем окончательное выражение термического к.п.д. рассматриваемого цикла:

 T_4

$$\eta_t = 1 - \frac{1}{k} \frac{\rho^k - 1}{\rho - 1} \frac{1}{e^{k-1}}.$$
 (6-20)

Из уравнения (6-20) следует, что термический к. п. д. цикла тем выше, чем больше степень сжатия е и чем меньше степень предварительного расширения ρ . Коэффициент k определяет зависимость η_t от свойств рабочего тела, но влияние его незначительно.

По циклу с изобарным подводом теплоты работают компрессорные двигатели внутреннего сгорания, в которых распыливание жидкого топлива осуществляется сжатым воздухом. Эти двигатели называются также двигателями высокого давления. Этот цикл впервые был предложен в 1904 г. русским инженером Г. В. Тринклером и поэтому также называется циклом Тринклера. По смешанному циклу работают бескомпрессорные двигатели, в которых, как и в предыдущем случае (в цикле с подводом теплоты при p = const), в цилиндре сжимается только чистый воздух, Поэтому в двигателе этого типа допускаются те же высокие степени сжатия ($\varepsilon = 14 \div 18$).

Рис. 6-5. *р*, *v*-диаграмма цикла ДВС со смешанным подводом теплоты.

Рис. 6-6. *Т*, *s*-диаграмма цикла ДВС со смешанным подводом теплоты.

Теоретический цикл со смешанным подводом теплоты, или цикл Тринклера, в *р,v*- и *Т,s*-диаграммах изображен на рис. 6-5 и 6-6. В этом цикле:

1-2 – адиабатный процесс сжатия воздуха, $e = v_1/v_2$; 2-3 – изохорный процесс подвода тепла q'_1 , что соответствует горению части топлива, и сопровождается повышением давления и температуры газа.

Отношение давления p₃ к давлению p₂ называется степенью повышения давления и обозначается через λ:

$$\lambda = p_3/p_2; \tag{6-21}$$

количество подводимой теплоты равно:

$$q'_1 = c_v (T_3 - T_2).$$
 (6-22)

Далее следует:

3—4 — изобарный процесс подвода теплоты q''_1 , что соответствует горению другой, основной части топлива. Эта теплота определяется по уравнению

$$q''_1 = c_p (T_4 - T_3);$$
 (6-23)
81

6-702

степень предварительного расширения в процессе 3-4

$$\rho = v_4 / v_3 = T_4 / T_3. \tag{6-24}$$

Последующие процессы цикла:

4—5— адиабатный процесс расширения продуктов горения;

5-1 — изохорный процесс с отводом теплоты q_2 , т.е. охлаждение отработавших газов в атмосфере. Количество теплоты, отводимой в этом процессе, найдем по уравнению

$$q_2 = c_v (T_5 - T_1). \tag{6-25}$$

Термический к.п.д. цикла определяется из выражения

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{q_2}{q'_1 + q''_1};$$

с учетом уравнений (6-22), (6-23) и (6-15) получим:

$$\eta_t = 1 - \frac{c_v (T_s - T_1)}{c_v (T_s - T_2) + c_p (T_4 - T_3)} \,. \tag{6-26}$$

Умножив и разделив числитель на T_1 , а знаменатель на T_2 , уравнение (6-26) приводим к виду:

$$\eta_t = 1 - \frac{\frac{T_5}{T_1} - 1}{\left(\frac{T_3}{T_2} - 1\right) + k \left(\frac{T_4}{T_2} - \frac{T_3}{T_2}\right)} \frac{T_1}{T_2}.$$
 (6-27)

Для определения отношений температур поступаем следующим образом. Для адиабатных процессов 1—2 и 4—5 можно написать:

$$p_{s}v^{k}_{s} = p_{4}v^{k}_{4}; \qquad (6-28)$$

$$p_1 v_1^k = p_2 v_2^k$$
. (6-29)

Разделив почленно равенство (6-28) на (6-29) и учтя, что $v_1 = v_5$, получим:

$$\frac{p_5}{p_1} = \frac{p_4}{p_2} \left(\frac{v_4}{v_2}\right)^k.$$
 (6-30)

Так как $p_4 = p_3$, а $v_2 = v_3$, после замены соотношение (6-30) приводится к виду:

$$\frac{p_5}{p_1} = \frac{p_3}{p_2} \left(\frac{v_4}{v_3}\right)^k = \lambda \rho^k.$$
 (6-31)

Для изохорных процессов 2-3 и 5-1 имеем:

$$\frac{p_s}{p_2} = \frac{T_s}{T_2} = \lambda; \qquad (6-32)$$

$$\frac{p_{\mathfrak{s}}}{p_1} = \frac{T_{\mathfrak{s}}}{T_1} = \lambda \rho^k. \tag{6-33}$$

Для изобарного процесса 3-4

$$\frac{v_4}{v_3} = \frac{T_4}{T_3} = \rho. \tag{6-34}$$

Перемножив (6-32) и (6-34), получим:

$$\frac{T_4}{T_2} = \lambda \rho. \tag{6-35}$$

Подставляя найденные значения отношения температур в уравнение (6-27), получаем выражение термического к. п. д. цикла со смешанным подводом теплоты через принятые характеристики:

$$\eta_t = 1 - \frac{1}{\varepsilon^{k-1}} \frac{\lambda \rho^k - 1}{(\lambda - 1) + k\lambda (\rho - 1)} \cdot$$
(6-36)

Следовательно, термический к.п.д. цикла повышается с увеличением степени сжатия є и степени повышения давления λ ; увеличение степени предварительного расширения о снижает к.п.д.

Рис. 6-7. Сравнение циклов ДВС при одинаковой степени сжатия.

Рис. 6-8. Сравнение циклов ДВС при одинаковых максимальных и минимальных температурах.

Цикл со смешанным подводом теплоты имеет обобщающее значение. Если допустить, что $\lambda = 1$, то получается цикл с подводом теплоты при p = const и уравнение (6-36) переходит в уравнение (6-20). Если допу-6* 83 стить, что $\rho = 1$, то получается цикл с подводом теплоты при v = const и уравнение (6-36) переходит в уравнение $(\hat{6}-10).$

Проведем сравнение экономичности рассмотренных циклов при одинаковых степенях сжатия є и одинаковых количествах отводимой теплоты а₂.

Для этого изобразим совместно все три цикла в T,s-диаграмме так, как это показано на рис. 6-7, где отдельные площади изображают:

пл. dabc — цикл с изохорным подводом теплоты; пл. dab₁c — цикл с изобарным подводом теплоты;

пл. daeb₂c — цикл со смешанным подводом теплоты. Как известно, эти площади изображают полезно использованную теплоту или, что все равно, работу цикла. Так как

пл. dabc>пл. daeb₂c>пл. dab₁c,

то

 $\eta_{t}^{v=\mathrm{const}} > \eta_{t}^{\mathrm{cM}} > \eta_{t}^{p=\mathrm{const}}$.

Таким образом, наиболее экономичным будет цикл с изохорным подводом тепла. Однако в ДВС, работающих по данному циклу, степень сжатия є всегда ниже, чем в ДВС других типов, и поэтому на практике сравнение экономичности циклов производят при максимальных давлениях и температурах. Из Т, s-диаграммы (рис. 6-8) видно, что в этом случае максимальный к.п.д. имеет цикл da1bc с изобарным подводом теплоты и наименьший к.п.д. цикл dabc с изохорным подводом теплоты. Термический к.п. д. цикла dea2bc со смешанным подводом теплоты занимает промежуточное положение.

6-5. Циклы газотурбинных установок

Газотурбинные установки (ГТУ) по сравнению с поршневыми ДВС обладают существенными преиму-ществами, которые обусловливают их быстрое развитие и внедрение в различные отрасли народного хозяйства в качестве энергетических установок. Газотурбинные установки не имеют механизмов с возвратно-поступательным движением, характерным для поршневых дви-гателей, поэтому эти установки могут выполняться быстроходными, что облегчает конструирование единичных агрегатов большой мощности при малых габаритах.

Работа газотурбинных установок характеризуется нопрерывностью процессов во всех элементах. Расширение рабочего тела в газовой турбине происходит до атмосферного давления, что обеспечивает более высокие к. п. д. циклов, чем в поршневых двигателях.

При термодинамическом исследовании циклов ГТУ, так же как и при изучении циклов поршневых ДВС, реальные процессы идеализируются и заменяются теоретическими обратимыми процессами. Процесс горения топлива заменяется изобарным или изохорным процессом подвода теплоты, которое эквивалентно теплоте, выделяемой при сгорании топлива; удаление газов из турбины заменяется изобарным процессом отвода теплоты холодному источнику; количество рабочего тела в цикле остается постоянным, равным 1 кг, следовательно, цикл считается замкнугым.

В соответствии со способом сгорания топлива газотурбинные установки делятся на две группы:

а) с подводом теплоты при постоянном давлении;

б) с подводом теплоты при постоянном объеме.

Цикл газотурбинной установки с подводом тепла при постоянном давлении. Рассмотрим работу простейшей газотурбинной установки со сгоранием топлива при постоянном давлении. На рис. 6-9 приведено изображение принципиальной схемы такой установки. Работа установки протекает следующим образом. Атмосферный воздух поступает в компрессор 2, где он сжимается и затем

Рис. 6-9. Схема ГТУ со сгоранием топлива при постоянном давлении.

направляется в камеру сгорания 3. Туда же топливным насосом 4 через форсунку 5 подается мелкораспыленное жидкое топливо, которое сгорает при постоянном давлении. Образующиеся продукты сгорания проходят сопло 6 и с большой скоростью поступают на ротор газовой турбины 1. Здесь кинетическая энергия газов переходит в энергию вращения вала газовой турбины. Отработавшие газы при достаточно высокой температуре покидают турбину и удаляются в атмосферу. Теоретический цикл ГТУ в *p,v*- и *T,s*-диаграммах изображен на рис. 6-10 и 6-11. В цикле:

1-2 — адиабатное сжатие воздуха в турбокомпрессоре;

2-3 — изобарный процесс подвода теплоты q_1 , что соответствует сгоранию топлива в камере горения;

3-4 — адиабатное расширение рабочего тела (продуктов сгорания) в газовой турбине;

4-1 — изобарный процесс отвода теплоты q_2 , что соответствует выходу газов в окружающую среду.

При исследовании цикла применяются следующие характеристики: степень сжатия $\varepsilon = v_1/v_2$; степень повышения давления $\beta = p_2/p_1$.

Рис. 6-10. *р*, *v*-диаграмма цикла ГТУ с изобарным подводом теплоты.

Рис. 6-11. *Т*, *s*-диаграмма цикла ГТУ с изобарным подводом теплоты.

Количество подводимой и отводимой теплоты находим из уравнений:

$$q_1 = c_p (T_3 - T_2); q_2 = c_p (T_4 - T_1).$$

Термический к.п.д. рассматриваемого цикла равен:

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{c_p \left(T_4 - T_1\right)}{c_p \left(T_3 - T_2\right)}$$
(6-37)

и приводится к виду:

$$\eta_t = 1 - \frac{\frac{T_4}{T_1} - 1}{\frac{T_3}{T_2} - 1} \frac{T_1}{T_2}.$$
 (6-38)

Для адиабатных процессов 1-2 и 3-4 имеем:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{k-1} = \left(\frac{v_1}{v_2}\right)^{k-1} = \beta^{k-1} = \varepsilon^{k-1};$$

$$\frac{T_3}{T_4} = \left(\frac{p_3}{p_4}\right)^{\frac{k-1}{k}} = \left(\frac{v_4}{v_3}\right)^{k-1} = \beta^{\frac{k-1}{k}} = \varepsilon^{k-1}.$$
 (6-39)

Так как $p_1 = p_4$ и $p_2 = p_3$, то

$$\frac{T_3}{T_4} = \frac{T_2}{T_1}$$
 или $\frac{T_4}{T_1} = \frac{T_3}{T_2}$. (6-40)

Подставляя в уравнение (6-38) соотношения (6-40), находим:

$$\eta_t = 1 - \frac{T_1}{T_2} = 1 - \frac{1}{T_2/T_1}.$$
 (6-41)

Используя уравнение (6-39), получаем окончательное выражение термического к.п.д. цикла

$$\eta_{t_{s}} = 1 - \frac{1}{\beta^{k}} = 1 - \frac{1}{\varepsilon^{k-1}}. \quad (6-42)$$

Следовательно, термический к.п.д. повышается с увеличением степени повышения давления в или степени сжатия є и имеет такое же выражение как и к.п.д. цикла ДВС с подводом теплоты при постоянном объеме.

Рассмотрим некоторые мероприятия, которые дополнительно применяются в газотурбинных установках для повышения их экономич-

ности. Отработавшие газы покидают турбину с температурой T_{4} около 400—500°C. ЧТО значительно выше температуры воздуха Т2 после компрессора. Последнее позволяет использовать часть тепла уходящих газов на подогрев сжатого воздуха до его поступления в камеру сгорания.

Рис. 6-12. Цикл ГТУ с изобарным подводом теплоты при полной регенерации.

Такой процесс передачи теплоты от отработавших газов к воздуху называется регенерацией теплоты. Этот процесс осуществляется при постоянном давлении в регенеративном подогревателе 7, который на рис. 6-9 изображен пунктиром.

Теоретический цикл газотурбинной установки с подводом теплоты при постоянном давлении и полной регенерацией теплоты отработавших газов изображен на рис. 6-12. В этом цикле:

1—2 — адиабатное сжатие воздуха в компрессоре; 2—5 — изобарный процесс подогрева воздуха в регенеративнем подогревателе 7;

5-3-изобарный процесс сгорания топлива в камере сгорания;

3-4 - адиабатный процесс расширения газов в турбине;

4-6 — изобарный процесс охлаждения отходящих газов в регенераторном теплообменнике 7;

6—1 — изобарное охлаждение газов после регенератора в окружающей среде.

В этом цикле количество подводимой теплоты в камере сгорания на участке 5-3, равное

$q_1 = \pi \pi. b53d$,

будет меньше, чем в процессе 2—3 без регенерации, на величину пл. a25b =пл. c64d при одинаковой работе цикла $l_{\pi} =$ пл. 1234. Поэтому термический к. п. д. цикла с регенерацией больше, чем без регенерации.

Рис. 6-13. Цикл ГТУ с двухступенчатым расширением газов и двухступенчатым сжатием воздуха.

Рис. 6-14. Схема ГТУ со сгоранием топлива при постоянном объеме.

Практически полную регенерацию осуществить невозможно, так как между нагреваемым воздухом и охлаждаемыми газами всегда имеется разность температур, а теплообменник имеет вполне определенную ограниченную поверхность, площадь которой определяется технико-экономическими соображениями. Повышают термический к.п.д. цикла газотурбинной установки также путем ступенчатого подвода теплоты в нескольких камерах горения, применяя соответственно многоступенчатое сжатие в компрессорах. Такой цикл с несколькими ступенями схематически показан на рис. 6-13. При бесконечно большом числе ступеней процессы подвода и отвода теплоты приближаются к изотермам, а цикл — к циклу Карно, который, как известно, имеет наибольший к.п.д.

Цикл газотурбинной установки с подводом теплоты при постоянном объеме. На рис. 6-14 показана принципиальная схема газотурбинной установки со сгоранием топлива при постоянном объеме. Установка работает следующим образом. После заполнения камеры сгорания 3 топливом, которое подается насосом 4, и воздухом после компрессора 2 клапаны 6 и 7 закрываются, горючая смесь воспламеняется от электрической искры и сгорает при постоянном объеме, вследствие чего давление и температура газов быстро повышаются. По до-

Рис. 6-15. *р*, *v*-диаграмма цикла ГТУ с подводом теплоты при постоянном объеме.

Рис. 6-16. *Т*, *s*-диаграмма цикла ГТУ с подводом теплоты при постоянном объеме.

стижении расчетного давления открывается сопловой клапан 8 и продукты сгорания через сопло 5 поступают в турбину 1, где они совершают работу и затем удаляются в атмосферу. При истечении газов через клапан 8 и сопло 5 давление в камере сгорания постепенно понижается, пока не достигнет расчетного значения. В этот момент открывается воздушный клапан 7 и в камеру сгорания поступает сжатый воздух, который вытесняет оставшиеся продукты сгорания в турбину (так называемая продувка). Затем клапан 8 закрывается, а через клапаны 6 и 7 поступают новые порции воздуха и топлива — цикл повторяется. Таким образом, работа этой установки характеризуется периодичностью, чем она и отличается от работы ГТУ со сгоранием топлива при постоянном давлении.

На рис. 6-15 и 6-16 в p,v- и T,s-координатах показан теоретический цикл с подводом теплоты при постоянном объеме. При исследовании цикла применяются те же характеристики, что и в предыдущих циклах: степень сжатия $\varepsilon = v_1/v_2$; степень повышения давления $\lambda = p_3/p_2$.

Количество теплоты, подводимой в изохорном процессе 2—3,

$$q_1 = c_v (T_3 - T_2).$$

Количество теплоты, отводимой в изобарном процессе е 4-1,

$$q_2 = c_p (T_4 - T_1)$$

Термический к.п.д. рассматриваемого цикла:

$$\eta_{t} = 1 - \frac{q_{2}}{q_{1}} = 1 - \frac{c_{p} \left(T_{4} - T_{1}\right)}{c_{v} \left(T_{3} - T_{2}\right)} = 1 - k - \frac{\frac{T_{4}}{T_{1}} - 1}{\frac{T_{3}}{T_{2}} - 1} - \frac{T_{1}}{T_{2}}.$$
(6-43)

Чтобы получить его выражение через принятые характеристики, найдем отношения температур.

Для изохорного процесса 2-3 имеем:

$$\frac{p_3}{p_2} = \frac{T_3}{T_2} = \lambda$$
 (6-44)

И

$$T_2 = \frac{T_3}{\lambda}$$

Для адиабатного процесса 1-2 можно написать:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}} = \left(\frac{v_1}{v_2}\right)^{k-1} = \varepsilon^{k-1},$$

$$T_1 = \frac{T_2}{\varepsilon^{k-1}} = \frac{T_3}{\lambda \varepsilon^{k-1}}.$$
(6-45)

откуда

Аналогично для адиабатного процесса 3-4

$$\frac{T_3}{T_4} = \left(\frac{p_3}{p_4}\right)^{\frac{k-1}{k}} = \left(\frac{p_3p_2}{p_2p_1}\right)^{\frac{k-1}{k}} =$$
$$= \left[\frac{p_3}{p_2}\left(\frac{v_1}{v_2}\right)^k\right]^{\frac{k-1}{k}} = \lambda^{\frac{k-1}{k}} \varepsilon^{k-1},$$

откуда получим:

$$T_{4} = \frac{T_{3}}{\lambda^{\frac{k-1}{k}} \varepsilon^{k-1}}.$$
 (6-46)

Разделив выражение (6-46) на (6-45), после преобразований имеем:

$$\frac{T_4}{T_1} = \frac{\lambda \varepsilon^{k-1}}{\lambda^{\frac{k-1}{k}} \varepsilon^{k-1}} = \lambda^{\frac{1}{k}}.$$
 (6-47)

Подставляя в уравнение (6-43) найденные отношения температур из выражений (6-44), (6-45) и (6-47), получаем окончательное уравнение термического к.п.д. рассматриваемого цикла:

$$\eta_t = 1 - \frac{k}{e^{k-1}} \cdot \frac{\lambda^{\frac{1}{k}} - 1}{\lambda - 1}.$$
 (6-48)

Следовательно, термический к. п. д. цикла увеличивается с повышением степени сжатия ε и степени повышения давления λ . Так как всегда $\lambda > 1$, то мно- $\frac{1}{2}$

житель $k(\lambda^{\overline{k}} - 1)/(\lambda - 1) < 1$, поэтому термический к. п. д. газотурбинной установки с подводом теплоты при постоянном объеме больше, чем установки с подводом теплоты при постоянном давлении, что видно из уравнений (6-42) и (6-48). Однако в подавляющем большинстве газотурбинные установки работают и строягся с изобарным подводом теплоты. Это объясняется рядом причин, в частности тем, что газовая турбина и камера сгорания установки с изохорным горением топлива имеют более сложную конструкцию и, следовательно, более дорогую. Кроме того, периодичность работы снижает эффективный к. п. д. установки.

6-6. Термодинамические основы работы компрессоров

Получение сжатых газов и их перемещение по трубопроводам к месту потребления осуществляется при помощи машин, которые называются компрессорами. Сжатые газы широко используются в различных производственно-технологических процессах многих отраслей народного хозяйства. Сжатый воздух применяется в пневмоинструментах, в тормозных устройствах на транспорте, а также для пуска, продувки и распыливания жидкого топлива в двигателях внутреннего сгорания; компрессоры являются важнейшими агрегатами газотурбинных установок и холодильных машин.

Рис. 6-17. Идеальный одноступенчатый поршневой компрессор и его индикаторная диаграмма.

Различные типы KOMпрессоров отличаются друг конструктивным OT друга выполнением и принципом работы. а также техникоэкономическими характеристиками, однако с термодинамической точки зрения протекающие в них процессы совершенно одинаковы.

В связи с изложенным термодинамическое исследование работы компрессоров обычно выполняют на примере работы поршневых компрессоров, процессы в которых могут быть рассмотрены наиболее наглядно.

Поршневой одноцилиндровый (одноступенчатый)

компрессор. На рис. 6-17 приведены схематическое изображение поршневого одноцилиндрового компрессора и его теоретическая индикаторная диаграмма.

Компрессор состоит из цилиндра 1, в котором возвратно-поступательно перемещается поршень 2. На крышке цилиндра расположены клапаны — всасывающий 3 и нагнетательный 4, которые при работе компрессора автоматически открываются и закрываются под действием разности давлений газа внутри цилиндра и в трубопроводах. При термодинамических исследованиях принято считать, что поршень перемещается без трения и в своем левом крайнем положении подходит вплотную к крышке цилиндра; клапаны 3 и 4 мгновенно открываются и закрываются и не оказывают гидравлических сопротивлений проходящему газу. Такой компрессор называется и деальным.

Рассмотрим работу компрессора, в котором осуществляется сжатие атмосферного воздуха применительно к диаграмме, изображенной на рис. 6-17. При движении поршня слева направо открывается всасывающий клапан 3 и атмосферный воздух заполняет цилиндр, при этом давление в цилиндре постоянно и равно p_1 . На диаграмме этот процесс изображается линией a-1, которая называется линией всасывания.

После заполнения цилиндра воздухом поршень начинает двигаться в обратном направлении и всасывающий клапан закрывается. На определенном участке длины цилиндра поршень перемещается при закрытых всасывающем и нагнетательном клапанах и воздух сжимается по линии 1-2 до тех пор, пока его давление не достигнет расчетного значения p2. В этот момент открывается нагнетательный клапан 4 и при дальнейшем движении поршня сжатый воздух при постоянном давлении р₂ выталкивается из цилиндра в резервуар. Этот процесс на диаграмме изображается линией 2-b, которая называется линией нагнетания. Всасывание и нагнетание осуществляются при неизменных параметрах рабочего тела и при переменных его количествах, поэтому линия всасывания *a*—1 и линия нагнетания 2—*b* не изображают термодинамические процессы. С началом нового хода поршня нагнетательный клапан закрывается, а всасывающий открывается, вследствие чего давление в цилиндре мгновенно понижается от p2 до p1 и процессы повторяются в описанной последовательности. На основании сказанного ранее площадь a12b изображает работу, затраченную в компрессоре на сжатие воздуха.

Цилиндр и крышка компрессора обычно охлаждаются водой, которая циркулирует через так называемую водяную рубашку, образуемую полыми стенками цилиндра (на рис. 6-17 не показана).

В зависимости от степени охлаждения компрессора процесс сжатия воздуха может быть изотермическим (1-2'), адиабатным (1-2'') и политропным (1-2)с показателем 1 < n < k. Все эти процессы изображены на рис. 6-18, откуда видно, что работа, затрачиваемая на сжатие воздуха в компрессоре, будет наименьшей при изотермическом сжатии и наибольшей — при адиабатном. Крометого, необходимо отметить, что при изотермическом сжатии температура воздуха остается неизменной, а при адиабатном сжатии стремительно растет (рис. 6-19), что неблагоприятно сказывается на смазке в цилиндре. Осуществить изотермическое сжатие газа в компрессоре практически невозможно, и в действительности сжатие газа происходит политропно с показа-

Рис. 6-18. Диаграмма работы компрессора при различных процессах сжатия.

Рис. 6-19. Изменение температуры газа в цилиндре при различных процессах сжатия.

телем $n = 1, 2 \div 1, 3$. Показатель политропы n зависит от степени охлаждения цилиндра. При интенсивном охлаждении показатель политропы уменьшается и политропа приближается к изотерме.

Найдем теоретическую работу компрессора, которая затрачивается при получении 1 кг сжатого воздуха. В соответствии с вышеизложенным работа компрессора $l_{\rm K}$ равна алгебраической сумме работ, совершаемых при всасывании, сжатии и нагнетании газа. Обозначим: l_1 — работа всасывания, $l_{\rm CM}$ — работа сжатия и l_2 — работа нагнетания. При вычислении работы компрессора условимся считать работу сжатия и работу нагнетания положительными, а работу всасывания — отрицательной, поэтому

$$l_{\kappa} = l_2 + l_{c_{\mathcal{H}}} - l_1.$$

На рис. 6-17:

работа всасывания l_1 =пл. $Oalc=-p_1v_1$; (6-49) работа нагнетания l_2 =пл. $Ob2d=p_2v_2$; (6-50) работа сжатия

$$l_{c_{\mathcal{H}}} =$$
пл. $d21c = \int_{1}^{2} p \, dv.$

Полная работа компрессора:

$$l_{\kappa} = \Pi \pi. \ al2b = p_2 v_2 + \int_{1}^{2} p \, dv - p_1 v_1. \qquad (6-51)$$

При изотермическом процессе сжатия

$$p_1v_1=p_2v_2,$$

поэтому работа компрессора равна работе, затраченной на сжатие газа в изотермическом процессе:

$$l_{\kappa} = 2,303 p_1 v_1 \ln \frac{p_2}{p_1} = 2,303 RT \, \lg \frac{p_2}{p_1}. \tag{6-52}$$

В политропном процессе работа *l*_{сж} определяется по формуле (4 35) и работу компрессора можно найти из выражегия

$$l_{\kappa} = p_2 v_2 + \frac{1}{n-1} (p_2 v_2 - p_1 v_1) - p_1 v_1.$$

Отсюда после элементарных преобразований получим окончательное уравнение в виде

$$l_{\kappa} = \frac{n}{n-1} (p_2 v_2 - p_1 v_1) = n l_{c_{\kappa}}.$$
 (6-53)

Из уравнения (6-53) следует, что работа компрессора l_{κ} будет в *n* раз больше, чем работа сжатия в политропическом процессе $l_{c_{\kappa}}$.

Используя различные выражения работы политропного процесса, приведенные в § 4-6, можно получить другие формулы для определения работы компрессора, например:

$$l_{\kappa} = \frac{n}{n-1} p_{1} v_{1} \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{n-1}{n}} - 1 \right]; \qquad (6-54)$$

$$l_{\kappa} = \frac{n}{n-1} R T_{1} \left[\left(\frac{p_{2}}{p_{1}} \right)^{n} - 1 \right].$$
 (6-55)

Полученные уравнения (6.53) — (6.55) действительны и при адиабатном сжатии воздуха, после замены показателя n на k.

При адиабатном сжатии работа расходуется на увеличение внутренней энергии газа, поэтому работа компрессора в этом случае может быть найдена из выражения

$$l_{\mathsf{R}} = p_2 v_2 + (u_2 - u_1) - p_1 v_1 = i_2 - i_1, \qquad (6-56)$$

которое можно применять и при сжатии пара.

Рис. 6-20. Влияние вредного пространства и степени сжатия на производительность компрессора.

В реальном компрессоре поршень не доходит до крышки цилиндра и между ними остается некоторый объем V₀, который называется вредным пространством (рис. 6-20). В связи с этим по окончании процесса нагнетания (линия 2-3) во вреднем пространстве остается часть сжатого воздуха с давлением р₂. При обратном ходе поршня всасываюший клапан не откроется до тех пор, пока давление оставшегося воздуха не понизится до атмосферного р₁. Процесс расширения

оставшегося сжатого воздуха осуществляется политропно по линии 3-4 и всасывание новой порции воздуха начнется в точке 4. Таким образом, благодаря наличию вредного пространства объем поступающего воздуха, равный V_1-V_4 , будет меньше V_1-V_0 и производительность компрессора уменьшится.

С повышением конечного давления p_2 все большее количество воздуха будет оставаться во вредном пространстве и все меньше будет производительность компрессора (рис. 6-20). При некотором конечном давлении, когда объем сжатого воздуха будет равен объему вредного пространства, производительность компрессора станет равна нулю.

Рис. 6-21. Принципиальная схема трехступенчатого компрессора. 96

Таким образом, получить воздух высокого давления в одноступенчатом компрессоре невозможно в связи с уменьшением его производительности при повышении давления. Кроме того, одновременно с повышением давления увеличивается и температура сжимаемого воздуха, и она может достигнуть такого значения, при котором произойдет самовоспламенение смазочного масла в цилиндре, что недопустимо. Поэтому одноступенчатые компрессоры обычно применяют для получения сжатого возлуха давлением не выше

1.0 MΠa.

Многоступенчатые KOM-Для прессоры. получения сжатых газов высокого давления применяются многоступенчатые компрессоры, конструктивно представляюшие собой систему последовательно соединенных одноступенчатых компрессоров, между которыми устанавливаются холодильники (рис. 6-21).

Рис. 6-22. р. υ-диаграмма трехступенчатого компресcopa.

Газ последовательно проходит через ступени компрессора и в каждой из них повышает давление на определенную величину. После каждого сжатия газ поступает в промежуточные холодильники и при постоянном давлении охлаждается до начальной температуры, при которой газ всасывался в первую ступень. Такой способ получения сжатого газа замедляет возрастание давления в каждом цилиндре, и влияние вредного пространства на производительность компрессора уменьшается.

На рис. 6-22 изображена р, v-диаграмма работы идеального трехступенчатого компрессора.

На диаграмме:

a-1, b-3 и c-5 -- линии всасывания в первую, вторую и третью ступени соответственно:

2-b — линия нагнетания из первой ступени в первый холодильник:

4-с — линия нагнетания из второй ступени во второй холодильник;

6-d - линия нагнетания из третьей ступени в резервуар;

1-2, 3-4 и 5-6 - процессы сжатия в первой, второй и третьей ступенях компрессора соответственно. 7-702 97 Отрезки линий 2—3 и 4—5 изображают процессы изобарного охлаждения сжатого газа в первом и втором охладителях. В каждом холодильнике происходит охлаждение газа до начальной температуры t_1 , поэтому при входе в каждую ступень температура газа одна и та же, т. е.

$$T_1 = T_3 = T_5.$$
 (6-57)

Сжатие газа во всех цилиндрах осуществляется так, чтобы конечные температуры по выходе из каждой ступени также были одинаковы, поэтому

$$T_2 = T_4 = T_6.$$
 (6-58)

При политропном сжатии воздуха в каждой ступени трехступенчатого компрессора имеем:

для первой ступени

$$\frac{p_2}{p_1} = \left(\frac{T_2}{T_1}\right)^{\frac{n}{n-1}};$$

для второй ступени

$$\frac{p_4}{p_3} = \left(\frac{T_4}{T_3}\right)^{\frac{n}{n-1}};$$

для третьей ступени

$$\frac{p_{\mathfrak{s}}}{p_{\mathfrak{s}}} = \left(\frac{T_{\mathfrak{s}}}{T_{\mathfrak{s}}}\right)^{\frac{n}{n-1}} \cdot$$

На основании равенств (6-57) и (6-58) правые части написанных отношений равны, поэтому равны и левые, т. е.

$$\frac{p_2}{p_1} = \frac{p_4}{p_3} = \frac{p_6}{p_5} = x, \tag{6-59}$$

где х — степень повышения давления.

Таким образом, степень повышения давления в каждой ступени одинакова.

Перемножив значения х для каждой ступени между собой, получим:

$$x^{\mathbf{s}} = \frac{p_2 p_4 p_6}{p_1 p_3 p_5}.$$

Но
$$p_2 = p_3$$
 и $p_4 = p_5$, поэтому $x^3 = p_6/p_1$ и

$$x = \sqrt[3]{\frac{p_{\bullet}}{p_{\downarrow}}}.$$
 (6-60)

98

При числе ступеней z

$$x = \sqrt[2]{\frac{p_{\text{кон}}}{p_{\text{нач}}}}, \qquad (6-61)$$

где $p_{\text{ксуп}}$ — конечное давление газа по выходе из последней ступени компрессора; $p_{\text{нач}}$ — начальное давление газа при входе в первую ступень компрессора.

Из рис. 6-22 видно, что при переходе от одноступенчатого сжатия к трехступенчатому с применением промежуточного охлаждения и в том же диапазоне изменения давления затрачиваемая работа сжатия в трехступенчатом компрессоре будет меньше, чем в одноступенчатом, на величину, определенную заштрихованной пл. 2345682.

Рис. 6-23. *Т*, *s*-диаграмма трехступенчатого компрессора.

При одинаковых температурах газа на входе в каждую ступень и одинаковой степени повышения давления во всех цилиндрах работа каждой ступени также одинакова

$$l_{1\mathrm{CT}} = l_{2\mathrm{CT}} = l_{3\mathrm{CT}}.$$

Работу сжатия в одной ступени можно найти, используя любое из ранее приведенных уравнений (6-53)—(6-55).

Полная работа трехступенчатого компрессора, отнесенная к 1 кг газа, равна:

$$L_{\rm R} = 3l_{\rm ict}.$$
 (6-62)

На рис. 6-23 изображена диаграмма трехступенчатого компрессора в T, *s*-координатах при политропном сжатии в каждой ступени. Площади *a12b*, *c34d* и *e56f* под политропами 1—2, 3—4 и 5—6 при принятых условиях равны между собой. Эти площади изображают количество теплоты, которое теряет газ при сжатии в отдельных ступенях компрессора и которое подсчитывается по уравнению (4-37). Площади *b23c*, *d45e* под изобарами 2—3 и 4—5 также равны между собой. Эти площади изображают теплоту, которая отнимается от сжатого газа в первом и втором охладителях и подсчитывается по уравнению (4-11).

Пример 6-1. Рассчитать цикл ДВС 1-2-3-4 с подводом теплоты при v=const (см. рис. 6-1 и 6-2) по данным: p₁=0,1 МПа, 7* 99 $t_1 = 27^{\circ}$ С, степень сжатия $\epsilon = 4$, степень повышения давления $\lambda = 1,5$. Рабочее тело обладает свойствами воздуха, теплоемкость постоянная, количество газа 1 кг.

Решение. Начальный объем

$$v_1 = \frac{RT_1}{p_1} = \frac{287 \cdot 300}{0.1 \cdot 10^6} = 0.86 \text{ m}^3/\text{kr}.$$

Конечный объем

$$v_2 = \frac{v_1}{\epsilon} = \frac{0.86}{4} = 0.215 \text{ m}^3/\text{kg}.$$

Давление в точке 2

$$p_2 = p_1 \left(\frac{v_1}{v_2}\right)^k = 0, 1 \cdot 4^{1,4} = 0,698$$
 MIIa.

Температура в точке 2

$$T_2 = \frac{p_2 v_2}{R} = \frac{0.698 \cdot 10^6 \cdot 0.215}{287} = 524 \,\mathrm{K}.$$

Давление в точке 3

$$p_3 = \lambda p_2 = 1,5 \cdot 0,698 = 1,047$$
 MПa.

Температура в точке 3

$$T_3 = \lambda T_2 = 1,5 \cdot 524 = 786$$
 K.

Давление в точке 4

$$p_4 = \frac{p_3}{\left(\frac{v_4}{v_3}\right)^k} = \frac{1,047}{4^{1,4}} = 0,15 \text{ MIIa.}$$

Температура в точке 4

$$T_4 = 7_1 \frac{p_4}{p_1} = 300 \frac{0.15}{0.1} = 450 \text{ K}.$$

Массовая теплоемкость

$$c_v = \frac{\mu c_v}{\mu} = \frac{20,95}{28,95} = 0,723 \text{ кДж/(кг·K)}.$$

Количество подведенной теплоты

$$q_1 = c_v (T_3 - T_2) = 0,723(786 - 524) = 189,5 \text{ KL} \text{K/Kr}.$$

Количество отведенной теплоты

$$q_2 = c_v (T_1 - T_4) = 0.723 (300 - 450) = -108 \text{ K} \square \text{K} \square \text{K} / \text{K} \Gamma.$$

Термический к. п. д. цикла

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{108,3}{189,5} = 0,43$$

Пример 6-2. Идеальный одноступенчатый компрессор всасывает 200 м³/ч метана при $p_1=0,1$ МПа, $t_1=17^{\circ}$ С и сжимает его политропически (n=1,2) до $p_2=0,7$ МПа. Определить температуру и объем сжатого метана и теоретическую работу сжатия в компрессоре.

100

Решение. Конечная температура

$$T_2 = T_1 \left(\frac{p_2}{p_1}\right)^{\frac{n-1}{n}} = 290 \cdot \left(\frac{0,7}{0,1}\right)^{\frac{1,2-1}{1,2}} = 400 \text{ K}.$$

Объем сжатого метана

$$V_{2} = \frac{V_{1}}{\left(\frac{p_{2}}{p_{1}}\right)^{n}} = \frac{200}{\left(\frac{0,7}{0,1}\right)^{\frac{1}{1,2}}} = 39,6 \text{ m}^{3}.$$

Теоретическая работа компрессора

$$L_{\rm K} = \frac{n}{n-1} p_1 v_1 \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right] = \frac{1,2}{1,2-1} 0,1 \times 10^6 \cdot 200 \left[\left(\frac{0,7}{0,1} \right)^{\frac{1,2-1}{1,2}} - 1 \right] = 456 \cdot 10^5 \,\mathrm{Д}_{\mathrm{K/Y}}.$$

глава седьмая водяной пар

7-1. Основные понятия и определения

Водяной пар применяется в качестве рабочего тела в паровых турбинах, которые являются в настоящее время основными тепловыми двигателями на тепловых электрических станциях.

Как теплоноситель водяной пар широко используется в технологических процессах многих отраслей народного хозяйства: энергетики, химической технологии, машиностроении и т. д.

Водяной пар применяется в различных состояниях в весьма широком диапазоне давлений и температур и часто переходит в жидкое состояние — конденсируется. В этих условиях нельзя пренебрегать силами взаимодействия между молекулами и объемом самих молекул и, следовательно, к водяному пару нельзя применять законы идеальных газов и уравнение Менделеева — Клапейрона.

При различных расчетах и изучении процессов, протекающих в водяном паре, используются таблицы водяного пара (см. табл. П5—П7), которые составлены на основании большого экспериментального материала и теоретических исследований. Табличный метод расчетов тепловых процессов достаточно сложен, поэтому на практике широко применяется графический метод с использованием *i*, *s*-диаграммы. В нашей стране наиболее широкое практическое применение имеют таблицы, составленные под руководством М. П. Вукаловича.

Установим некоторые основные понятия и определения. Разделение вещества на газ и пар условно, так как между ними не существует какой-либо границы. Паром называется всякий реальный газ, который в условиях его применения способен переходить в жидкость. Такие газообразные вещества имеют относительно высокие критические температуры. Всякий реальный газ, который в обычных условиях его применения не переходит в жидкое состояние, сохраняет название газа; такие газообразные вещества имеют низкие критические температуры.

Процесс перехода жидкости в пар называется парообразованием, этот процесс может происходить путем испарения и кипения. При испарении образование пара происходит только со свободной поверхности жидкости; этот процесс протекает при любых температурах жидкости и может сопровождаться понижением ее температуры. Интенсивность испарения зависит от физических свойств жидкости и возрастает с повышением ее температуры.

Бурный процесс парообразования, сопровождающийся возникновением пузырьков пара по всему объему жидкости, называется кипением. Кипение жидкости происходит при постоянном давлении и при соответствующей ему постоянной температуре, которая называется температурой кипения или насыщения и обозначается $t_{\rm H}$. Для всех жидкостей температура кипения $t_{\rm H}$ повышается с увеличением давления, зависимость между ними находится из опыта и в общем случае выражается уравнением $t_{\rm H} = f(p)$. Для различных жидкостей и воды имеется большое количество эмпирических уравнений, позволяющих приближенно установить зависимость $t_{\rm H} = f(p)$. В качестве примера для воды можно привести уравнение Руша, которое имеет вид:

$$t_{\rm H} = 100 \sqrt[4]{p},$$
 (7-1)

где *р* — абсолютное дагление, кгс/см². 102 Для давлений ниже 50 кгс/см² значение $t_{\rm H}$, найденное по формуле (7-1), отличается от действительных значений не более чем на 1%, с повышением давлений расхождение увеличивается. При точном определении температуры кипения необходимо пользоваться таблицами. Все параметры кипящей жидкости принято обозначать соответствующей буквой со штрихом, например: удельный объем v', энтальпия i', энтропия s' и т. д.

Насыщенным паром называется пар, находящийся в динамическом равновесии со своей жидкостью. Это значит, что в закрытом сосуде число молекул пара, поступающих в пространство над кипящей жидкостью, равно числу молекул, возвращающихся обратно в жидкость. Такое подвижное равновесие обусловливается хаотичностью движения молекул и силами взаимодействия между молекулами пара и жидкостью вблизи ее поверхности.

Если при постоянном давлении к кипящей жидкости подвести необходимое количество теплоты для испарения всей жидкости, то в момент исчезновения последних капель жидкости (воды) получим сухой насыщенный пар при температуре кипения $t_{\rm H}$. Сухой насыщенный пар является неустойчивым состоянием и получается в парогенераторах как мгновенное состояние при переходе в перегретый пар. Состояние сухого насыщенного пара определяется одним параметром: давлением или температурой насыщения $t_{\rm H}$. Все параметры сухого насыщенного пара обозначаются соответствующими буквами с двумя штрихами, например: удельный объем v'', энтальпия i'', энтропия s'' и т. д.

При кипении жидкости вместе с пузырьками пара выносятся мельчайшие частицы влаги. Получающаяся смесь пара и жидкости называется влажным/насыщенным паром, причем частицы жидкости равномерно распределены по всему объему пара.

Состояние влажного насыщенного пара определяется давлением p и степенью сухости x или температурой кипения $t_{\rm H}$ и степенью сухости x. Степенью сухости x степенью сухости x называется массовая доля сухого пара, содержащегося во влажном паре:

$$x = \frac{m_{\rm cyx}}{m_{\rm BA}} = \frac{m_{\rm cyx}}{m_{\rm cyx} + m_{\mathcal{K}}},$$
 (7-2)

103

где $m_{\text{сух}}$ и $m_{\text{ж}}$ — соответственно масса сухого пара и жидкости, находящихся в 1 кг смеси; $m_{\text{вл}}$ — масса 1 кг влажного пара.

Для сухого пара x=1, для кипящей жидкости x=0. Массовая доля жидкости, содержащейся во влажном паре, называется степенью влажности и обозначается 1-x. Все параметры влажного пара (кроме давления и температуры) обозначаются с индексом x, например: удельный объем v_x , энтальпия i_x , энтропия s_x и т. д.

Перегретым паром называется пар, который при одинаковом давлении с насыщенным, имеет более высокую температуру, чем температура кипения $t_{\rm H}$. Состояние перегретого пара определяется любыми двумя параметрами, наиболее часто — давлением и температурой. Процесс перехода насыщенного пара в жидкость называется конденсацией. Этот процесс является обратным процессу парообразования и также происходит при постоянном давлении и соответствующей ему постоянной температуре, равной температуре кипения $t_{\rm H}$ при том же давлении.

7-2. Получение пара при постоянном давлении. *p,v-д*иаграмма водяного пара

На рис. 7-1 изображена *p*, *v*-диаграмма водяного пара, на которой показана зависимость изменения удельного объема воды и пара от давления.

Получение пара в парогенераторах происходит при постоянном давлении, которое определяется назначением и конструкцией парогенератора. Рассмотрим процесс

Рис. 7-1. *р*, *v*-диаграмма водяного пара.

получения пара при некотором постоянном давлении р. Пусть при данном давлении р 1 кг воды с температурой 0°С занимает объем vo; состояние ее на диаграмме изображено точкой а. При подводе теплоты вода нагревается и ее температура повышается до тех пор, пока она достигнет температуры не соответствуюкипения t_{π} щей давлению р. При нагревании объем воды увеличивается от v_0 до v'; состояние кипящей воды обозначено на диаграмме точкой b. При дальнейшем подводе тепла кипящая вода постепенно переходит в пар. В тот момент, когда испарится вся жидкость, будет получен сухой насыщенный пар, объем его v'' будет во много раз больше (при низких давлениях) объема кипящей воды v'. Состояние сухого насыщенного пара на диаграмме изображено точкой c. Процесс парообразования b-cпроисходит не только при постоянном давлении p, но и при постоянной температуре $t_{\rm H}$, поэтому этот процесс не только изобарный, но и изотермический.

Если к сухому насыщенному пару состояния с подводить теплоту при том же давлении p, то он превращается в перегретый пар. Состояние его на диаграмме изображено точкой d. Между точками b и с находится смесь сухого насыщенного пара и воды, т. е. влажный насыщенный пар, произвольное состояние его на диаграмме изображено точкой e.

При более высоком давлении p_1 процесс получения пара происходит аналогично. Но так как $p_1 > p$, то удельный объем воды v_0 незначительно уменьшится и состояние ее изобразится точкой a_1 , которая расположена левее точки a. Наоборот, удельный объем кипящей воды v'_1 будет увеличиваться, так как с повышением давления повышается температура кипения $t_{\rm H}$, которая оказывает бо́льшее влияние на увеличение объема, чем давление на его уменьшение. Это состояние изображается точкой b_1 , расположенной правее точки b. При давлении p_1 объем сухого пара v'' уменьшается и изображается точкой c_1 , которая будет левее точки c.

Если соединить точки *a*, *b*, *c*, определяющие характерные состояния воды и пара при различных давлениях, то на *p*, *v*-диаграмме получим три основные линии: *I*, *II* и *III*.

Линия I определяет состояние воды при температуре 0°С и различных давлениях. Из диаграммы видно, что с повышением давления удельный объем воды v_0 уменьшается. Однако вследствие малой сжимаемости воды зависимость v_0 от *p* незначительна и ею обычно пренебрегают. Поэтому при любых давлениях принимают $v_0 = 0,001 \text{ м}^3/\text{kr}.$

Линия II определяет состояние кипящей жидкости (x=0) и показывает, что объем v' с повышением давления увеличивается. Эта линия называется нижней пограничной кривой, слева от нее находится некипящая жидкость, справа — область влажного насыщенного пара.

Линия III характеризует состояния сухого насыщенного пара (x=1) при различных давлениях и называется верхней пограничной кривой, слева от нее находится область влажного пара, а справа — область перегретого пара. Из диаграммы видно, что объем пара v''будет тем меньше, чем больше его давление.

С повышением давления разность v''-v' уменьшается, линии II и III сближаются и при некотором давлении они пересекаются в точке K, которая называется критическое состояние воды и водяного пара и все параметры в этом состоянии называются критическими. Критическое состояние любого вещества характеризуется тем, что различие между жидкостью и паром исчезает. Критические параметры для воды имеют следующие значения: $p_{\rm Np}=221,15$ бар, $t_{\rm Np}=374,12^{\circ}$ С и $v_{\rm Np}==$ =0,003147 м³/кг. Критическое состояние впервые было установлено Д. И. Менделеевым в 1861 г.

При уменьшении давления линии *I* и *II* сближаются и при некотором давлении пересекаются в точке *M*, которая называется тройной точкой. Каждое вещество в этой точке находится в трех состояниях: твердом, жидком и газообразном. В тройной точке каждое вещество имеет вполне определенные параметры, например для воды: $p_{\rm Tp}$ =4,6 мм рт. ст., $t_{\rm Tp}$ =0,01°C.

Процесс перехода вещества из твердого состояния в газообразное называется возгонкой или сублимацией. Этот процесс происходит при постоянном давлении $p < p_{\rm Tp}$.

В области влажного пара наносятся линии постоянной сухости x<1, которые на диаграмме изображены пунктирными кривыми, выходящими из критической точки K.

7-3. Основные термодинамические параметры воды и водяного пара

При термодинамических исследованиях принято считать, что при 0°С и любом давлении энтальпия, энтропия и внутренняя энергия жидкости равны нулю, т. е.

$$i_0=0$$
, $s_0=0$ и $u_0=0$.

В изобарном процессе a-b (рис. 7-1) на подогрев 1 кг жидкости от 0°С до $t_{\rm H}$ расходуется теплота q', которую называют теплотой жидкости. Она равна:

$$q' = c_p (t_{\rm H} - t_0) = c_p t_{\rm H},$$
 (7-3)

где c_p — массовая теплоемкость жидкости.

По первому закону термодинамики теплота жидкости расходуется на изменение внутренней энергии и на работу расширения, поэтому

$$q' = u' - u_0 + p(v' - v_0). \tag{7-4}$$

Поскольку объем жидкости изменяется незначительно, то в этом процессе подавляющая часть теплоты жидкости q' расходуется на изменение внутренней эпергии.

Основные параметры кипящей жидкости (точка b) *i'*, v' и s' находят из таблиц по заданному давлению или по температуре насыщения. Внутренняя энергия кипящей жидкости определяется по формуле

$$u' = i' - pv'; \tag{7-5}$$

из уравнения (7-4) (и₀==0)

$$u' = q' - p(v' - v_0),$$
 (7-6)

следовательно, для одного и того же состояния можно написать:

$$i' - pv' = q' - p(v' - v_0),$$

$$i' = q' + pv_0.$$
(7-7)

откуда

Таким образом, энтальпия кипящей жидкости больше теплоты жидкости на величину ро. Этот вывод относится к любому состоянию воды и пара. При низких давлениях величиной роо пренебрегают и энтальпию в любом состоянии воды или пара приравнивают теплоте.

В изобарном процессе *b*—*c* (рис. 7-1) кипящая жидкость при постоянной температуре *t*_н переходит в пар.

Количество теплоты, подводимого к 1 кг кипящей жидкости при *p*=const для превращения ее в сухой насыщенный пар, называется теплотой парообразования и обозначается буквой *r*. При любых давлениях ниже критического бо́льшая часть теплоты парообразования *r* расходуется на изменение внутренней потенциальной энергии и меньшая — на работу расши-

рения. Тогда уравнение первого закона термодинамики можно выразить в следующем виде:

$$r = (u'' - u') + p(v'' - v').$$
 (7-8)

Теплота, расходуемая на изменение внутренней энергии, называется внутренней теплотой парообразования и обозначается р, т. е.

$$\rho = u'' - u'. \tag{7-9}$$

Теплота, эквивалентная работе расширения, называется внешней теплотой парообразования и обозначается **ψ**:

$$\psi = p(v'' - v').$$
 (7-10)

Поэтому уравнение (7-8) можно записать в таком виде:

$$r = \rho + \psi. \tag{7-11}$$

При повышении давления r и ρ непрерывно уменьшаются, а ψ сначала незначительно увеличивается (до 4,0 МПа), а затем уменьшается. В критическом состоянии r=0, $\rho=0$ и $\psi=0$. Энтальпия сухого насыщенного пара определяется по формуле

$$i''=i'+r.$$
 (7-12)

Значения i'', v'', s'', а также r находят из таблиц водяного пара по давлению или температуре кипения $t_{\rm H}$.

Внутренняя энергия сухого насыщенного пара подсчитывается по известному уравнению

$$u''=i''-pv''.$$
 (7-13)

Влажный насыщенный пар. Как сказано выше, влажный насыщенный пар представляет собой смесь кипящей воды и сухого насыщенного пара, температура его равна температуре кипения жидкости $t_{\rm H}$ при данном давлении. Удельный объем влажного пара равен сумме объемов x кг сухого пара и 1—x кг воды:

$$v_x = v'' x + (1 - x) v'.$$
 (7-14)

Отсюда можно получить уравнение

$$x = \frac{v_x - v'}{v'' - v'},$$
 (7-15)

которое служит для точного определения степени сухости. При низких давлениях (p<4,0 МПа) и большой 108
степени сухости (x > 0,7) объем жидкости в смеси ввиду малости можно не учитывать и определять удельный объем влажного пара упрощенно:

$$v_x = v'' x.$$
 (7-16)

Энтальпия и энтропия влажного пара определяются по аналогии с уравнением (7-13), а именно:

$$i_x = i''x + (1 - x)i' = i' + rx;$$
 (7-17)

$$s_x = s'' x + (1 - x) s',$$
 (7-18)

или

$$s_x = s' + \frac{r}{T_{\rm H}} x.$$
 (7-19)

Внутренняя энергия влажного пара находится по уравнению

$$u_x = i_x - pv_x. \tag{7-20}$$

Перегретый пар. Свойства перегретого пара сильно отличаются от свойств насыщенного пара. При данном давлении перегретый пар может иметь любую температуру выше температуры насыщения $t_{\rm H}$, а его объем υ при одном и том же давлении всегда больше объема сухого насыщенного пара v''.

Чем выше температура перегретого пара и чем ниже его давление, тем меньше отклоняется перегретый пар от свойств идеального газа. При высоких давлениях и при температурах, близких к состоянию насыщения, перегретый пар будет значительно отклоняться от свойств идеального газа. Однако во всех случаях перегретый пар не подчиняется уравнению pv=RT. Для перегретого пара различными исследователями были предложены эмпирические уравнения состояния, позволяющие находить значения его основных параметров и другие физические величины. В настоящее время наиболее распространенным в СССР является уравнение состояния водяного пара, составленное М. П. Вукаловичем И. И. Новиковым. Это уравнение достаточно сложно, и пользоваться им для повседневных расчетов по существу невозможно. Поэтому при всех расчетах используются таблицы перегретых паров, в которых приведены значения энтальпии, энтропии и удельного объема, выпри помощи уравнения состояния. Для численные любого состояния значения этих параметров находятся

109

в зависимости от давления и температуры пара. Внутренняя энергия перегретого пара в данном состоянии определяется по известному уравнению

u=i-pv.

В изобарном процессе c-d (рис. 7-1) происходит перегрев пара, при этом температура пара становится больше температуры кипения $t_{\rm m}$.

Количество теплоты, которое подводится к 1 кг сухого насыщенного пара при превращении его в перегретый, называется теплотой перегрева и обозначается $q_{\rm ne}$. Эта теплота подсчитывается по уравнению

$$q_{\rm ne} = i_1 - i'' = c_{on}(t - t_{\rm H}), \tag{7-21}$$

где i и t — соответственно энтальпия и температура перегретого пара; c_{pm} — средняя массовая изобарная теплоемкость перегретого пара.

Теплоемкость перегретого пара c_{pm} зависит от давления и температуры. Аналитическая зависимость $c_{pm} = f(p, t)$ дается сложными эмпирическими уравнениями, которые неудобны для практических расчетов и поэтому значения c_{pm} раньше приводились в таблицах перегретых паров; в настоящее время все расчеты выполняются через энтальпии и значения c_{pm} в таблицах не приводятся.

7-4. Т, s-диаграмма водяного пара

На рис. 7-2 изображена *T*, *s*-диаграмма водяного лара. Эта диаграмма широко используется при исследованиях разомкнутых и круговых процессов водяного пара.

ного пара.

При любом давлении и при температуре 0°С энтропия воды s_0 равна нулю. Поэтому изотерма воды при t==0°С, изображаемая в *p*, *v*-координатах линией *I* (см. рис. 7-1), в *T*, *s*-координатах превращается в точку и обозначается буквой *a*. Эта точка *a* находится на оси ординат на 273°С выше абсолютного нуля и служит началом построения нижней пограничной кривой.

Прежде всего по точкам наносятся пограничные линии. Абсциссами точек нижней пограничной кривой *abK* являются значения энтропии кипящей жидкости s', а верхней пограничной кривой *Kcl* — значения энтропии сухого насыщенного пара s". С повышением температуры кипения энтропия жидкости s' непрерывно увеличивается, а энтропия пара s" — уменьшается, поэтому по достижении критической температуры линии *abK* и *Kcl* пересекаются в точке K, определяющей критическое состояние.

Затем наносят изобары abcd, $ab_1c_1d_1$ и т. д. На участке изобары a-b происходит подогрев жидкости от 0°С до температуры кипения $T_{\rm H}$, на участке b-c — парообразование, а на участке c-d — перегрев пара.

В процессе a - b подогрева жидкости до кипения энтропия ее изменяется от нуля ($s_0 = 0$) до s' и определяется по уравнению

$$s' = \int_{273}^{T_{\rm H}} \frac{dq}{T} = \int_{273}^{T_{\rm H}} \frac{c_p dT}{T} = c_p \ln \frac{T_{\rm H}}{273}.$$
 (7-22)

Следовательно, изобара a - b является логарифмической линией, кривизна которой незначительно отличается от кривизны нижней пограничной кривой ab K. В связи с этим принято считать, что при давлениях вплоть до критического изобары жидкости совпадают с нижней пограничной кривой. Таким образом, нижняя пограничная кривая ab K представляет собой всю область жидкости от 0°С до температуры кипения при различных давлениях, вплоть до критического.

Изобары воды сверхкритического давления проходят левее нижней пограничной кривой и пересекают ее только в одной точке *a*.

Изобара парообразования b-c, как и в p, v-диаграмме, изображается горизонтальной линией, так как этот процесс протекает, как известно, не только при постоянном давлении, но и при постоянной температуре кипения $t_{\rm H}$.

Изобары перегрева пара c-d, c_1-d_1 и т. д. изображаются линиями, близкими к логарифмическим. Поскольку теплоемкость перегретого пара зависит от давления, то изобары разных давлений — не параллельные линии и каждая из них строится самостоятельно с помощью таблиц перегретого пара.

Между пограничными кривыми *abK* и *Kcl* расположена область влажного насыщенного пара, а справа и выше верхней пограничной кривой находится область перегретого пара. В области влажного пара обычно наносятся линии постоянной сухости, которые изображаются кривыми линиями, выходящими из крит исской точки (на рис. 7-2 не показаны).

Как известно, площади под кривой процесса в диаграмме T, s изображают теплоту процесса. На рис. 7-2 площадь OabB под изобарой a-b изображает теплоту жидкости q'; площадь BbcC в процессе b-c — теплоту парообразования r, площадь CcdD процесса c-d — теплоту перегрева q_{ne} . Если пренебречь величиной p_{20} , то первые две площади будут изображать энтальпию сухого насыщенного пара i'', а все три — энтальпию перегретого пара i.

Для влажного пара состояния е площадь BbeE изображает теплоту rx, а площадь OabeE — полную теплоту влажного пара или при $pv_0=0$ энтальпию влажного насыщенного пара i_x .

7-5. і, s-диаграмма водяного пара

5

Эта диаграмма впервые была предложена в 1904 г. немецким физиком Молье и была построена до 20 кгс/см². В СССР принята диаграмма М. П. В_{укало-} вича, которая построена до давления 100,0 МПа и до температуры 1000°С.

Схематически *i*, *s*-диаграмма показана на рис. 7-3. Все линии этой диаграммы построены путем использования значений энтальпии и энтропии, которые бєрутся из таблиц воды и пара.

Прежде всего наносятся пограничные кривые кипящей воды OK и сухого пара KL, координатами которых соответственно являются i', s' и i'', s''. Нижняя пограничная кривая *ОК* выходит из начала координат, так как было принято, что при 0°С энтальпия и энтропия жидкости равны нулю.

Между кривыми ОК и КL расположена область влажного насыщенного пара, а выше линии KL — область перегретого пара.

Затем наносятся изобары, которые в области влажного гара изображаются прямыми наклонными линиями, расходящимися веерообразно вверх, при этом чем выше давление, тем более круто идет изобара. В области перегретого пара изобары — кривые обращенные выпуклостью в сторону оси абсцисс (линии p_4 , p_2 и т. д.).

Рис. 7-3. і, s-диаграмма водяного пара.

Изотермы в области влажного пара, как известно, совпадают с изобарами. В области перегретого пара изотермы являются кривыми линиями, идущими от верхней пограничной кривой KL слева направо и обращенными выпуклостью вверх (например, линии t_1, t_2 и т. д.). Чем больше будет перегрев пара, тем ближе будет пар к свойствам идеального газа и изотерма будет приближаться к линии *i*=const.

В области влажного пара наносят линии постоянной сухости, например x=0,9; x=0,8 и т. д. Как правило, на i, *s*-диаграмму наносят линии постоянных объемов изохоры, которые как в области влажного пара, так и в области перегретого пара имеют вид кривых, поднимающихся вверх более круто, чем изобары. Обычно изохоры изображаются пунктирными или цветными линиями.

8-702

Практически *i*, *s*-диаграмма вся не изображается, часть ее, соответствующую очень влажным парам, опускают. Это дает возможность выполнить рабочую часть диаграммы в более крупном масштабе, что повышает точность определения параметров пара и, следовательно, расчета всех процессов при помощи этой диаграммы.

7-6. Основные процессы водяного пара

Основными процессами являются: изобарный, изохорный, изотермический и адиабатный. Каждый из этих процессов может протекать целиком в области влажного или перегретого пара, т. е. без изменения агрегатного состояния. Но процесс может протекать и таким образом, что, например, в начальном состоянии пар будет влажный, а в конечном состоянии — перегретый (или наоборот). Этот более общий случай и будет рассматриваться ниже.

Общие свойства указанных процессов для газов рассмотрены в гл. 4. Так как водяной пар не подчиняется законам идеальных газов, полученные соотношения между параметрами и уравнения для подсчета теплоты, изменения внутренней энергии и работы для пара неприменимы.

При решении задач с использованием таблиц необходимо сначала установить состояния рабочего тела в начале и в конце процесса. Для определения состояния рабочего тела при заданном давлении сравнивают любой известный параметр (v, i, s, t) с соответствующим параметром сухого насыщенного пара. Положим, что известно начальное значение энтропии s, тогда, если:

а) s' < s < s'', в рассматриваемом состоянии пар будет влажным. В этом случае по уравнению (7-18) находят степень сухости x, а другие необходимые параметры по уравнениям (7-14), (7-17) и (7-20);

б) s = s'', пар будет сухим и необходимые параметры находят по таблицам сухого насыщенного пара (табл. П5, П6);

в) s > s'', пар будет перегретый и все необходимые параметры определяют по таблицам перегретого пара (табл. П7);

г) s < s', в рассматриваемом состоянии будет вода, недогретая до кипения, и все параметры находятся по табл. П7. При решении задач по *i*, *s*-диаграмме состояние рабочего тела определяют как точку пересечения любых двух линий и все параметры (за исключением *u*) находят из диаграммы.

Изохорный процесс (v = const). На рис. 7-4 в координатах p, v, T, s и i, s изображен изохорный процесс общего вида с подводом теплоты. В T, s-диаграмме изохора имеет вид кривой линии с выпуклостью вверх в об-

Рис. 7-4. Изохорный процесс для водяного пара.

Рис. 7-5. Изобарный процесс для водяного пара.

ласти влажного пара и выпуклостью вниз в области перегретого пара. В *i*, *s*-диаграмме изохора изображается кривой 1—2, причем начальное состояние, определяемое точкой 1, находится на пересечении заданной изохоры с изобарой p_1 . Конечное состояние определяется точкой 2, которая находится на пересечении той же изохоры с изотермой t_2 .

Так как в этом процессе работа не совершается, то вся теплота расходуется на изменение внутренней энерги, поэтому

$$q_v = \Delta u = (i_2 - p_2 v_2) - (i_1 - p_1 v_1). \tag{7-23}$$

Изобарный процесс (p=const). На рис. 7-5 изображен изобарный процесс общего вида в координатах p, v, T, s и i, s. В координатах T, s в области влажного пара * изобара совпадает с изотермой и поэтому представлена горизонтальной линией, в области перегретого пара кривой, близкой к логарифмической. В i, s-диаграмме изобара изображена линией 1-2, причем начальное состояние определяется точкой 1 и находится на пересечении заданной изобары 1-2 и линии постоянной сухости x_1 , а конечное состояние — точкой 2, которая находится на пересечении изобары и изотермы t_2 .

Рис. 7-6. Изотермический процесс для водяного пара.

Теплота процесса определяется уравнением

$$q = i_2 - i_1.$$
 (7-24)

Изменение внутренней энергии определяется по уравнению (7-23), а работа расширения — по формуле

$$l = p(v_2 - v_1). \tag{7-25}$$

В этом процессе подавляющая часть подводимой теплоты расходуется на изменение внутренней энергии пара.

Изотермический процесс (T = const). На рис. 7-6 представлен изотермический процесс общего вида, когда в начальном состоянии имеем влажный пар, а в конечном — перегретый. В p, v-диаграмме в области влажного пара изотерма изображается горизонтальной линией, а в области перегретого пара — гиперболической кривой, более пологой, чем газовая. В i, s-диаграмме изотерма представлена линией 1-2. Начальное состояние пара (точка 1) находится на пересечении изобары p_1 и линии постоянной сухости x_1 , а конечное состояние (точка 2) на пересечении заданной изотермы и изобары p_2 .

В процессе изотермического расширения пара часть подводимой теплоты расходуется на изменение его вну-

тренней потенциальной энергии и в этом состоит его отличие от того же процесса в идеальных газах.

Теплота процесса определяется по уравнению

$$q = T(s_2 - s_1);$$
 (7-26)

изменение внутренней энергии — по уравнению (7-23), а работа расширения — из первого закона термодинамики

Рис. 7-7. Адиабатный процесс для водяного пара.

Адиабатный процесс (dq = 0). На рис. 7-7 показан обратимый адиабатный процесс расширения пара в координатах p, v, T, s и is.

В обратимом адиабатном процессе энтропия не меняется (s=const), поэтому в T, s- и i, s-диаграммах адиабата — вертикальная линия. В p, v-диаграмме адиабата изображается линией, похожей на гиперболическую кривую, которая может быть приближенно выражена уравнением типа

$$pv^k = const,$$

где k — эмпирический коэффициент.

В небольших пределах изменения давления коэффициент *k* принимается равным:

для перегретого пара k=1,3;

для сухого насыщенного пара k=1,135;

для влажного пара k=1,035+0,1 x, где x — начальная степень сухости пара.

Следовательно, в области перегретого пара адиабата идет круче, чем в области влажного пара, и в точке *а* пересечения ее с верхней пограничной кривой имеется перегиб.

В *i*, *s*-диаграмме адиабата изображается линией 1—2, причем начальное состояние пара, определяемое

точкой 1, находим на пересечении изобары p1 и изотермы t₁. Опуская из точки 1 вертикальную линию s=const до пересечения с изобарой p2, находим точку 2, которая определяет конечное состояние пара в конце расширения. В точках 1 и 2 находят недостающие параметры пара, необходимые для решения задачи.

В адиабатном процессе работа совершается за счет внутренней энергии и определяется уравнением

$$l = -\Delta u = (i_1 - p_1 v_1) - (i_2 - p_2 v_2).$$
 (7-27)

Пример 7-1. В резервуаре при $p_1 = 1,0$ МПа (10 бар) находится смесь, состоящая из 0,2 кг воды и 0,8 кг сухого пара. Определить степень сухости, энтальпию, энтропию, внутреннюю энергию и удельный объем влажного пара.

Решение. По табл. Пб при p=1 МПа=10 бар находим: $v'=0,0011274 \text{ м}^3/\text{кr}; v''=0,1943 \text{ м}^3/\text{кr}; i'=762,6 \text{ кДж/кг};$ r=2014,4 кДж/кг; s'=2,1382 кДж/(кг·K); s''=6,5847 кДж/(кг·K)Степень сухости

$$x = \frac{0,8}{0,2+0,8} = 0,8.$$

Находим параметры влажного пара: $s_x = s''x + (1-x)s' = 6,5847 \cdot 0,8 + 0,2 \cdot 2,1382 = 5,697 \text{ K} \square \text{K} / (\text{K} \Gamma \cdot \text{K});$

$$i_x = i' + rx = 762,6 + 2014,6 \cdot 0,8 = 2374,3 \text{ KL} \text{K}/\text{K}\text{G};$$

$$v_x = v''x + (1-x)v' = 0,19463 \cdot 0,8 + 0,2 \cdot 0,0011273 = 0,1560 \text{ m}^3/\text{kr};$$

$$u_x = i_x - pv_x = 2374, 3 - 1, 0.10^3 \cdot 0, 1560 = 2218, 3 \text{ KJ} \text{K/Kr}.$$

Пример 7-2. 2 м³ водяного пара изобарно расширяются от начального состояния 1 (p_1 =4,0 МПа; x_1 =0,9) до конечного состояния 2 (t_2 =400°C). Определить затрату теплоты, совершенную работу и изменение внутренней энергии. Решить задачу с использованием таблиц.

Решение. В начальном состоянии пар влажный, поэтому необходимые параметры находятся в табл. П6:

$$i_1 = i'_1 + r_1 x_1 = 1087,5 + 1711,9 \cdot 0,9 = 2627,5 \text{ K} \square \text{K} \square \text{K} \square \text{K}$$

 $v_1 = v''_1 x_1 + (1 - x_1) v'_1 = 0.04974 \cdot 0.9 + 0.1 \cdot 0.001262 = 0.0449 \text{ M}^3/\text{Kr}.$

В конечном состоянии пар перегретый, так как $t_2 > t_{\rm H}$, поэтому необходимые параметры находим по табл. П7:

$$i_2 = 3214,5$$
 кДж/кг; $v_2 = 0,07339$ м³/кг.

Масса пара

$$m = \frac{V}{v_1} = \frac{2}{0,0449} = 44,6 \text{ Kr.}$$

Теплота процесса

$$Q = m(i_2 - i_1) = 44.6(3214.5 - 2627.5) = 26\,180$$
 кДж.

Работа расширения

$$L = mp(v_2 - v_1) = 44,6 \cdot 4,0 \cdot 10^3 (0,07339 - 0,0449) = 5085 \text{ KL}.$$

Изменение внутренней энергии

$$\Delta U = m[(i_2 - p_2 v_2) - (i_1 - p_1 v_1)] =$$

= 44,6[(3214,5-4,0.10³.0,07339) - (2627,5-4,0.10³.0,0449)] =
= 21.095 kHж.

Пример 7-3. 1 кг водяного пара изотермически расширяется при $t=300^{\circ}$ С. В начальном состоянии пар влажный ($x_1=0.9$), в конечном состоянии $p_2 = 1,0$ МПа. Определить количество подводимого тепла, изменение внутренней энергии и работу расширения. Задачу решить при помощи таблиц.

Решение. Определяем начальные параметры при помощи табл. П5. При t=300°С давление p1=85,917~85,92 бар=8,592 МПа. Энтальпия

$$i_1 = i' + r_1 x_1 = 1345, 4 + 1403, 0.0, 9 = 2607, 7 \text{ KJ} \text{K/Kr}.$$

Удельный объем

 $v_1 = v''_1 x_1 + (1 - x_1) v' = 0.02162 \cdot 0.9 + 0.1 \cdot 0.001404 = 0.0196$ M³/KF.

Энтропия

$$s_1 = s''_1 x_1 + (1 - x_1) s' = 5,7038 \cdot 0,9 + 0,1 \cdot 3,2559 = 5,459 \text{ KJ} / (\text{Kr} \cdot \text{K}).$$

При $p_2 = 1.0$ МПа температура насыщения $t_{\rm H} = 179.88^{\circ}$ С. Так как t_n < t, в конце расширения пар перегрет и параметры пара определяем по табл. П7:

 $i_2 = 3051.3 \text{ K} \square \text{K} \square \text{K} \square \text{K}$; $v_2 = 0.2580 \text{ M}^3 / \text{K} \square \text{K} \square \text{K} \square \text{K} \square \text{K} \square \text{K} \square \text{K}$

Количество подведенной теплоты

$$q = T(s_2 - s_1) = 573(7, 1239 - 5, 459) = 955 \text{ KJ} \text{K/kr}.$$

Изменение внутренней энергии пара в процессе

$$\Delta u = (i_2 - p_2 v_2) - (i_1 - p_1 v_1) = (3051, 3 - 1, 0 \cdot 10^3 \cdot 0, 2580) -$$

 $-(2607,7-8,592\cdot10^3\cdot0,0196) = 354,0 \text{ kJm/kr}.$

Работа расширения

$$l = q - \Delta u = 955 - 354 = 601$$
 кДж/кг.

Пример 7-4. 1 кг водяного пара адиабатно расширяется от состояния, определяемого давлением $p_1 = 6,0$ МПа и температурой $t_1 = 420^{\circ}$ С, до конечного состояния $p_2 = 0.01$ МПа. Определить работу расширения. Задачу решить при помощи таблиц.

Решение. В начальном состоянии пар перегрет, так как $t_1 >$ $> t_{\rm H}$. Параметры пара определяем по табл. П7:

 $i_1 = 3229,0 \text{ KJ} \times / \text{Kr}; v_1 = 0,04931 \text{ M}^3 / \text{Kr}, s_1 = 6,6178 \text{ KJ} \times / (\text{Kr} \cdot \text{K}).$

В обратимом адиабатном процессе энтропия постоянна, т. е. $s_2 = s_1$. По табл. Пб при $p_2 = 0,01$ МПа: $s''_2 = 8,1505$ кДж/(кг·К), $s'_2 = 0,6493$ кДж/(кг·К). Так как $s'_2 < s_2 < s''_2$, то в конце расширения пар будет влажным и для определения параметров пара необходимо найти степень сухости.

По уравнению (7-18) имеем:

$$x_2 = \frac{s_2 - s'_2}{s''_2 - s'_2} = \frac{6,6178 - 0,6493}{8,1505 - 0,6493} = 0,796.$$

119

При помощи той же табл. Пб находим: энтальпию

$$i_2 = i'_2 + r_2 x_2 = 191,84 + 2392,6 \cdot 0,796 = 2096,0 \text{ KJ} \text{K/Kr};$$

удельный объем

$$v_1 = v''_2 x_2 = 14,676 \cdot 0,796 = 11,7 \text{ M}^3/\text{Kr};$$

работу расширения

$$l = (i_1 - p_1 v_1) - (i_2 - p_2 v_2) = (3229 - 6,0 \cdot 10^3 \cdot 0,04931) - (2096 - 0,01 \cdot 10^3 \cdot 11,7) = 954 \text{ KJ} \times / \text{KF}.$$

Пример 7-5. 1 кг перегретого пара изобарно сжимается от начального состояния, определяемого параметрами $p_1 = 3,5$ МПа и

 $v_1 = 0,1$ м³/кг, так что $v_2 = 0,5v_1 = 0,05$ м³/кг. Найти значения i_1 и i_2 , изменение внутренней энергии, работу сжатия и количество отводимой теплоты.

Решение. На *i*, *s*-диаграмме (рис. 7-8) начальное состояние определяется точкой / пересечения изобары p_1 и изохоры v_1 , в которой энтальпия $i_1 = = = 3474$ кДж/кг, а конечное состояние точкой 2 пересечения той же изобары p_1 и изохоры v_2 , в которой энтальпия $i_2 = = = 2568$ кДж/кг.

Количество отводимой теплоты

$$q = i_2 - i_1 = 2568 - 3474 = -906$$
 кДж/кг.

Работа сжатия

Рис. 7-8. Изобарный процесс сжатия (к примеру

7-5).

$$l = p(v_2 - v_1) = 3.5 \cdot 10^3 (0.05 - 0.1) = -175 \text{ KJ} \text{K/Kr}$$

Изменение внутренней энергии

$$\Delta u = (i_2 - p_2 v_2) - (i_1 - p_1 v_1) = (2568 - 3.5 \cdot 10^3 \cdot 0.05) - (3474 - 3.5 \cdot 10^3 \cdot 0.1) = -731 \text{ kJm/kr.}$$

Пример 7-6. 1 кг перегретого пара адиабатно расширяется от $p_1 = 9,0$ МПа и $t_1 = 510^{\circ}$ С до конечного давления $p_2 = 0,005$ МПа. При помощи *i*, *s*-диаграммы найти значения i_1 , i_2 , v_1 и v_2 и работу пара при его расширении.

Решение. Начальное состояние определяется точкой 1 пересечения изобары p_1 и изотермы t_1 (см. рис. 7-7), для которого $i_1 = = 3410$ кДж/кг и $v_1 = 0,037$ м³/кг. Конечное состояние определяется точкой 2 пересечения линии s = const и конечной изобары p_2 .В этом состоянии $i_2 = 2040$ кДж/кг и $v_2 = 22$ м³/кг.

По уравнению (7-27) работа равна:

$$l = (i_1 - \rho_1 v_1) - (i_2 - \rho_2 v_2) = (3410 - 9,0 \cdot 10^3 \cdot 0,037) - (2040 - 0,005 \cdot 10^3 \cdot 22) = 1147 \text{ kJ} \text{ k/kr}.$$

ГЛАВА ВОСЬМАЯ

ИСТЕЧЕНИЕ И ДРОССЕЛИРОВАНИЕ ГАЗОВ И ПАРОВ

8-1. Работа проталкивания. Располагаемая работа

Процессы истечения газов и паров используются в различных отраслях промышленности и осуществляются во многих аппаратах и приборах. Особое значение имеет изучение теории процессов истечения газов и паров для энергетики, так как основные положения этой теории используются при расчетах и конструировании паровых и газовых турбин.

В технической термодинамике процессы истечения газов (паров) изучаются при следующих условиях: 1) поток газа движется непрерывно и заполняет весь

1) поток газа движется непрерывно и заполняет весь объем канала;

2) скорость движения газа и его параметры изменяются в направлении движения, но в каждом данном сечении они одинаковы по всему сечению и не меняются в течение рассматриваемого времени;
 3) через любое сечение канала в единицу времени

3) через любое сечение канала в единицу времени протекает одна и та же масса газа.

Таким образом, изучается стационарное установившееся течение газа, которое подчиняется уравнению сплошности

$$m = \frac{f_1 w_1}{v_1} = \frac{f_2 w_2}{v_2} = \dots = \frac{f w}{v} = \text{const},$$
 (8-1)

где m — секундный массовый расход; f_1, f_2, \ldots, f — площади сечений канала; w_1, w_2, \ldots, w — скорости движения газа в рассматриваемых сечениях; v_1, v_2, \ldots, v удельные объемы газа в тех же сечениях.

Для рассматриваемых процессов первый закон термодинамики имеет вид:

$$dq = du + dl' + d(w^2/2),$$
 (8-2)

где dq — теплота, подводимая к потоку газа на рассматриваемом участке канала; du — изменение внутренней энергии газа; dl' — работа против внешних сил при истечении или работа проталкивания; $d(w^2/2)$ — изменение внешней кинетической энергии газа при его движении по каналу.

Работа проталкивания. Пусть в некоторый сосуд большой вместимости непрерывно поступает газ в количестве *m*, кг/с. При установившемся режиме такое же количество газа будет вытекать из сосуда в окружающую среду через короткий патрубок (сопло), который расположен в нижней части сосуда (рис. 8-1).

Выделим сечениями 1 и 2 некоторый объем газа и предположим, что при вытекании из сосуда порции газа m сечение 1 переместится на расстояние s_1 , а сечение 2— на расстояние s_2 .

Для наглядности примем, что вместе с сечениями 1 и 2 будут перемещаться (без трения) невесомые поршни,

Рис. 8-1. Истечение газа из сосуда.

площади сечения которых соответственно равны f_1 и f_2 . На поршень 1 будут действовать расположенные выше слои газа с силой p_1f_1 и, следовательно, над выделенным объемом газа будет совершена работа

$$L_1 = -p_1 f_1 s_1 = -p_1 V_1 = -m p_1 v_1, \quad (8-3)$$

где p_1 — давление газа в сечении 1; V_1 — объем газа, проходящего через сечение 1

в единицу времени; v_1 — удельный объем газа в сечении 1.

На поршень 2 (в сечении 2) будут действовать слои газа, расположенные справа от него, с силой p_2f_2 , преодолевая которую выделенный объем газа (поток) совершит работу

 $L_2 = p_2 f_2 s_2 = p_2 V_2 = m p_2 v_2, \qquad (8-4)$

где p_2 — давление газа в сечении 2; V_2 — объем газа, проходящего через сечение 2 в единицу времени; v_2 — удельный объем газа в сечении 2.

Таким образом, при протекании газа в количестве *m* на пути между сечениями 1 и 2 будет совершена работа, равная алгебраической сумме обеих работ; эта работа называется внешней работой при истечении или работой проталкивания

$$L' = L_2 - L_1 = m \left(p_2 v_2 - p_1 v_1 \right). \tag{8-5}$$

При протекании в секунду 1 кг газа

$$l' = p_2 v_2 - p_1 v_1. \tag{8-6}$$

И, наконец, в дифференциальной форме

$$dl' = d(pv). \tag{8-7}$$

Подставляя dl' из (8-7) в уравнение (8-2), получаем:

$$dq = du + d(pv) + d(w^{2}/2).$$
 (8-8)

Известно (§ 2-4), что

$$d(u+pv) = di.$$

Тогда уравнение (8-8) приводится к виду:

$$dq = di + d(w^2/2).$$
 (8-9)

Это уравнение является основным выражением первого закона термодинамики для потока газа. Из него следует, что тепло, сообщаемое газу, расходуется на изменение его энтальпии и внешней кинетической энергии.

Располагаемая работа. Наряду с уравнениями (8-2) и (8-8) для потока газа действительно также уравнение первого закона термодинамики (§ 2-2) вида

$$dq = du + dl$$
,

откуда работа расширения

dl = dq - du.

Подставляя это выражение работы расширения в уравнение (8-2), получаем:

$$dl = dl' + d(w^2/2),$$
 (8-10)

откуда

$$dl - dl' = d(w^2/2) = dl_0.$$
 (8-11)

Разность работы расширения dl и работы проталкивания dl', равная приращению внешней кинетической энергии газа при истечении, называется распола гаемой работой и обозначается dl_0 ; она называется так потому, что в тепловых машинах может переходить в другие виды энергии.

Используя полученное выражение для работы расширения (§ 2-4) и работы проталкивания из уравнения (8-11), можно получить:

$$dl_0 = d(w^2/2) = p, \ dv - d(pv) = p,$$

$$dv - p, \ dv - v, \ dp = -v, \ dp, \qquad (8-12)$$

123

Рис. 8-2. Располагаемая работа газа.

откуда следует, что если dp < 0, то $dl_0 > 0$, если p=const, то dl_0 = =0. Таким образом, располагаемая работа может быть получена только при понижении давления газа.

Предположим, что истечение газа из резервуара происходит политропно с показателем n и изображается некоторой кривой 1-2 (рис. 8-2). Чтобы изобразить располагаемую работу в координатах p, v, найдем ее мате-

ординатах p, v, найдем ее математическое выражение, интегрируя уравнение (8-11) и подставляя выражения работы расширения (§ 4-6) и проталкивания (8-6), (8-7):

$$l_{0} = \int_{1}^{2} p \, dv - \int_{1}^{2} d \, (pv) = \frac{1}{n-1} \left(p_{1}v_{1} - p_{2}v_{2} \right) - p_{2}v_{2} + p_{1}v_{1}.$$
(8-13)

На рис. 8-2 работа политропного расширения, равная $\frac{1}{n-1}(p_1v_1-p_2v_2)$, измеряется площадью c12a; работа p_1v_1 — площадью a1cO; работа p_2v_2 — площадью Ob2a. Следовательно, располагаемая работа изображается площадью a12b.

Таким образом в координатах *p*, *v* располагаемая работа изображается площадью, ограниченной кривой процесса, осью ординат и крайними изобарами.

Путем несложных преобразований уравнение (8-13) приводится к виду:

$$l_{0} = \frac{n}{n-1} (p_{1}v_{1} - p_{2}v_{2}) = nl, \qquad (8-14)$$

т. е. располагаемая работа больше работы расширения в *n* раз.

8-2. Адиабатный процесс истечения газа

На турбинное колесо газ (пар) поступает через короткие каналы, которые называются соплами. Так как размеры сопл сравнительно малы, а скорость движения газа значительна, то время соприкосновения газа с поверхностью сопла ничтожно мало, теплообменом газа с внешней средой можно пренебречь и процесс истечения газа считать адиабатным.

Предположим, что газ вытекает в окружающую среду через суживающееся сопло (рис. 8-3). Параметры газа при входе в сопло p_1 , v_1 , i_1 , T_1 не меняются с течением времени. В выходном сечении сопла газ имеет парамет-

Рис. 8-3. Суживающееся сопло.

ры p_2 , v_2 , i_2 , T_2 , а площадь сечения f_2 ; скорость газа при входе в сопло w_1 , а на выходе из сопла w_2 .

Предварительно принимаем, что давление газа на выходе из сопла p_2 равно давлению среды $p_{\rm cp}$ в пространстве, куда происходит истечение газа.

При адиабатном обратимом истечении уравнение (8-9) примет вид:

$$di + d(w^2/2) = 0.$$

С учетом уравнения (8-11) имеем:

$$dl_0 = d(w^2/2) = -di.$$
 (8-15)

Интегрируя уравнение (8-15), получаем:

$$l_{0} = \frac{w^{2}_{2} - w^{2}_{1}}{2} = i_{1} - i_{2}, \qquad (8-16)$$

откуда скорость истечения (скорость газа в выходном сечении)

$$w_2 = \sqrt{2l_0 + w^2}$$
, (8-17)

Скорость газа при входе в сопло w_1 в сравнении со скоростью истечения w_2 незначительна, поэтому ею можно пренебречь. Тогда, опуская индекс у скорости газа на выходе, получаем:

$$\omega = \sqrt{2l_o} = \sqrt{2kl}.$$

Для адиабатного процесса истечения с учетом § 4-5 получим:

$$w = \sqrt{2 \frac{k}{k-1} (p_1 v_1 - p_2 v_2)}, \qquad (8-18)$$

125

или

$$w = \sqrt{2 \frac{k}{k-1} p_1 v_1 \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}\right]}.$$
 (8-19)

Из уравнения (8-16) можно также получить выражение для определения скорости истечения, которое можно применять для любых рабочих тел, а именно

$$w = \sqrt{2(i_1 - i_2)} = 1.41 \sqrt{i_1 - i_2}, \qquad (8-20)$$

где *i*₁ и *i*₂ — энтальпия газа или пара во входном и выходном сечениях сопла, Дж/кг.

При подстановке энтальпий, кДж/кг, имеем:

$$w = \sqrt{2 \cdot 1000 (i_1 - i_2)} = 44,72 \sqrt{i_1 - i_2}, \qquad (8-21)$$

или в ккал/кг:

$$w = \sqrt{2 \cdot 4186, 8(i_1 - i_2)} = 91,53 \sqrt{i_1 - i_2}.$$
 (8-22)

Секундный расход газа определяется во всех случаях по уравнению (8-1)

$$m = \frac{f_2 w}{v_2}.$$

Подставляя в уравнение расхода выражения для скорости истечении по уравнению (8-19) и удельного объема (§ 4-5)

$$\frac{1}{v_2} = \frac{1}{v_1} \left(\frac{p_2}{p_1}\right)^{\frac{1}{k}},$$

поланаем:

$$m = f_{2} \frac{1}{v_{1}} \left(\frac{p_{2}}{p_{1}} \right)^{\frac{1}{k}} \sqrt{2 \frac{k}{k-1} p_{1} v_{1} \left[1 - \left(\frac{p_{2}}{p_{1}} \right)^{\frac{k-1}{k}} \right]},$$

или после преобразований

$$m = f_2 \sqrt{2 \frac{k}{k-1} \frac{p_1}{v_1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{2}{k}} - \left(\frac{p_2}{p_1} \right)^{\frac{k+1}{k}} \right]}.$$
 (8-23)

Из уравнения (8-23) следует, что при заданных начальных параметрах p_1 и v_1 расход газа через сечение f_2 зависит лишь от его давления p_2 в выходном сечении сопла.

Анализ уравнения (8-23) показывает, что:

1) при равенстве давлений $p_1 = p_2$ расход m = 0;

2) при уменьшении отношения p_2/p_1 (т. е. при уменьшении давления среды) расход газа увеличивается и при отношении $p_2/p_1 \approx 0.5$ достигает максимального значения. Отношение давления p_2/p_1 , при котором расход газа достигает максимального значения, называется критическим и обозначается $\beta_{\rm KP}$, т. е.

$$\beta_{\rm Kp} = p_2/p_1 = p_{\rm Kp}/p_1;$$

3) при дальнейшем уменьшении отношения p_2/p_1 ниже критического расход уменьшается и при $p_2/p_1=0$ расход m=0, т. е. истечение прекращается.

Зависимость $m = f(p_2/p_1)$, полученная по уравнению (8-23), изображена на рис. 8-4 и представляет собой параболическую кривую.

Возрастание расхода m при понижении отношения давлений p_2/p_1 от 1 до примерно 0,5 на участке кривой

ab (рис. 8-4) не вызывает какихлибо возражений и полностью совпадает с опытом.

Уменьшение расхода m ог максимального значения до пуля на участке bd (рис. 8-4) при понижении отношения давлений примерно от 0,5 до 0 противоречит теории и опыту. Были проведены специальные исследования, которые показали, что при понижении отношения давлений ниже критического расход газа не меня-

Рис. 8-4. Зависимость секундного расхода газа от отношения давлений β.

ется, остается постоянным и равным максимальному. Таким образом, действительная зависимость $m = f(p_2/p_1)$ во всем диапазоне изменений давлений от 1 до 0 изображается кривой *abc*. Как показали те же исследования, такая зависимость объясняется тем, что давление газа p_2 в выходном сечении сопла понижается вслед за понижением давления среды (от p_1 до p_2) до тех пор, пока давление газа не достигнет критического, равного $p_{\rm kp} = = \beta_{\rm kp} p_1$. При дальнейшем понижении давления среды $(p_{\rm cp})$ ниже критического вплоть до нуля давление газа в выходном сечении суживающегося сопла не меняется, остается постоянным и равным критическому.

Для определения критического отношения давлений необходимо взять первую производную от выражения в квадратных скобках в уравнении (8-23) и приравнять ее нулю.

Обозначим переменное отношение давлений $p_2/p_1 =$ ---β и произведем необходимые действия

$$\frac{d}{dp} \left[\beta^{\frac{2}{k}} - \beta^{\frac{k+1}{k}} \right] = \frac{2}{k} \beta^{\frac{2}{k}-1} - \frac{k+1}{k} \beta^{\frac{k+1}{k}-1} = 0,$$

откуда

$$\frac{2}{k}\beta^{\frac{2-k}{k}} = \frac{k+1}{k}\beta^{\frac{1}{k}}$$
или
$$\frac{2}{k+1} = \beta^{\frac{k-1}{k}}$$

Окончательно выражение критического отношения давления определяется уравнением

$$\beta_{\kappa p} = \frac{p_{\kappa p}}{p_1} = \left(\frac{2}{k+1}\right)^{k-1},$$
 (8-24)

откуда для двухатомных газов при k = 1,4

$$\beta_{\rm Kp} = \frac{p_{\rm Kp}}{p_1} = \left(\frac{2}{1,4+1}\right)^{\frac{1,4}{1,4-1}} = 0,528;$$

для трехатомных газов при k = 1,3

$$\beta_{\rm kp} = \frac{p_{\rm kp}}{p_{\rm 1}} = \left(\frac{2}{1,3+1}\right)^{\frac{1,3}{1,3-1}} = 0,546.$$

Все параметры газа и скорость истечения, соответствующие максимальному расходу газа, также называются критическими и обозначаются $t_{\rm KP}$, $i_{\rm KP}$, $w_{\rm KP}$ и т. д. Используя уравнение (8-19), находим выражение для определения критической скорости. Так как

$$\frac{p_{\mathrm{KP}}}{p_1} = \left(\frac{2}{k+1}\right)^{k-1},$$

то

$$w_{\rm kp} = \sqrt{2 \frac{k}{k-1} p_{\rm 1} v_{\rm 1} \left[1 - \left(\frac{2}{k+1}\right)^{\frac{k}{k-1} - \frac{k-1}{k}}\right]};$$

после преобразований получим окончательное выражение критической скорости:

$$w_{\rm kp} = \sqrt{2 \frac{k}{k+1} p_{\rm i} v_{\rm i}} = \sqrt{2 \frac{k}{k+1} R T_{\rm i}}.$$
 (8-25)

При адиабатном истечении до критического давления можно написать соотношение

$$\frac{T_{\rm Kp}}{T_1} = \left(\frac{p_{\rm Kp}}{p_1}\right)^{\frac{k-1}{k}} = \frac{2}{k+1},$$

откуда

$$T_{1} = \frac{k+1}{2} T_{\text{KP}}.$$
 (8-26)

Решая совместно уравнение (8-25) и (8-26), получаем:

$$w_{\rm kp} = \sqrt{kRT_{\rm kp}}.$$
 (8-27)

Как известно из физики, полученное уравнение служит для определения скорости звука, откуда следует, что критическая скорость истечения равна местной скорости звука, т. е. соответствующей параметрам в выходном сечении сопла.

Таким образом, при истечении газа или пара через суживающееся сопло его давление может понижаться только до критического, равного ркр=вкрр1; максимальная скорость истечения не может быть больше местной скорости звука; суживающиеся сопла применяются при использовании небольших перепадов давления.

При решении задач на истечение газа или пара через суживающиеся сопла при заданных значениях давлений p₁ и p_{ср} необходимо прежде всего сравнить отношение p_{cp}/p_1 с критическим отношением давлений β_{Kp} , которое определяется уравнением (8-24). В зависимости от значений отношения pcp/pi могут быть три случая:

1) $p_{cp}/p_1 > \beta_{Kp}$; расширение газа будет полное, в выходном сечении сопла давление газа равно давлению среды и больше критического:

$$p_2 = p_{cp} > p_{Kp}$$
.

Скорость истечения меньше критической и определяется при помощи уравнений (8-18) и (8-19); расход газа меньше максимального и определяется при помощи уравнений (8-1) и (8-23);

ходном сечении сопла давление газа равно давлению среды и критическому:

$$p_2 = p_{cp} = p_{\kappa p}$$

Скорость истечения достигает критической и определяется по уравнению (8-25); расход газа максимальный, 9-702 129

определяется по тем же уравненням (8-1) и (8-23), однако в них подставляются соответствующие критические параметры ($p_{\rm Kp}$; $v_{\rm Kp}$; $w_{\rm Kp}$);

3) $p_{\rm cp}/p_1 < \beta_{\rm kp}$; расширение газа неполное, в выходном сечении сопла устанавливается критическое давление, которое больше давления среды:

$p_2 = p_{\kappa p} > p_{cp}$

Скорость истечения критическая, а расход максимальный, определяются они по тем же уравнениям, что и во втором случае.

Рис. 8-5. Сопло Лаваля.

Сопло Лаваля. При истечении газа через сужающиеся или цилиндрические сопла в среду с давлением $p_{\rm Cp} < < p_{\rm Kp}$ используется только часть располагаемого перепада давлений от p_1 до $p_{\rm Kp}$ и, следовательно, обеспечивается

только частичный полезный переход потенциальной энергии в кинетическую. Для использования перепада давлений от p₁ до p₂ < p_{кр} и получения в выходном сечении сопла давления, равного давлению среды (куда происходит истечение), потребовалось создать сопло специального профиля. Такое сопло было предложено шведским инженером Лавалем и называется соплом Лаваля. Как видно из рис. 8-5, это сопло состоит из сужающейся части, которая дополнена конусной частью, расширяющейся по направлению движения газа. В сужающейся части протекает процесс, аналогичный процессу в сужающемся сопле, здесь давление газа понижается от p_1 на входе в сопло до $p_{\rm KP}$ в минимальном сечении (f_{мин}). В расширяющейся конической части сопла происходит дальнейшее понижение давления газа от ркр до давления $p_2 = p_{cp}$ в выходном сечении сопла, которое будет максимальным (f_{макс}). Такой профиль сопла объясняется характером изменения удельного объема и скорости движения газа при истечении. При движении газа по каналу сопла происходит непрерывное увеличение скорости (w) и удельного объема (v). Однако при понижении давления газа от p₁ до p_{кр} более интенсивно растет скорость, поэтому в соответствии с уравнением (8-1)

$$f_2 = \frac{mv_2}{w}$$

площадь сечения сопла по направлению движения газа должна уменьшаться до минимальной. При дальнейшем понижении давления газа от $p_{\rm Kp}$ до $p_2 = p_{\rm Cp}$ более интенсивно растет удельный объем газа, поэтому площади сечения сопла в направлении движения газа должны увеличиваться.

Сопло Лаваля позволяет использовать любые перепады давления, получать большую располагаемую работу и скорость истечения газа, большую скорости звука.

Необходимо отметить, что сопло должно работать в расчетном режиме, а полный угол раскрытия конусной части сопла (α) не должен превышать 12—14° во избежание отрыва потока газа от стенок сопла.

8-3. Некоторые особенности истечения пара. Действительный процесс истечения

Все основные положения теории истечения, изложенные в § 8-2, применимы и к парам любых жидкостей и, в частности, к водяному пару.

Однако в связи с тем, что значение показателя k значительно изменяется в зависимости от начальных параметров p_1 и t_1 и степени адиабатного расширения пара, пользоваться уравнением pv^h const недопустимо,

Рис. 8-6. Теоретическая располагаемая работа пара.

Рис. 8-7. Теоретичсская располагаеман работа нара в *i*, sдиаграмме.

так как это приводит к значительным ошибкам. В связи с указанным все исследования процессов истечения водяных паров необходимо выполнять при помощи *is*диаграммы, а при расчетах не использовать уравнения, в которые входит показатель k.

Располагаемая работа при обратимом адиабатном истечении пара в координатах *T*, *s* изображена на 9* 131

рис. 8-6. Она изображается площадью 12abc, ограниченной линией процесса истечения, нижней пограничной кривой и крайними изобарами.

В *i*, *s*-диаграмме (рис. 8-7) располагаемая работа изображается отрезком вертикальной линии 1-2 (*s*= =const); в этом заключается преимущество *i*, *s*-диаграммы в сравнении с *T*, *s*-диаграммой, в которой располагаемая работа изображается площадью.

При обратимом и необратимом адиабатном истечении пара располагаемая работа должна определяться по формуле (8-16), скорость истечения по уравнениям (8-20)—(8-22), расход пара — при помощи уравнения (8-1), причем удельный объем нужно определять по *i*, *s*-диаграмме.

Значение коэффициента k, необходимое для определения критического давления, для водяного пара низких параметров при расчетах, не требующих большой точности, принимается равным:

для перегретого пара k=1,3, тогда $\beta_{\kappa p}=0,546$;

для сухого насыщенного пара k=1,135, тогда $\beta_{\kappa p}==0,577$.

В настоящее время в связи с использованием в энергетике водяного пара с высокими начальными параметрами (p_1 и t_1) применение указанных значений k будет приводить к значительным ошибкам. При более точных расчетах показатель k нужно определять по формуле

$$k = \frac{\lg p_1/p_2}{\lg v_2/v_1}$$
,

где p_1 , v_1 и p_2 , v_2 — начальные и конечные параметры водяного пара, которые находятся по *i*, *s*-диаграмме.

Так как реальные тела обладают вязкостью, а внутренняя поверхность сопл не является абсолютно гладкой, все действительные процессы истечения сопровождаются трением рабочего тела о стенки канала и трением частиц рабочего тела между собой. Следовательно, действительные процессы истечения являются необратимыми, сопровождаются увеличением энтропии, уменьшением располагаемой работы и скорости истечения.

Отношение действительной скорости истечения w_{d} к теоретической w называется скоростным коэффициентом сопла и обозначается φ :

$$\varphi = -\frac{w_{\pi}}{w}. \tag{8-28}$$

Теоретическая скорость истечения (w) определяется при помощи уравнений, приведенных в § 8-2. Скоростной коэффициент для хорошо выполненных сопл имеет значение: $\phi = 0.95 \div 0.99$.

Отношение действительной располагаемой работы l'_0 к теоретической l_0 называется к. п. д. сопла и обозначается η_c :

$$\eta_{\rm c} = l'_0 / l_0.$$

Так как начальной скоростью рабочего тела пренебрегают, то располагаемая работа равна кинетической энергии потока, выходящего из сопла:

$$l_{0} = \frac{w^{2}}{2}; \quad l'_{0} = \frac{w^{2}_{\pi}}{2}.$$
$$\eta_{c} = \frac{l'_{0}}{l_{0}} = \frac{w^{2}_{\pi}}{w^{2}} = \varphi^{2},$$

Тогда

т. е. к. п. д. сопла равен квадрату скоростного коэффициента.

На рис. 8-8 в координатах *i*, *s* изображен теоретический процесс истечения в виде вертикального отрезка *1—2*, а действительный процесс---

условной наклонной линией i $1-2_{\rm д}$. Из рисунка видно, что теоретическая располагаемая работа l_0 больше действительной l'_0 на величину

 $\Delta l = i_{2\pi} - i_2.$

Действительная энтальпия пара на выходе из сопла $i_{2\pi}$ больше, чем при истечении без трения i_2 . Это объясняется тем, что часть кинетической энергии, расходуемой на преодоления трения, переходит в теплоту, что и вызывает повышение энтальпии пара.

Для определения действительного состояния пара на *i*, *s*-диаграмме (точка $2_{\rm q}$, рис. 8-8) поступают следующим образом. Определяют располагаемую работу: теоретическую $l_0 = i_1 - i_2$, действительную $l'_0 = \eta_{\rm c} l_0$. Определяют действительную энтальпию пара на выходе из сопла

$$i_{2a} = i_1 - l'_0.$$

На *i*, *s*-диаграмме находят точку пересечения линии $i_{2\pi}$ = const (на рис. 8-8 — линия *AB*) с изобарой p_2 —

 $L_0 = \begin{bmatrix} 1 & P_1 & t_1 \\ 1 & t_0 & P_1 \\ A & P_2 \\ 2 & 2_A \end{bmatrix} = \begin{bmatrix} 1 & t_0 & t_0 \\ P_1 & B \\ P_2 & P_2 \\ B \\ S \end{bmatrix}$

точку 2_д. Эта точка характеризует действительное состояние пара.

В этой точке определяют объем v_{2g} , который необходим для определения площади выходного сечения сопла:

$$f_2 = \frac{m \omega_{\mathrm{A}}}{v_{2\mathrm{A}}}$$

Действительная скорость истечения может быть найдена при помощи уравнения:

$$w_{\mu} = 44,72\varphi \sqrt{i_1 - i_2},$$
 (8-29)

или

$$w_{\mu} = 44,72 \sqrt{i_1 - i_{2\mu}},$$
 (8-30)

где энтальпия выражена в кДж/кг.

Þ

8-4. Дросселирование газов и паров

Из опыта известно, что при движении газа (пара) по каналам и трубопроводам всегда наблюдается понижение его давления. При прочих равных условиях понижение давления газа происходит более интенсивно в том случае, когда газу приходится преодолевать так называемое местное сопротивление, например связанное с уменьшением проходного сечения трубопровода (рис. 8-9).

Процесс понижения давления при прохождении газа через местное сопротивление (сужение сечения) называется дросселированием или мятием. Степень понижения давления зависит от физических свойств газа (пара),

Рис. 8-9. Схема движения газа через дроссель.

его состояния до сопротивления, от относительной величины сужения площади сечения трубопровода f/F, а также от расхода газа. На рис. 8-9 схематически

 t2 Нарис. 8-9 схематически
 w2 изображен участок трубоi2 ировода постоянного сечения
 F, в котором установлен диск А с концентрическим отверстием площадью f; этот диск называется д н а ф р а гм о й илн д р о с с е л с м.

Рассмотрим, как меняются параметры газа (пара) при его движении на указанном участке трубопровода. При этом нужно отметить, что соответствующие параметры газа относятся к сечениям *I* и *II*, которые нахо-134 дятся на некотором расстоянии от диафрагмы: сечение I— на таком расстоянии, где влияние дросселя на параметры газа еще не ощущается, а сечение II— на расстоянии, когда это влияние уже исчезло. Иными словами, эти параметры будут характеризовать установившееся состояние газа до и после дросселя.

Пусть в сечении I параметры газа равны p_1 , v_1 , t_1 , i_1 , а скорость w_1 ; в сечении $II - p_2$, v_2 , t_2 , i_2 , а скорость w_2 .

Для адиабатного установившегося движения газа в соответствии с принятыми обозначениями на основании уравнения (8-16) можно написать:

$$\frac{w^2_2 - w^2_1}{2} = i_1 - i_2.$$

Так как при дросселировании давление газа всегда понижается $(p_1 > p_2)$, удельный объем всегда увеличивается $(v_2 > v_1)$ и при постоянном сечении трубопровода скорость $w_2 > w_1$. Однако при дросселировании изменение скорости газа незначительно и поэтому принимают, что $w_2 \approx w_1$, тогда

$$i_2 = i_1,$$
 (8-31)

т. е. при адиабатном дросселировании газа его энтальпия до и после дросселя (сопротивления) имеет одно и то же значение.

Однако при движении газа через дроссель его состояние непрерывно изменяется. При движении газа через дроссель (в отверстии) происходит понижение энтальпии и увеличение кинетической энергии. За дросселем вследствие резкого увеличения сечения происходит

торможение потока, кинетическая энергия уменьшается, а энтальпия возрастает до начального значения. При торможении потока за дросселем часть кинетической энергии вследствие трения, ударов и завихрений переходит в теплоту, которая усваивается газом, вследствие чего энтропия газа возрастает.

Описанный процесс схематически изображен на рис. 8-10. На этом рисунке линия 1-2 изображает адиабатный процесс понижения энтальпии в дросселе при уменьшении давления от p_1 до p_2 ; линия 2-2'-

Рис. 8-10. Условное изображение процесса изменения состояния пара при дросселировании.

изобарный процесс торможения, в результате которого кинетическая энергия убывает, а энтальпия восстанавливается до начального значения.

Таким образом, адиабатный процесс дросселирования сопровождается увеличением энтропии и поэтому является необратимым процессом; понижение давления газа происходит без изменения его скорости и поэтому этот процесс протекает без совершения внешней работы.

При дросселировании идеального газа $i_2 - i_1 = c_p (t_2 - t_1) = 0$, поэтому $t_2 = t_1$, откуда следует, что температура идеального газа при дросселировании не меняется. При дросселировании реальных газов и паров температура может увеличиваться, уменьшаться и оставаться неизменной. Понижение температуры реального газа при адиабатном дросселировании называется положительным эффектом Джоуля-Томсона, а повышение — отрицательным эффектом.

Эффект адиабатного дросселирования реальных газов (паров) зависит от их физических свойств и от начальной температуры перед дросселем. Если в результате дросселирования начальная температура газа T_1 не меняется, то такая температура называется тем пературой инверсии и обозначается $T_{инв}$.

Опытным путем установлено, что если $T_1 > T_{инв}$, то $T_2 > T_1$, т. е. в этом случае происходит нагревание газа, а если $T_1 < T_{инв}$, то $T_1 > T_2$, т. е. в этом случае происходит охлаждение газа. Для реальных газов, подчиняющихся уравнению Ван-дер-Ваальса, было найдено, что температура инверсии больше их критической температуры в 6,75 раза:

$$T_{\rm MHB} = 6,75 T_{\rm Kp}.$$
 (8-32)

Так как при дросселировании пара его энтальпия не изменяется $(i_2=i_1)$, то в координатах *i*, *s* этот процесс условно изображается горизонтальной линией. Для определения состояния пара после дросселя через точку 1, характеризующую состояние пара перед дросселем, проводят горизонтальную линию, до пересечения с конечной изобарой в точке 2' (см. рис. 8-10). В этой точке находят все параметры после дросселя.

При дросселировании водяного пара любого состояния его температура и давление уменьшаются, удельный объем и энтропия увеличиваются. Другие особенности дросселирования водяного пара различных состояний 136 (перегретый, насыщенный) легко устанавливаются при помощи *i*, s-диаграммы.

Процесс дросселирования имеет широкое применение в технике для понижения давления и температуры в холодильных машинах, регулирования работы различных машин и нагнетателей, измерения расхода жидкостей, протекающих по трубопроводам, сжижения газов и в других технологических процессах.

Вредные последствия дросселирования как необратимого процесса заключаются в снижении располагаемой работы в тепловых машинах или понижении удельной холодопроизводительности в холодильных машинах.

Пример 8-1. Через сужающееся сопло вытекает 1 кг/с воздуха в среду, давление среды $p_{\rm cp}$ =0,6 МПа. Начальное давление воздуха p_1 =1,0 МПа, а температура t_1 =127°С.

Определить теоретическую скорость истечения и площадь выходного сечения.

Решение.

$$\frac{p_{\rm cp}}{p_1} = \frac{0,6}{1,0} = 0,6 > \beta_{\rm Kp} = 0,528.$$

Расширение газа полное, давление газа в выходном сечении сопла $p_2 = p_{c\,p} = 0.6$ МПа, скорость меньше критической.

Начальный объем (при входе в сопло)

$$v_1 = \frac{RT_1}{p_1} = \frac{287 \cdot 400}{1.0 \cdot 10^6} = 0.115 \text{ m}^3/\text{kr}.$$

Удельный объем в выходном сечении

$$v_2 = v_1 \left(\frac{p_1}{p_2}\right)^{\frac{1}{k}} = 0,115 \left(\frac{1,0}{0,6}\right)^{\frac{1}{1,4}} = 0,176 \text{ m}^3/\text{Kr}.$$

Скорость истечения

$$w = \sqrt{2 \frac{k}{k-1} (p_1 v_1 - p_2 v_2)} =$$

$$= \sqrt{2 \frac{1.4}{1.4 - 1} 10^6 (1.0.0, 115 - 0.6.0, 176)} = 258 \text{ m/c}.$$

Площадь выходного сечения

$$f_2 = \frac{mv_2}{w} = \frac{1 \cdot 0.176}{258} \cdot 10^4 = 6.82 \text{ cm}^2.$$

Пример 8-2. Через цилиндрическое сопло вытекает m = 2 кг/с кислорода в среду, давление которой $p_{op} = 0.3 \text{ МП a. При входе в сопло кислород имеет параметры: <math>p_1 = 1.5 \text{ МП a } t_1 = 27^{\circ}\text{C}$.

Определить площадь выходного сечения и теоретическую скорость истечения.

Решение.

$$\frac{p_{\rm cp}}{p_1} = \frac{0.3}{1.5} = 0.2 < \beta_{\rm Kp} = \frac{p_{\rm Kp}}{p_1} = 0.528,$$

следовательно, в выходном сечении сопла устанавливается критическое давление и критическая скорость.

Критическое давление

$$p_{\mathbf{kp}} = \beta_{\mathbf{kp}} p_1 = 0.528 \cdot 1.5 = 0.792 \text{ MIIa.}$$

Теоретическая критическая скорость истечения

$$\boldsymbol{w}_{\mathrm{Kp}} = \sqrt{2\frac{k}{k+1}RT_{1}} = \sqrt{2\frac{1,4}{1,4+1}260\cdot300} = 302 \text{ m/c}.$$

Начальный объем газа

$$v_1 = \frac{RT_1}{p_1} = \frac{260 \cdot 300 \, \text{s}}{1.5 \cdot 10^8} = 0.052 \, \text{m}^8/\text{kg}.$$

Конечный объем газа

$$v_{\rm kp} = v_1 \left(\frac{p_1}{p_{\rm kp}}\right)^{\frac{1}{k}} = 0.052 \left(\frac{1.5}{0.792}\right)^{\frac{1}{1.4}} = 0.082 \text{ m}^3/\text{kg}.$$

Площадь выходного сечения

$$f_2 = \frac{mv_{\rm kp}}{w_{\rm kp}} = \frac{2 \cdot 0,082}{302} \cdot 10^4 = 5,42 \,\,{\rm cm}^2.$$

ГЛАВА ДЕВЯТАЯ

ЦИКЛЫ ПАРОТУРБИННЫХ УСТАНОВОК

9-1. Введение

В настоящее время подавляющая часть электроэнергии производится на тепловых электростанциях при помощи паротурбинных установок с использованием водяного пара.

Принципиальная схема паротурбинной установки показана на рис. 9-1, ее работа осуществляется следующим образом.

При сгорании топлива в топке парогенератора 1 образуются газообразные продукты сгорания, теплота которых передается затем воде и пару через металлическую стенку труб. Вода подогревается до кипения и переходит в насыщенный пар, который при движении че-138 рез пароперегреватель 2 подсушивается и перегревается. Перегретый пар направляется в паровую турбину 3, где его теплота переходит в механическую работу вращения ротора турбины. В электрическом генераторе, сидящем на одном валу с турбиной, механическая работа

Рис. 9-1. Принципиальная схема паротурбинной установки.

переходит в электрическую энергию. После турбины отработавший пар с низким давлением поступает в конденсатор 4, через который прокачивается охлаждающая вода. Здесь пар отдает теплоту воде и конденсируется. Конденсат откачивается насосом 5, снова подается в парогенератор и цикл повторяется.

9-2. Цикл Карно для водяного пара

На рис. 9-2 в координатах *p*, *v* изображен теоретический цикл Карно насыщенного водяного пара.

Установка, работающая по циклу Карно, должна состоять из парогенератора, паровой турбины, компрессора и конденсатора. Изобарно-изо-

термический процесс a-b осуществляется в парогенераторе, в котором за счет подводимого тепла кипящая жидкость состояния a переходит в сухой насыщенный пар состояния b. Полученный пар по адиабате b-c расширяется в турбине и совершает работу, которая на днаграмме изображается пл. *ebcf* и определяется по формуле

$$l_{bc} = i_b - i_c.$$
 (9-1)

Рис. 9-2. Цикл Карно для сухого насыщенного пара. Отработавший пар поступает в конденсатор, где осуществляется частичная конденсация вследствие отдачи теплоты охлаждающей воде при постоянных температуре и давлении по линии c-d. Влажный насыщенный пар состояния d поступает в компрессор, сжимается по адиабате d-a и снова переходит в жидкость состояния a, которая подается в парогенератор и цикл повторяется. Работа компрессора на рис. 9-2 изображается заштрихованной пл. eadf и определяется по уравнению (см. § 6-6):

$$l_{da} = i_a - i_d. \tag{9-2}$$

В современных паротурбинных установках давление в конденсаторе поддерживается в интервале 0,0035— 0,005 МПа, поэтому удельный объем влажного пара v_d , поступающего в компрессор, во много раз превышает объем жидкости. В связи с этим компрессор получается громоздким и на него расходуется большое количество металла. Кроме того, на сжатие влажного пара затрачивается чрезмерно большая работа, составляющая значительную часть работы, совершаемой паром в турбине. Расчеты показывают, что если паротурбинная уста-

Расчеты показывают, что если паротурбинная установка будет работать в пределах от $p_1=10,0$ МПа в парогенераторе до $p_2=0,005$ МПа в конденсаторе, то теоретическая работа компрессора составляет около 38% работы пара в турбине. Практически вследствие ряда потерь на привод компрессора затрачивается еще большая работа.

На основании вышеизложенного осуществление цикла Карно в паротурбинных установках затруднительно и экономически невыгодно, поэтому на практике он не применяется.

9-3. Цикл Ренкина

Теоретическим циклом паротурбинных установок является цикл Ренкина. Его основное отличие от цикла Карно состоит в том, что в конденсаторе осуществляется полная конденсация пара, поступающего из турбины. В связи с этим вместо громоздкого компрессора применяется более компактный насос, в котором вследствие малой сжимаемости воды затрачиваемая работа во много раз меньше, чем в компрессорс. В паротурбинных установках электростанций, работающих по циклу Ренкина, вместо насыщенного пара применяют 140 перегретый, что обеспечивает надежные условия работы турбины и более высокие значения к.п. д. установки.

На рис. 9-3 изображен теоретический цикл Ренкина для 1 кг перегретого пара в координатах p, v (схема установки на рис. 9-1). Вследствие малой сжимаемости воды процесс в насосе изображается изохорой 2'-a, причем точка a находится левее нижней пограничной кривой. Работа сжатия в насосе изображается площадкой 4a2'3, которая заштрихована на диаграмме.

Рис. 9-3. Цикл Ренкина для перегретого пара в *p*, *v*-диаграмме.

Рис. 9-4. Цикл Ренкина для перегретого пара в *T*, *s*-диаграмме.

Изобарный процесс a-b-c-1 осуществляется в парогенераторе, причем участок a-b соответствует подогреву воды до кипения, участок b-c — парообразованию и участок c-1 — перегреву пара в пароперегревателе.

Процесс 1—2 есть адиабатное расширение пара в турбине, а совершаемая работа есть располагаемая работа, она равна разности энтальпий i_1 — i_2 и изображается площадью 1234, а полезная работа пара в цикле нзображается площадью a122'.

Изобарно-изотермический процесс 2—2' протекает в конденсаторе, где отработавший пар полностью конденсируется; состояние конденсата определяется точкой 2', которая находится на нижней пограничной кривой.

Изобразим цикл Ренкина в координатах T, s, как это показано на рис. 9-4. Здесь точка a совмещена с точкой 2', так как при сжатии воды в насосе ее температура и энтропия практически не изменяются, а изобара подогрева воды совпадает с нижней пограничной кривой (см. § 7-4). В этой диаграмме отдельные площади изображают: пл. Ofabc1e — энтальпию перегретого пара i_1 состояния 1; пл. Of2'2e — энтальпию отработавшего пара

ł

состояния 2 при входе в конденсатор i_2 ; пл. Of2'd — энтальпию конденсата состояния 2' после конденсатора i'_2 . Теплота q_1 , сообщенная 1 кг пара в парогенераторе по изобаре a-b-c-1, изображается пл. dabcle и определяется по уравнению

$$q_1 = i_1 - i'_2.$$
 (9-3)

Теплота q_2 , отданная охлаждающей воде в конденсаторе по изобаре 2—2', изображается пл. d2'2e и определяется по уравнению

$$q_2 = i_2 - i'_2.$$
 (9-4)

При низких и средних начальных давлениях пара работа насоса незначительна и обычно ее не принимают во внимание, поэтому термический к. п. д. цикла Ренкина можно найти по уравнению

$$\eta_t = \frac{t_{l_{\text{II}}}}{q_1} = \frac{q_1 - q_2}{q_1} = \frac{(i_1 - i'_2) - (i_2 - i'_2)}{i_1 - i'_2}, \qquad .$$

или окончательно

$$\eta_l = \frac{(l_1 - l_2)}{l_1 - l_2}.$$
(9-5)

Следовательно, работа 1 кг пара, изображаемая пл. *а122'*, равна разности энтальпий адиабатного расширения пара в турбине:

$$l_{ij} = i_1 - i_2.$$
 (9-6)

Помимо термического к. п. д. при различных тепловых расчетах определяют удельный расход пара и теплоты на единицу работы.

В паросиловых установках в качестве единицы работы используется внесистемная единица киловатт-час (кВт·ч), тепловой эквивалент которого равен 3600 кДж. Поэтому при измерении энтальпии пара в кДж/кг удельный расход его в кг/(кВт·ч) можно определить по уравнению

$$d_{0} = \frac{3600}{i_{1} - i_{2}}, \tag{9-7}$$

а удельный расход теплоты в кДж/(кВт·ч) — по формуле

$$q_{0} = d_{0}q_{1} = \frac{3600}{i_{1} - i_{2}}(i_{1} - i'_{2}) \quad \frac{3600}{\eta_{t}}.$$
 (9-8)

При измерении энтальпии пара в ккал/кг соответственно получим:

в кг/(кВт.ч)

$$d_{0} = \frac{860}{i_{1} - \bar{i_{2}}} \tag{9-9}$$

и в ккал/(кВт.ч)

$$q_{\mathbf{0}} = \frac{860}{\eta_t}$$
, (9-10)

где 860 ккал/(кВт.ч) — тепловой эквивалент 1 кВт.ч.

Действительный процесс расширения пара вследствие трения в соплах и на лопатках турбины и других

внутренних потерь является необратимым процессом и сопровождается увеличением энтропии. Работа трения переходит в теплоту, которая передается пару, и его энтальпия в конечном состоянии возрастает. В і, s-диаграмме (рис. 9-5) теоретический адиабатный процесс изображается линией 1-2_т, а действительный процесс — наклонной линией 1- 2_{π} , которая является условным графиком этого процесса. Действительная работа 1 кг пара равна:

Рис. 9-5. Изображение адиабатных процессов расширения пара в турбине:

1-2 - теоретический; 1-2'лействительный.

$$l_{\mu} = i_1 - i_{2\mu}$$

а теоретическая

$$l_{\mathrm{T}}=i_{1}-i_{2\mathrm{T}},$$

причем

 $l_{T} > l_{T}$

Отношение действительной работы l_{π} к теоретической l_т характеризует внутренние потери в турбине, называется внутренним относительным к. п. д. И обозначается поі

$$\eta_{\rm ol} = \frac{l_{\rm R}}{l_{\rm T}} = \frac{i_1 - i_{2\rm R}}{i_1 - i_{2\rm T}}.$$
(9-11)

Отношение действительной работы пара в турбине к подведенному теплу q₁ называется абсолютным внутренним к. п. д. и обозначается η_i , причем

$$\eta_{l} = \frac{l_{\pi}}{q_{1}} = \frac{i_{1} - i_{2\pi}}{i_{1} - i'_{2}}.$$
 (9-12)

Умножив и разделив уравнение (9-12) на теоретическую работу цикла $l_{\rm T}$, после преобразований получим:

$$\eta_i = \eta_t \eta_{0i}. \tag{9-13}$$

9-4. Влияние основных параметров пара на термический к. п. д. цикла Ренкина

Термический к. п. д. цикла Ренкина по уравнению (9-5) определяется значениями энтальпии i_1 , i_2 и i'_2 , которые в свою очередь зависят от давления p_1 и температуры t_1 пара, поступающего в турбину и его давления p_2 в конце адиабатного расширения.

Рассмотрим влияние каждого из параметров — p_1 , t_1 и p_2 — на термический к. п. д. В *i*, *s*-диаграмме (рис. 9-6) показаны адиабатные процессы расширения при повышающемся начальном давлении пара p_1 ($p'_1 < p''_1 < p''_1$)

Рис. 9-6. Увеличение располагаемой работы цикла Ренкина с повышением начального давления пара *p*₁.

Рис. 9-7. Увеличение степени сухости пара при повышении его начальной температуры t_1 в цикле Ренкина.

и постоянных значениях t_1 и p_2 . Как видно из диаграммы, в этом случае происходит увеличение работы цикла $l_{\mathbf{u}}(l'''_{\mathbf{n}} > l''_{\mathbf{n}} > l'_{\mathbf{n}})$ и уменьшение начальной энтальпии пара i_1 . В соответствии с уравнением (9-5) термический к. п. д. увеличивается. Однако с повышением начального давления одновременно увеличивается конетная влажность пара (x''' < x'' < x'), что вызывает эрозийный износ лопаток последних ступеней турбины и может привести к аварии. Допустимая конечная влажность пара не может быть больше 10—12%.

При повышении начальной температуры t_1 и постоянных давлениях p_1 и p_2 увеличиваются энтальпия пара i_1 и работа цикла l_{i_1} , которые оказывают противоположное 144
влияние на η_t (рис. 9-7). Расчеты показали, что работа $l_{\rm ц}$ растет более интенсивно, чем энтальпия i_1 , и поэтому термический к. п. д. повышается. Из *i*, *s*-диаграммы (рис. 9-7) также видно, что с повышением начальной температуры t_1 происходит увеличение конечной степени сухости пара, в связи с чем уменьшаются внутренние потери в турбине и обеспечиваются более надежные условия ее работы. Термический к. п. д. цикла повышается более интенсивно, если с повышением начального давления пара p_1 увеличивается и его температура t_1 , причем влажность пара в конце адиабатного расширения остается в допустимых пределах. Вышеизложенное объясияет, почему развитие паротурбинных установок сопровождалось одновременным повышением и давления, и температуры перегретого пара.

Повышение начальных параметров пара p1 и t1 требует применения качественных металлов для изготовления различных элементов парогенератора и турбины, которые соприкасаются с паром высоких параметров и способны длительное время работать без заметного изменения своих свойств. Понижение конечного давления пара p_2 при постоянных p_1 и t_1 увеличивает работу цикла l_п при неизменной энтальпии пара i₁, и термический к. п. д. повышается. Однако получение глубокого вакуума в конденсаторе по существу ограничивается температурой охлаждающей воды, которая в свою очередь определяется районом расположения станции и временем года. Обычно в конденсаторе поддерживается давление около 0,005-0,0035 МПа, которому соответствует температура насыщения 33-27°С, поэтому для обеспечения конденсации пара температура охлаждающей воды должна быть на 10-15°С ниже температуры насыщения. Таким образом, охлаждающая вода должна иметь температуру около 15-20°С, что не везде и не всегда возможно, даже при использовании воды из естественных водоемов. Следовательно, давления в конденсаторе 0,005-0,0035 МПа нужно считать предельными. При высских начальных параметрах пара и глубоком вакууме термический к. п. д. цикла Ренкина не превышает 45-47%.

9-5. Цикл с промежуточным перегревом пара

В предыдущем параграфе было установлено, что увеличения термического к. п. д. цикла Ренкина можно 10—7.2 145 достигнуть одновременным повышением давления p_1 и температуры t_1 свежего пара при обеспечении допустимой конечной влажности пара. Однако при повышении давления пара свыше 10,0 МПа и глубоком вакууме освоенные в энергетике температуры 540—580°С уже не обеспечивают допустимой степени влажности и тогда применяют промежуточный или повторный перегрев пара.

Рис. 9-8. Схема паротурбинной установки с промежуточным перегревом пара.

На рис. 9-8 приведена принципиальная схема паротурбинной установки с промежуточным перегревом пара, работа которой осуществляется следующим образом.

Пар, полученный в парогенераторе 1, по паропроводу 1 поступает в цилиндр высокого давления турбины (ЦВД) 2, где расширяется до промежуточного давления и затем по паропроводу 11 возвращается обратно в парогенератор. Здесь пар проходит через промежуточный пароперегреватель (ПрПП) 3 и снова перегревается.

Рис. 9-9. Цикл с промежуточным перегревом пара.

Затем по паропроводу низкого давления III пар поступает в цилиндр низкого давления турбины (ЦНД) 4, где происходит его окончательное расширение. Отработанный пар поступает в конденсатор 5, где он конденсируется. Образующийся конденсат откачивается насосом 6 и снова подается в парогенератор, чем и заканчивается цикл.

На рис. 9-9 в *T*, *s*-диаграмме изображен рассматриваемый цикл:

а—*b*—*c*—*1*— изобарный процесс получения пара высокого давления в парогенераторе *1*;

1-2 - адиабатный процесс расширения пара в ЦВД турбины 2;

2-3 — изобарный процесс перегрева пара в промежуточном пароперегревателе 3;

3—4 — адиабатный процесс расширения пара в ЦНД турбины 4;

4—4' — изобарно-изотермический процесс конденсации отработавшего пара в конденсаторе 5.

Из этой диаграммы видно, что при отсутствии промежуточного перегрева процесс расширения пара закончился бы в состоянии, определяемом точкой 6 (линия 1-6), со степенью сухости x_6 . При введении промежуточного перегрева конечное состояние определяется точкой 4 (линий 3-4), которая находится значительно правее и ближе к верхней пограничной кривой и, следовательно, в этом случае степень сухости x_4 будет больше.

Используя *T*, *s*-днаграмму и зная свойства процессов, определяем термический к. п. д. рассматриваемого цикла. Теплота, сообщенная пару высокого давления в парогенераторе,

$$q'_1$$
=пл. $eabc1d=i_1-i'_4$,

то же в промежуточном пароперегревателе

$$q''_1$$
=пл. $d23f=i_3-i_2$

и сообщенная в цикле

$$q_1 = q'_1 + q''_1 = (i_1 - i'_4) + (i_3 - i_2).$$
 (9-14)

Теплота, отданная отработанным паром охлаждающей воде в конденсаторе,

$$q_2$$
=пл. $e4'4f$ = i_4 - i'_4 . (9-14a)

Термический к. п. д. рассматриваемого цикла

$$\eta_t = \frac{q_1 - q_2}{q_1} = \frac{(i_1 - i'_4) + (i_3 - i_2) - (i_4 - i'_4)}{(i_1 - i'_4) + (i_3 - i_2)}$$

После преобразований получим окончательно

$$\eta_t = \frac{(i_1 - i_2) + (i_3 - i_4)}{(i - i'_4) + (i_3 - i_2)};$$
(9-15)

здесь $i_1 - i_2 = пл. 5bc125 = l' - работа пара в цилиндре высокого давления турбины (ЦВД); <math>i_3 - i_4 = пл. 52344' = l'' - 10*$

работа пара в цилиндре низкого давления турбины (ЦНД).

Удельный расход пара определяется из уравнения

$$d_{\mathbf{0}} = \frac{3600}{l' + l''} = \frac{3600}{(l_1 - l_2) + (l_3 - l_4)}.$$
 (9-16)

На рис. 9-10 в *i*, *s*-диаграмме показаны основные процессы цикла с промежуточным перегревом пара, причем характерные точки имеют обозначения, принятые

Рнс. 9-10. Цикл с промежуточным перегревом пара в *i*, *s*-диаграмме (основные линии). в *T*, *s*-диаграмме на рис. 9-9. Определение значения энтальпии пара по *i*, *s*-диаграмме не представляет затруднений; точное значение энтальпии конденсата находят по таблицам.

Применение вторичного перегрева не только уменьшает конечную влажность пара, но и позволяет повысить термический к. п. д. цикла, если будут правильно выбраны промежуточное давление и конечная промежуточного пароперегре-

температура пара после промежуточного пароперегревателя.

При введении однократного перегрева термический к. п. д. цикла повышается на 2—3% в сравнении с к. п. д. цикла Ренкина при одинаковых параметрах пара.

9-6. Регенеративный цикл паротурбинной установки

Регенеративным циклом паротурбинной установки обычно называется такой цикл, в котором осуще́ствляется подогрев питательной воды за счет теплоты пара, отбираемой из различных точек проточной части турбины. Пар отбирается из турбины после того, как он пройдет ряд ее ступеней и совершит работу; при этом давление понижается от начального p_1 до давления p^0 , которое поддерживается в отборе.

Отбираемый пар направляется в подогреватели, куда также поступает конденсат или питательная вода. Здесь в результате теплообмена пар конденсируется, а вода нагревается и затем подается в парогенератор. Конденсат отборного (греющего) пара также поступает в парогенератор. Для подогрева воды применяются поверхностные и смешивающие подогреватели, которые называются регенеративными подогревателями. В смешивающих подогревателях вода нагревается до температуры кипения в результате смешения воды и конденсата пара, в поверхностных подогревателях вода не догревается на 2—3°С до температуры кипения, так как теплообмен между паром и водой происходит через разделяющую их поверхность труб.

Рис. 9-11. Принципиальная схема паротурбинной установки с двумя смешивающими регенеративными подогревателями.

Экономически целесообразно подогревать питательную воду последовательно в нескольких подогревателях, количество которых устанавливается технико-экономическим расчетом. Число и места отборов пара зависят от многих факторов и в первую очередь от начальных параметров пара $(p_1 \ u \ t_1)$, мощности установки и конечной температуры подогрева питательной воды.

В современных мощных паротурбинных установках подогрев питательной воды осуществляется в регенеративных подогревателях поверхностного типа, количество которых может доходить до десяти.

Рассмотрим особенности регенеративного цикла применительно к паротурбинной установке с двумя смешивающими подогревателями, схема которой изображена на рис. 9-11. Процессы в установке протекают следующим образом. Из парогенератора $\Pi\Gamma$ перегретый пар с давлением p_1 и температурой t_1 поступает в турбину T. Здесь одна часть пара расширяется до давления $p^{o_1} < p_1$, поступает в первый отбор (точка а) и направляется в смешивающий подогреватель СП-1. Другая часть пара расширяется до более низкого давления p°2<p°1 и поступает во второй отбор (точка b), откуда направляется в смешивающий подогреватель СП-2. Основная (третья) часть пара проходит все ступени турбины, расширяется до конечного давления p2 и поступает в конденсатор К. гле полностью конденсируется. Образующийся конденсат, называемый основным, последовательно прокачивается конденсатными насосами КН через смешивающие подогреватели СП-2 и СП-1. В каждом из них основной конденсат смешивается с конденсатом отборного пара и ступенчато подогревается до температуры кипения, соответствующей давлениям отборов p°2 и p°1. После подогревателей нагретая питательным насосом вода (ПН) подается снова в парогенератор, чем и заканчивается шикл.

Для исследования и расчета основных характеристик регенеративного цикла применяются следующие обозначения:

а₁— доля пара, поступающего в первый отбор; α₂ доля пара, поступающего во второй отбор; 1—α₁—α₂—

Рис. 9-12. Адиабатный процесс расширения пара в регенеративном цикле.

давление p_2 , энтальпия та i'_2 .

доля пара, поступающего в конденсатор. Параметры пара, поступающего в турбину: давление p_1 , температура t_1 и энтальпия і. Параметры пара первого отбора: давление ро1, температура to1, энтальпия io1, энтальпия его конденсата io'1. Параметры пара второго отбора: давление p°2, температура to2, энтальпия io2; энтальпия его конденсата іо'2. Параметры пара при входе в конденсатор: *i*₂; энтальпия ero конденса-

Процесс расширения пара в турбине считается обратимым адиабатным; гндравлические и тепловые потери трубопроводов отборного пара и тепловые потери подогревателей не принимаются во внимание, работа насосов не учитывается. При указанных условиях состояния пара в *i*, *s*-диаграмме находятся как точки пересечения соответствующих изобар и адиабаты расширения (рис. 9-12). Энтальпии пара находятся непосредственно из *i*, *s*-диаграммы; энтальпии конденсата — при помощи таблиц водяного пара. Количество пара, поступающего в подогреватели из отборов турбины, находят из теплового баланса подогревателей. Составим эти тепловые балансы и найдем соответствующие доли α₁ и α₂. **Подогреватель СП-2. В этот** подогреватель из конден-

Подогреватель СП-2. В этот подогреватель из конденсатора поступает $1-\alpha_1-\alpha_2$ кг воды, из второго отбора — α_2 кг пара и выходит $1-\alpha_1$ кг воды. Учитывая ранее принятые обозначения, составим уравнение теплового баланса (рис. 9-11):

$$a_2 i_2^{o} + (1 - a_1 - a_2) i_2^{\prime} = (1 - a_1) i_2^{o'},$$
 (9-17)

откуда после преобразований получим:

$$\alpha_{2} = \frac{i_{2}^{o'} - i'_{2}}{i_{2}^{o} - i'_{2}} (1 - \alpha_{1}).$$
 (9-18)

Подогреватель СП-1. В этот подогреватель из первого отбора поступает α_1 кг пара, из подогревателя $C\Pi$ -2— 1— α_1 кг конденсата и выходит 1 кг воды (рис. 9-11). В соответствии с принятыми обозначениями тепловой баланс подогревателя выражается уравнением

$$a_1 i_1^{o_1} + (1 - a_1) i_2^{o'} = i_1^{o'},$$
 (9-19)

откуда

$$a_1 = \frac{t_1^{o'} - t_2^{o'}}{t_1^o - t_2^{o'}}.$$
 (9-20)

После подогревателя $C\Pi$ -1 вода с энтальпией $t_1^{o'}$ поступает в парогенератор и превращается там в перегретый пар. Количество теплоты, затраченной в парогенераторе для получения 1 кг перегретого пара, составляет:

$$q_1 = l_1 - l_1^{o'}$$
, (9-21)

что меньше, чем в цикле Ренкина.

Количество теплоты, отданной в конденсаторе охлаждающей воде, на 1 кг пара, поступающего в турбину, найдем по уравнению

$$q_2 = (1 - \alpha_1 - \alpha_2) (i_2 - i'_2),$$
 (9-22)

что тоже меньше, чем в цикле Ренкина.

Термический к. п. д. регенеративного цикла выражается уравнением

$$\eta_t = 1 - \frac{q_2}{q_1} = 1 - \frac{(1 - a_1 - a_2)(i_2 - i'_2)}{i_1 - i_1^{0'}}.$$
 (9-23)

Работа 1 кг пара в рассматриваемом регенеративном цикле может быть определена следующим образом. Часть пара, поступающая в первый отбор при понижении давления от p_1 до p^{o_1} , совершает работу

$$l_1 = \alpha_1 (i_1 - i_{1}^{\circ}). \tag{9-24}$$

Другая часть пара, расширяясь между начальным давлением p₁ и давлением отбора p⁰2, совершает работу

$$l_2 = \alpha_2 (i_1 - i_2^{\circ}). \tag{9-25}$$

Оставшаяся основная часть пара проходит через всю турбину, расширяется и понижает давление от начального p_1 до конечного p_2 ; работа этой части пара равна:

$$l_3 = (1 - \alpha_1 - \alpha_2) (i_1 - i_2).$$
 (9-26)

Суммарная работа трех потоков есть работа 1 кг пара, поэтому

$$l_{per} = l_1 + l_2 + l_3 = a_1(i_1 - i_1^\circ) + a_2(i_1 - i_3^\circ) + (1 - a_1 - a_3)(i_1 - i_3).$$
(9-27)

После преобразований уравнение (9-27) приводится к виду

$$l_{\rm per} = (i_1 - i_2) - \alpha_1 (i_1^{\circ} - i_2) - \alpha_2 (i_2^{\circ} - i_2). \qquad (9-28)$$

Из сравнения уравнений (9-6) и (9-28) видно, что при одних и тех же начальных и конечных параметрах работа 1 кг пара в цикле Ренкина $l_{\rm Per}$ больше, чем в регенеративном цикле, т. е. $l_{\rm Per} > l_{\rm per}$. Используя уравнения (9-28) и (9-21), получаем дру-

Используя уравнения (9-28) и (9-21), получаем другое выражение для определения термического к. п. д. регенеративного цикла:

$$\eta_t = \frac{(i_1 - i_2) - \alpha_1 (i^0_1 - i_2) - \alpha_2 (i^0_2 - i_2)}{i_1 - i_1^{0'}}.$$
 (9-29)

Таким образом, при осуществлении регенеративного цикла затрата теплоты в парогенераторе q_1 и работа 1 кг пара будут меньше, чем в цикле Ренкина. Однако теплота q_1 уменьшается более интенсивно, чем работа, 152 и поэтому термический к. п. д. регенеративного цикла всегда больше, чем в цикле Ренкина. Экономичность регенеративного цикла повышается с увеличением начальных параметров пара p_1 , t_1 и числа отборов; термический к. п. д. цикла может быть на 10—12% выше, чем в цикле Ренкина.

Удельный расход пара может быть определен из выражения

$$d_{\bullet} \rightleftharpoons \frac{3600}{l_{\text{per}}}; \qquad (9-30)$$

поскольку l_{per} < l_{Pen}, то удельный расход пара будет больше, чем в цикле Ренкина.

В заключение нужно отметить, что применение регенеративного подогрева воды не только повышает термический к. п. д., но и оказывает большое влияние на конструктивное выполнение основных агрегатов паротурбинной установки.

9-7. Основы теплофикации

В рассмотренных циклах паротурбинных установок в полном соответствии со вторым законом термодинамики только часть теплоты q_1 , сообщаемой пару в парогенераторе, переходит в полезную работу, другая часть в количестве q_2 отдается охлаждающей воде в конденсаторе и является основной тепловой потерей цикла. Теплота q_2 , равная примерно теплоте парообразования, не может быть использована для нужд народного хозяйства ввиду пизких температур отработавшего пара и охлаждающей воды. Например, в конденсационных установках, служащих только для выработки электроэнергии, давление в конденсаторе поддерживается около 0,005—0,0035 МПа, этому соответствует температура насыщения 33—27°C, а температура охлаждающей воды еще ниже.

Согласно расчетам в современных установках высокого давления потери теплоты в конденсаторе составляет 50—60% всей теплоты, сообщенной пару в парогенераторе.

Поскольку в процессе преобразования теплоты в работу принципиально невозможно устранить отдачу теплоты холодному источнику, необходимо найти способ использования огромного количества теплоты, которое отдается охлаждающей воде. Таким способом является повышение давления отработавшего пара, а следовательно, и его температуры. Тогда в зависимости от конечного давления теплота отработавшего пара либо используется в технологических процессах промышленности, либо служит для подогрева воды, поступающей на горячее водоснабжение или для отопления зданий. В этом случае паротурбинные установки электростанции вырабатывают и электроэнер-

Рис. 9-13. Использование тепла в конденсационном и теплофикационном циклах.

гию и теплоту. Электрические станции, которые служат для выработки электроэнергии и теплоты, называются теплоэлектроцентралями (ТЭЦ). Централизованный метод снабжения потребителей теплотой называется теплофикацией.

На рис. 9-13 в *T*, *s*-диаграмме изображены два цикла: конденсационный *123451* и теплофикационный *167451*. В обоих циклах начальные параметры одни и те же, конечное давление в теплофикационном цикле выше, чем в конден-

сационном, и изображается линией 6-7. Из диаграммы видно, что работа 1 кг пара в теплофикационном цикле $l_{\rm q}$, изображаемая площадью 167451, меньше, чем в конденсационном цикле, в котором эта работа изображается площадью 123451. Однако в конденсационном цикле теплота q_2 отработавшего пара, определяемая пл. 9328, отдается охлаждающей воде и не используется из-за низких температур.

В теплофикационном цикле отработавший пар имеет более высокую температуру, теплота его q_2 —пл. 10768 будет больше, чем в конденсационном цикле, и теоретически полностью используется. Таким образом, при повышении конечного давления уменьшается работа 1 кг пара в турбине и термический к. п. д. теплофикационного цикла понижается, однако в этом цикле основная потеря теплоты q_2 отсутствует.

Экономичность теплофикационной установки характеризуется коэффициентом использования тепла K, который представляет собой отношение суммарной теплоты, пошедшей на работу $l_{\mathfrak{q}}$ и использованной тепловыми потребителями q_2 , к теплоте q_1 , сообщенной пару в парогенераторе!

$$K = \frac{l_{\rm u} + q_2}{q_1}.$$
 (9-31)

Из уравнения (9-31) следует, что в теплофикационных установках теоретическое значение коэффициента использования теплоты K = 1. В конденсационных установках коэффициент использования теплоты K равен термическому к. п. д. и поэтому значение его не может быть больше 0,5, т. е. K < 0,5. Приведенные значения величины K указывают на огромные преимущества теплофикационных установок в сравнении с чисто конденсационными.

Централизованное теплоснабжение потребителей теплотой осуществляется путем подачи с ТЭЦ горячей воды или пара, температура и давление которых изменяются в широких пределах, что осуществляется путем установки на ТЭЦ теплофикационных турбин различных типов.

Наибольшее распространение получили турбины с отбором пара, в которых предусмотрена возможность отбора пара на теплофикацию. Отбор пара производится из двух мест, в которых поддерживается необходимое давление. Из верхнего отбора с давлением 0,7—1,3 МПа пар поступает на различные технологические нужды промышленных предприятий, из нижнего отбора при давлении 0,12—0,25 МПа пар используется для удовлетворения бытовых нужд населения. При отсутствии тепловых потребителей турбина работает жак конденсационная и тогда происходит только выработка электроэнергии.

На теплоэлектроцентралях (ТЭЦ) устанавливаются также турбины с противодавлением. Эти турбины не имеют конденсатора, так как пар после совершения работы выходит с давлением выше атмосферного. После турбины весь отработанный пар направляется к потребителю, где его теплота используется как в технологических процессах, так и для удовлетворения бытовых нужд. Несмотря на более простое выполнение, паротурбиные установки с противодавлением применяются редко, ибо выработка электроэнергии зависит от теплового потребления. При отключении потребителей теплоты такую установку необходимо останавливать.

При определенных условиях давление в конденсаторе можно поднять до 0,06—0,09 МПа и тогда отработан-

155

ный пар будет поступать из турбины в конденсатор при температурах 86—97°С. В этом случае охлаждающая вода будет нагреваться до температуры 75—90°С и может использоваться для различных бытовых нужд. Такие турбины называются турбинами с ухудшенным вакуумом. Если не требуется тепло для теплофикации, то такие турбины работают как конденсационные при принятых низких давлениях.

9-8. Парогазовый цикл

Изучение различных циклов показывает, что газообразные продукты горения топлив и водяной пар, применяемые в качестве рабочих тел соответственно в газотурбинных и паротурбинных установках, используются в различных пределах начальных и конечных температур. Так, если газы поступают в газовую турбину при начальных температурах 900—1200°С, то температура перегретого водяного пара не превышает 600°С при давлениях, достигающих 30,0 МПа. Однако в газовой турбине газы расширяются до атмосферного давления и покидают ее при конечных температурах 450—500°С, в то время как водяной пар расширяется в паровой турбине до давления значительно ниже атмосферного и покидает ее при температурах 25—30°С. Как известно, термический к. п. д. увеличивается с повышением начальной температуры и понижением конечной температуры рабочего тела.

Так как ни одно из применяемых рабочих тел не может использоваться при указанных максимальных и минимальных температурах, то возникла идея создать комбинированные установки с использованием обоих рабочих тел. Циклы комбинированных установок с двумя рабочими телами называются би нар ными циклами; одним из них является парогазовый цикл.

мя рабочими телами называются бинарными циклами; однимиз них является парогазовый цикл. Парогазовый цикл — это бинарный цикл, в котором в области высоких температур используются газы — продукты горения жидких и газообразных топлив, а в области низких температур — водяной пар. В настоящее время как в СССР, так и за рубежом разработано большое количество парогазовых циклов, отличающихся как в пароводяной, так и в газовой частях. Рассмотрим одну из наиболее перспективных схем парогазовой установки с высоконапорным парогенерато-156 ром (ВПГ) и раздельным использованием рабочих тел. Принципиальная схема установки показана на рис. 9-14, работа ее протекает следующим образом. Наружный воздух поступает в турбокомпрессор 1, сжимается до 0,4—0,5 МПа и подается в топку ВПГ 2, куда поступает также жидкое или газообразное топливо, которое сгорает там при постоянном давлении. Теплота сгорания топлива частично расходуется на получение перегретого пара и частично на подогрев продуктов сгорания, кото-

Рис. 9-14. Принципиальная схема парогазовой установки с высоконапорным парогенератором (ВПГ).

Рис. 9-15. Бинарный цикл парогазовой установки с ВПГ.

рые при температуре примерно 900°С и при давлении около 0,4 МПа покидают ВПГ и поступают в газовую турбину 3. После расширения в ней до атмосферного давления газы направляются в теплообменник 4, охлаждаются и выбрасываются в атмосферу. Выработанный в высоконапорном парогенераторе перегретый пар поступает в паровую турбину 5, расширяется и совершает полезную работу. Отработанный пар поступает в конденсатор 6, где полностью конденсируется. Насосом 7 конденсат прокачивается через газовый теплообменник 4, нагревается до температуры насыщения и в виде питательной воды подается снова в парогенератор.

На рис. 9-15 в T, *s*-координатах изображен теоретический цикл такой установки. Как видно, он состоит из цикла ГТУ (1-2-3-4) и цикла паротурбинной установки (5-6-7-8-9); свойства этих циклов рассмотрены выше. Необходимо указать, что циклы строятся для 1 кг продуктов сгорания и *m* кг водяного пара. Величина *т* показывает, сколько килограммов пара приходится на 1 кг продуктов сгорания, и называется относительным расходом пара:

$$m=\frac{D_{\pi}}{D_{\Gamma}}.$$

Подогрев воды по изобаре 5—6 происходит за счет теплоты отработавших газов газовой турбины, охлаждение которых происходит по изобаре 4—1 в газоводяном подогревателе. Тепловой баланс подогревателя выражается уравнением

 $i_4 - i_1 = m(i_6 - i_5),$

откуда

$$m = \frac{i_4 - i_1}{i_6 - i_5}.$$

Термический к. п. д. рассматриваемого парогазового цикла определяется из выражения

$$\eta_t = \frac{l_r + l_n}{q_{1r} + q_{1n}}; \qquad (9-32)$$

здесь полезная работа газового цикла

$$l_{r} = (i_{3} - i_{4}) - (i_{2} - i_{1});$$
 (a)

то же для парового цикла (без учета работы насоса)

$$l_{\pi} = m(i_8 - i_9),$$
 (6)

теплота, затраченная в процессе 2—3 на газовый цикл,

$$q_{1r} = i_3 - i_2, \tag{B}$$

теплота, сообщениая в изобарном процессе 6-7-8 парового цикла,

$$q_{1\pi} = m(i_8 - i_6).$$
 (r)

Подставляя в уравнение (9-32) выражения (а), (б), (в), (г) получаем:

$$\eta_t = \frac{(i_3 - i_4) - (i_2 - i_1) + m (i_8 - i_9)}{(i_3 - i_2) + m (i_8 - i_6)}.$$
(9-33)

Термический к. п. д. установки, работающей по парогазовому циклу, больше, чем для чисто газовых или чисто паровых циклов и составляет 55—60%, что определяет их успешное внедрение в энергетику.

9-9. Бинарный цикл с магнитогидродинамическим генератором

В последние годы ведутся работы по созданию энергетических установок по непосредственному преобразованию теплоты в электроэнергию. Наиболее перспективными являются установки с магнитогидродинамическим генератором (МГД-генератором). Принцип действия МГД-генератора основан на явлении возникновения э. д. с. в потоке ионизированного газа при пересечении им магнитного поля, создаваемого электромагнитами, питаемыми постоянным током.

Рис. 9-16. Схема парогазовой установки с МГД-генерагором.

Ионизация газа состоит в расщеплении его молекул на электроны и ионы. Необходимая степень ионизации, обеспечивающая электропроводность газа, зависит от его физических свойств и достигается при температуре около 4000°С. Практически необходимую для ионизации температуру понижают до 2900—2300°С путем присадки в газ щелочных металлов (калня, цезия и др.). Ионизированный газ, применяемый в МГД-генераторе, называется низкотемпературной плазмой. Напряжение в МГД-генераторе растет с увеличением скорости ионизированного газа, поэтому перед генератором устанавливается разгонное сопло, в котором достигается необходимая скорость газа.

На рис. 9-16 представлена принципиальная схема парогазовой установки с МГД-генератором, работа которой осуществляется следующим образом. Атмосфер-

159

ный воздух после компрессора 1 при давлении 0,3----0,4 МПа подается в камеру сгорания 2, куда также поступает органическое топливо и добавочный кислород. Здесь вследствие горения топлива получаются высокотемпературные газы, которые после присадки щелочных металлов (калия) переходят в плазменное состояние.

Рис. 9-17. бинарный цикл парогазовой установки с МГД-генератором. Полученная плазма проходит разгонное сопло 3, понижает давление до температуру — до атмосферного, а 2300°С и со сверхзвуковой скоростью входит в расширяющийся канал МГДгенератора 4. При пересечении магнитного поля, создаваемого электромагнитами 5, в плазме возникает электрический ток, направляемый через электроды 6 к потребителю 7. Таким образом, здесь теплота газов непосредственно переходит в электроэнергию постоянного тока. Из МГД-генератора газы поступают в парогенератор 8, где их тепло используется для получения перегретого пара, и после

охлаждения до 120—140°С выбрасываются в атмосферу. Полученный в парогенераторе перегретый пар поступает в паровую турбину 9, расширяется и совершает работу, которая в генераторе 10 преобразуется в электроэнергию переменного тока. Отработавший пар, как обычно, поступает в конденсатор 11, а полученный конденсат насосом 12 подается снова в парогенератор.

На рис. 9-17 в *T*, *s*-диаграмме показан идеальный цикл установки с МГД-генератором. Верхняя ступень цикла представляет собой идеальный цикл газовой части установки, в которой 1-2 — адиабатный процесс сжатия в компрессоре, 2-3 — изобарное нагревание газов, что соответствует горению топлива в камере сгорания, 3-4 — адиабатное расширение газа в разгонном сопле, 4-1 — изобарное охлаждение газов, уходящих из МГД-генератора, в парогенераторе.

Нижняя ступень цикла есть цикл Ренкина, а площадь 56789 соответствует полезной работе, которая совершается за счет утилизации тепла газов, покидающих МГД-генератор.

Использование более широкого интервала температур в установках с МГД-генератором обусловливает 160 получение большего термического к. п. д. Согласно подсчетам к. п. д. нетто установки с МГД-генератором может достигнуть 55—60%, что выше, чем у паротурбинных и газотурбинных установок.

Кроме открытой схемы, изображенной на рис. 9-16, могут быть и закрытые. В закрытой схеме нагревание рабочего тела производится в тепловыделяющих элементах атомного реактора, а в качестве рабочего тела применяются инертные газы (гелий, аргон), которые после присадки цезия переходят в плазменное состояние при температуре 1800—2300°С, что облегчает конструктивное выполнение установки. Принципиальная схема закрытой установки, таким образом, отличается от открытой тем, что вместо камеры сгорания устанавливается атомный реактор, а инертные газы непрерывно циркулируют по замкнутому контуру (атомный реактор — МГД-генератор — парогенератор — атомный реактор).

Основная трудность создания установок с МГД-генератором заключается в сохранении целостности магнитогидродинамического канала, так как пока нет жаропрочных материалов, способных длительное время противостоять высоким температурам.

Пример 9-1. Паротурбинная установка работает по циклу Ренкина. При входе в турбину: $p_1 = 5,0$ МПа и $t_1 = 450^{\circ}$ С, давление в конденсаторе $p_2 = 0,005$ МПа. Определить термический к. п. д. и удельный расход пара.

Решение. По *i*, *s*-диаграмме .(см. рис. 9-5) находим: $i_1 = 3315 \text{ кДж/кr}$, $i_2 = 2080 \text{ кДж/кг}$; по таблице водяного пара (табл. Пб): $i'_2 = 137,8 \text{ кДж/кг}$; по формуле (9-5) термический к. п. д. равен:

$$\eta_t = \frac{l_1 - l_2}{l_1 - l_2} = \frac{3315 - 2060}{3315 - 157,8} = 0,389.$$

Удельный расход пара

$$d_{0} = \frac{3600}{t_{1} - t_{2}} = \frac{3600}{3315 - 2080} = 2,91 \text{ kg/(kBt \cdot 4)}.$$

Пример 9-2. Паротурбинная установка работает по циклу с промежуточным перегревом пара. При входе в турбину: $p_1 = = 24,0$ МПа и $t_1 = 600^{\circ}$ С, давление в кондепсаторе $p_4 = 0,004$ МПа, промежуточный перегрев производится при $p_2 = p_3 = 5,0$ МПа до температуры $t_3 = 550^{\circ}$ С. Определить термический к. п. д., удельный расход пара, количество теплоты, сообщенной пару в парогенераторе, и потерю теплоты в конденсаторе.

Решение. При помощи *i*, *s*-диаграммы (рис. 9-10) находим: i_1 =3493 кДж/кг, i_2 =3036 кДж/кг, i_3 =3550 кДж/кг; i_4 = =2146 кДж/кг; по табл. Пб i'_4 =121,4 кДж/кг.

161

Подставляя найденные значения в формулу (9-15), получаем:

 $\eta_t = \frac{(3493 - 3036) + (3550 - 2146)}{(3493 - 121, 4) + (3550 - 3036)} = 0,478.$

Теплота, подведенная к пару в парогенераторе, по формуле (9-14) равна: $q_1 = (3493 - 121, 4) + (3550 - 3036) = 3885,6$ кДж/кг; теплота, отданная в конденсаторе, по формуле (9-14а) равна: $q_2 = -2146 - 121, 4 = 2024,6$ кДж/кг, или

$$100 \frac{2024,6}{3885,6} = 52,2\%.$$

Удельный расход пара по формуле (9-16)

$$d_{0} = \frac{3600}{(3493 - 3036) + (3550 - 2146)} = 1,94 \text{ kr/(kBt·4)}.$$

Пример 9-3. В паротурбинной установке осуществляется регенеративный подогрев питательной воды в двух смешивающих подогревателях (см. рис. 9-11). При входе в турбину: p_1 =6,0 МПа и температура t_1 =520°С. Давления пара: в первом отборе p°_1 ==1,0 МПа, во втором отборе p°_2 =0,12 МПа, в конденсаторе p_2 ==0,005 МПа. Определить увеличение термического к. п. д. регенеративного цикла в сравнении с циклом Ренкина.

Решение. При помощи *i*, *s*-диаграммы (см. рис. 9-12) и таблиц находим энтальпии пара и конденсата для характерных точек цикла. При входе в турбину *i*₁=3469 кДж/кг; первый отбор: для пара *i*°₁=2951 кДж/кг; для конденсата *i*°′₁=762,7 кДж/кг; второй отбор: для пара *i*°₂=2548 кДж/кг; для конденсата *i*°′₂= =439,4 кДж/ кг;

конденсатор: для пара i₂=2120 кДж/кг, для конденсата i'₂==137,8 кДж/кг.

Доли пара, поступающие в отборы:

$$\alpha_{1} = \frac{t_{1}^{0'} - t_{2}^{0'}}{t_{1}^{0} - t_{2}^{0'}} = \frac{762, 7 - 439, 4}{2951 - 439, 4} = 0,128;$$
$$\alpha_{2} = \frac{(1 - \alpha_{1}) (t_{2}^{0'} - t_{2}')}{t_{2}^{0} - t_{2}'} = \frac{(1 - 0, 128) (439, 4 - 137, 8)}{2578 - 137, 8} = 0,125.$$

Термический к. п. д. регенеративного цикла [формула (9-29)]

$$\eta_t = \frac{(i_1 - i_2) - \alpha_1 (i^o_1 - i_2) - \alpha_2 (i^o_2 - i_2)}{i_1 - i_1^{o'}} = \frac{(3469 - 2120) - 0.128 (2951 - 2120) - 0.125 (2548 - 2120)}{3469 - 762.7} = 0.44;$$

162

-

для цикла Ренкина

$$\eta_t = \frac{i_1 - i_2}{i_1 - i_2} = \frac{3469'_2 - 2120}{3469 - 137.8} = 0,405;$$

увеличение к. п. д. составит:

$$\frac{0,44-0,405}{0,405}100 = 8,7\%.$$

ГЛАВА ДЕСЯТАЯ

влажный воздух

10-1. Основные понятия

Атмосферный воздух используется в различных технологических процессах, например: для сушки влажных материалов в сушильных установках, для охлаждения циркуляционной воды на тепловых электростанциях при оборотной системе водоснабжения, в установках кондиционирования воздуха и т. д.

Влажный воздух представляет собой механическую смесь сухого воздуха и водяного пара. Практически влажный воздух используется при давлениях, близких к атмосферному, поэтому и сухой воздух и водяной пар, составляющие влажный воздух, с достаточной для технических целей точностью можно считать идеальными газами. В связи с этим при всех расчетах с влажным воздухом можно применять ранее полученные соотношения для смеси идеальных газов, законы идеальных газов и уравнение состояния Менделеева — Клапейрона.

По закону Дальтона давление смеси газов равно сумме парциальных давлений

 $p = p_{\mathrm{B}} + p_{\mathrm{ff}},$

где $p_{\rm B}$ и $p_{\rm m}$ — парциальные давления воздуха и водяного пара; p — давление смеси, т. е. влажного воздуха, равное барометрическому давлению.

Чем больше в смеси водяного пара, тем больше его парциальное давление $p_{\rm n}$; высшим его пределом при данной температуре влажного воздуха будет давление насыщения $p_{\rm h}$.

Рассмотрим различные состояния водяного пара во влажном воздухе, используя p, v-диаграмму пара, которая изображена на рис. 10-1. Так, если при температуре влажного воздуха t_1 парциальное давление пара мень-11* 163

Рис. 10-1. Состояние водяного пара во влажном воздухе.

ше давления насыщения p_н, пар в смеси будет находиться в перегретом состоянии и изображаться точкой 2. Смесь сухого воздуха и перегретого водяного пара называется ненасыщенным влажным воздухом. Если при той же температуре t₁ влажного воздуха парциальное давление пара будет равно давлению насыщения р_н, то в смеси будет находиться сухой насыщенный пар и состояние его на диаграмме определяется точкой 1. Смесь сухого воздуха и сухого насыщенного пара называется насыщенным

влажным воздухом. Охлаждая ненасыщенный влажный воздух при постоянном давлении, его можно привести в насыщенное состояние. В этот момент температура влажного воздуха t_1 станет равной температуре насыщения пара при его парциальном давлении p_{π} .

Изобарный процесс охлаждения пара во влажном воздухе на диаграмме показан линией 2—3, а состояние насыщения — точкой 3. При дальнейшем охлаждении насыщенного влажного воздуха содержащийся в нем водяной пар будет конденсироваться и выделяться в виде росы. Температура, при которой влажный воздух становится насыщенным, называется температурой точки росы и обозначается t_p . При увеличении парциального давления пара во влажном воздухе температура точки росы также повышается.

В практических условиях использования влажного воздуха в нем могут содержаться различные количества водяного пара. Поэтому для характеристики состояния влажного воздуха ввели понятие о его относительной, и абсолютной влажности.

Количество водяного пара в килограммах m, содержащегося в 1 м³ влажного воздуха, называется а б солютной в лажностью воздуха. Из определения следует, что абсолютная влажность воздуха равна плотности пара $\rho_{\rm II}$ при его парциальном давлении $p_{\rm II}$ и при температуре влажного воздуха T. Тогда из уравнения состояния получим:

$$\rho_{\rm m} = \frac{p_{\rm m}}{R_{\rm m}T},\qquad(10-1)$$

где ρ_{π} , p_{π} , R_{π} — соответственно плотность, парциальное давление и газовая постоянная пара; T — температура влажного воздуха. Наибольшая плотность водяного пара ρ_{π} достигается в насыщенном влажном воздухе при той же температуре:

$$\boldsymbol{\rho}_{\mathbf{H}} = \frac{p_{\mathbf{H}}}{R_{\mathbf{H}}T}; \qquad (10-2)$$

так как $p_{\rm H} > p_{\rm m}$, то $\rho_{\rm H} > \rho_{\rm m}$. Отношение

 $\boldsymbol{\varphi} = \rho_{\pi} / \rho_{H} \tag{10-3}$

называется относительной влажностью воздуха; следовательно, это есть отношение действительной абсолютной влажности воздуха к максимально возможной абсолютной влажности в насыщенном воздухе при той же температуре.

При постоянной температуре давления изменяются пропорционально плотностям (закон Бойля — Мариотта), поэтому можно написать:

$$\varphi = \rho_{\pi} / \rho_{\text{H}} = p_{\pi} / \rho_{\text{H}}. \tag{10-4}$$

Относительная влажность определяется при помощи прибора, называемого психрометром.

При изменении состояния влажного воздуха количество сухого воздуха в смеси обычно не меняется, а количество водяного пара либо уменьшается вследствие конденсации, либо увеличивается вследствие испарсния влаги. В связи с этим тепловые расчеты с влажным воздухом принято относить к 1 кг сухого воздуха.

10-2. Параметры влажного воздуха

Влагосодержание. В лагосодержанием d влажного воздуха называется отношение массы водяного пара $m_{\rm II}$, содержащегося в смеси, к массе сухого воздуха $m_{\rm B}$ или, что то же, отношение плотности водяного пара $\rho_{\rm II}$ к плотности сухого воздуха $\rho_{\rm B}$, взятых при их парциальных давлениях и при температуре влажного воздуха

$$d = m_{\rm II}/m_{\rm B} = \rho_{\rm II}/\rho_{\rm B}. \tag{10-5}$$

По уравнению состояния

$$\rho_{\mathbf{r}} = \frac{p_{\mathbf{n}}}{R_{\mathbf{n}}T}; \quad \rho_{\mathbf{B}} = \frac{p_{\mathbf{B}}}{R_{\mathbf{B}}T};$$

165

после подстановки значений ρ_{π} и ρ_{B} в уравнение (10-5) получим:

$$d = \frac{p_{\Pi}}{R_{\Pi}T} : \frac{p_{B}}{R_{B}T} = \frac{R_{B}p_{\Pi}}{R_{\Pi}p_{B}} = \frac{\mu_{\Pi}p_{\Pi}}{\mu_{B}p_{B}}, \qquad (10-6)$$

где μ_{π} и μ_{B} — молекулярные массы соответственно водяного пара и сухого воздуха, равные μ_{π} =18,02 кг и μ_{B} ==28,95 кг.

Тогда

$$\bar{d} = \frac{18.02}{28.95} \frac{p_{\pi}}{p_{B}} = 0.622 \frac{p_{\pi}}{p_{B}},$$
 (10-7)

или

$$d = 0.622 \frac{p_{\pi}}{p - p_{\pi}} = 0.622 \frac{\varphi p_{\mu}}{p - \varphi p_{\mu}}; \qquad (10-8)$$

здесь *d* выражено в килограммах пара, содержащегося во влажном воздухе, на 1 кг сухого воздуха.

Уравнение (10-8) путем несложных преобразований приводится к виду

$$p_{\rm m} = \frac{pd}{0.622 + d}$$
, (10-9)

позволяющему определить парциальное давление водяного пара в зависимости от влагосодержания.

Энтальпия влажного воздуха. Энтальпия влажного воздуха определяется как энтальпия смеси, состоящей из 1 кг сухого воздуха и *d* кг водяного пара. Обозначая ее через *I*, получаем:

$$I = i_{\rm B} + di_{\rm m}.$$
 (10-10)

Энтальпия сухого воздуха $i_{\rm B}$, кДж/кг, принимается численно равной его температуре t, так как изобарная теплоемкость сухого воздуха $c_{p\rm B}\approx 1$ кДж/(кг·К).

Энтальпия І кг водяного пара, который, как правило, находится в перегретом состоянии при давлениях, близких к атмосферному, может быть определена по эмпирической формуле

$$i_{\rm ff} = 2490 + 1,97t.$$
 (10-11)

Тогда энтальпия влажного воздуха в килоджоулях на 1 кг сухого воздуха определится из выражения

$$I = t + (2490 + 1,97t)d. \tag{10-12}$$

Молекулярная масса, газовая постоянная и плотность влажного воздуха. Молекулярная масса смеси, состоящей 166 из сухого воздуха и водяного пара, легче всего определяется по формуле (1-37)

$$u = \mu_{\rm B} r_{\rm B} + \mu_{\rm m} r_{\rm m}.$$

По уравнению (1-39) объемные доли равны: для пара $r_{\rm n} = \frac{p_{\rm n}}{p}$, для воздуха $r_{\rm s} = \frac{p_{\rm s}}{p} = \frac{p - p_{\rm n}}{p}$. Подставляя эти значения в предыдущее уравнение, с учетом величин $\mu_{\rm n}$ и $\mu_{\rm s}$ получаем:

$$\mu = 28,95 \frac{p - p_{\pi}}{p} + 18,02 \frac{p_{\pi}}{p},$$

или после преобразований:

$$\mu = 28,95 - 10,93 \frac{p_{\pi}}{p}.$$

Отсюда следует, что влажный воздух легче сухого воздуха при одинаковых давлениях и температурах.

Газовая постоянная влажного воздуха на основании уравнения (1-22) определяется по формуле

$$R = \frac{8314}{28,95 - 10,93 \frac{p_{\pi}}{p}}.$$
 (10-13)

Плотность влажного воздуха находят из уравнения состояния

$$\rho = \frac{p}{RT}, \qquad (10-14)$$

где p, R, T — параметры влажного воздуха.

10-3. I,d-диаграмма влажного воздуха

Исследование термодинамических процессов и определение параметров влажного воздуха наиболее просто можно осуществить при помощи *I*, *d*-диаграммы, предложенной в 1918 г. проф. Л. К. Рамзиным. Диаграмма построена для барометрического давления *B*=745 мм рт. ст., но может быть использована и при небольших отклонениях давления от принятого. Для увеличения площади рабочей части диаграммы, т. е. расширения области ненасыщенного влажного воздуха, *I*, *d*-диаграмма построена в косоугольных координатах с углом 135° между осями. По оси ординат откладываются значения энтальпий влажного воздуха *I*, а по оси абсцисс — вла-

167

госодержание *d*, обе величины относятся к 1 кг сухого воздуха.

Линии d=const располагаются вертикально, а шкала абсцисс в некотором масштабе перенесена на вспомогательную горизонтальную прямую, проходящую через начало координат. Линии I=const представляют собой прямые, наклоненные под углом 45° к горизонтали (рис. 10-2). На рис. 10-3 приведено схематическое изображе-

Рис. 10-2. Координатная система *I*, *d* влажного воздуха.

Рис. 10-3. Схематическое изображение *I*, *d*-диаграммы влажного воздуха.

ние основных линий *I*, *d*-диаграммы. Линия $\varphi=1$ ($\varphi=$ =100%), характеризующая состояние влажного насыщенного воздуха, делит диаграмму на две части: сверху расположена область ненасыщенного влажного воздуха, которая является рабочей частью диаграммы, а ниже — область пересыщенного влажного воздуха, не имеющая практического значения.

В области ненасыщенного влажного воздуха изображаются изотермы и линии относительной влажности φ = =const. Изотермы представляют собой прямые, поднимающиеся вверх под некоторым углом к горизонтали; угол наклона изотерм увеличивается с повышением температуры. Система изотерм наносится путем использования уравнения (10-12). Линии φ =const представляют собой плавные расходящиеся кривые с выпуклостью, об-168 ращенной вверх, построенные при помощи уравнения (10-8). В нижней части диаграммы наносится линия парциальных давлений водяного пара, содержащегося во влажном воздухе, для чего используется уравнение (10-9).

I, d-диаграмма позволяет по известным t и φ найти значения I и d, а по значению d найти значение p_{π} . Определение этих величин показано на I, d-диаграмме для состояния воздуха, изображаемого точкой M. Процесс нагревания влажного воздуха совершается при постоянном влагосодержании d и поэтому в I, d-диаграмме изображается вертикальной линией AB. Количество сообщенного тепла равно разности энтальпий точек Aи B.

Процесс сушки каких-либо материалов связан с увеличением влажности воздуха при постоянной энтальпии; в этом случае изменение состояния воздуха на *I*, *d*-диаграмме изображается линией *BC* (рис. 10-3). При этом теплота, отданная воздухом, расходуется только на испарение влаги. Испаренная влага в виде паров поступает обратно во влажный воздух и возвращает теплоту испарения. Таким образом, общий баланс теплоты равен нулю и энтальпия влажного воздуха не изменяется.

Часть вторая

ТЕПЛОПЕРЕДАЧА

ГЛАВА ОДИННАДЦАТАЯ

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ТЕПЛООБМЕНА. ТЕПЛОПРОВОДНОСТЬ

11-1. Основные понятия

Теплообмен — это самопроизвольный процесс переноса теплоты в среде с неоднородным распределением температуры. Различные виды теплообмена различаются между собой физической сущностью процесса переноса теплоты, или, как еще говорят, механизмом теплообмена. Различают три таких механизма: теплопроводность, конвективный теплообмен, теплообмен излучением.

Теплопроводность — это такой вид теплообмена, когда носителями теплоты являются микрочастицы вещества (например, молекулы); посредством теплового движения они перемещаются из области с более высокой температурой в область, где температура ниже.

Конвективный теплообмен— это такой вид теплообмена, который обусловлен совместным действием двух механизмов переноса теплоты. Первый из них указанная выше теплопроводность. Второй— конвективный перенос, который осуществляется за счет движения самой среды из области высокой температуры в область низкой температуры.

Теплообмен излучением связан с переносом энергии фотонов или электромагнитных волн (энергии излучения). Этот вид теплообмена осуществляется в три этапа: внутренняя энергия тела преобразуется в энергию излучения, энергия излучения распространяется в пространстве, происходит преобразование энергии излучения во внутреннюю энергию второго тела, которое поглощает излучение.

Рассмотрим основные понятия теории теплообмена. Знакомство с этими понятиями позволяет применить 170 основные физические законы к процессам переноса теплоты (например, закон сохранения энергии), а также сформулировать основные положения теории теплообмена.

Одним из основных понятий является температурное поле. Температурным полем называется совокупность значений температуры во всех точках тела в данный момент времени. В следующий момент времени температура в некоторых (или во всех) точках тела может измениться, в этом случае температурное поле называется нестационарным. Стационарное температурное поле представляет собой одну и ту же совокупность значений температуры для любого момента времени. Температурное поле может быть однородным и неоднородным. Однородное температурное поле — это поле одинаковых температур, когда все точки тела характеризуются одним и тем же значением температуры. Для осуществления переноса теплоты теплопроводностью необходимо неоднородное температурное поле, когда в различных точках тела температура различна.

При переходе от точки к точке в теле температура меняется не скачком, а более или менее плавно. Всегда можно найти несколько точек с одинаковой температурой; соединив все такие точки, получим поверхность одинаковой температуры, которая носит название и зотермической поверхности соответствует свое значение температуры. Можно построить в теле семейство изотермических поверхностей, такая картина даст наглядное представление о температурном поле в теле. Изотермы никогда не пересекаются, ибо в этом случае точка пересечения будет обладать двумя различными значениями

температуры, что физически невозможно. Вдоль изотермы температура не меняется, значит, и перенос теплоты в этом направлении не происходит. Наиболее сильно, т. е. с наибольшим числом градусов на единицу длины, температура меняется в направленни, нормальном к данной изотермической поверхности. Такое изменение характеризуется спе-

Рис. 11-1. Пояснение к определению градиента температуры,

циальной величиной, носящей название градиента температуры. Можно следующим образом представить себе вычисление градиента температуры (рис. 11-1).

Пусть в точке M с температурой t необходимо найти градиент температуры. Проведем через точку M изотермическую поверхность, соответствующую температуре t, а также линию, нормальную к изотермической поверхности. На положительном направлении нормали \vec{n} (а она направлена в сторону увеличения температуры) выберем изотерму с температурой t_0 и разделим разность t_0-t на расстояние M_0M от точки M до этой изотермы. Полученное значение

$$\frac{t_0 - t}{M_0 M}$$

будет представлять собой первое приближенное значение градиента температуры в точке M. Проведем в интервале (t_0, t) изотерму через точку с температурой t_1 , равной $\frac{1}{2}(t+t_0)$.

При этом расстояние M_1M не будет в общем случае равняться $M_0M/2$, поскольку температура меняется неравномерно. Второе приближенное значение градиента вычисляется следующим образом:

$$\frac{t_1-t}{M_1M}.$$

Можно затем повторить процесс вычисления, выбрав точку M_2 , в которой температура равна величине $t_2 = -\frac{1}{2}(t+t_1)$, и разделив разность температур на соответствующее расстояние. Получим третье приближенное значение градиента температуры

$$\frac{(t_2-t)}{M_2M}.$$

Если описанный процесс повторять достаточное количество раз, то мы получим последовательность приближенных значений градиента температуры, каждое из которых будет все ближе к истинному значению градиента, определяемому как предел

$$\lim_{\substack{n\to\infty\\M_nM\to0}}\frac{t_n-t}{M_nM}=\lim_{\lambda_n\to0}\frac{\Delta t}{\Delta n}=\frac{dt}{dn}.$$

172 '

Так как расстояние Δx измеряется на определенией прямой Mn, то градиент температуры — величина векторная, характеризуемая числом (длиной вектора) и на-

правлением, т. е. $\left(\frac{d\vec{t}}{dn}\right)$.

Таким образом, градиент температуры представляет собой вектор, направленный по нормали к изотермической поверхности в сторону увеличения температуры и имеющий длину, равную пределу отношения изменения температуры вдоль этой нормали к соответствующему ее отрезку, если длина этого отрезка неограниченно уменьшается.

Как выше было сказано, теплота не переноснтел вдоль изотермических линий, ибо вдоль изотермы температура не меняется. Наиболее интенсивно теплота переносится в направлении наиболее резкого изменения температуры, т. е. по нормали к изотермической поверхности. По этой же нормали направлен и вектор градиента температуры. Однако направления градиента температуры и переноса теплоты противоположны, поскольку вектор градиента направлен в сторону увеличения температуры, а теплота распространяется в сторону уменьшения температуры.

Для того чтобы количественно охарактеризовать интенсивность распространения теплоты, вводится понятие вектора плотности теплового потока. Вектор плотности теплового потока направлен по нормали к изотермической поверхности в сторону уменьшения температуры; длина этого вектора численно равна количеству теплоты, которое проходит в этой точке через единицу площади изотермической поверхности за единицу времени.

При изучении и практическом использовании понятия плотности теплового потока нет необходимости во всех случаях рассматривать эту величину как вектор. Часто направление распространения теплоты определяется сравнительно просто и плотность теплового потока при этом понимают как скалярную величину. В таком виде плотность теплового потока — это количество теплоты, которое проходит через единицу площади поверхности за единицу времени.

Аналогично тому, как в теле мысленно были проведены изотермические линии, что дало наглядную картину температурного поля, можно провести линии тепло-

вого тока. Это — линии, в каждой -точке которых вектор плотности теплового потока направлен по касательной. Линии теплового тока дают наглядное представление о распространении теплоты в теле (рис. 11-2).

Если глубже задуматься над процессом распространения теплоты в теле, можно обнаружить, что теплота распространяется не только вдоль линий теплового тока. Распространение теплоты происходит по всем направлениям, которые отвечают условию хотя бы небольшого

Рис. 11-2. Графическое изображение температурного поля в теле. 1-изотермы; 2-линии теплового тока.

Рис. 11-3. К определению плотности теплового потока.

уменьшения температуры. Плотность теплового потокав таком произвольном направлении (количество теплоты, проходящее через единицу поверхности, нормальной к этому направлению, за единицу времени) определяется как проекция вектора плотности теплового потока на это направление (рис. 11-3). На этом рисунке плотность теплового потока в направлении \vec{s} , равная длине вектора \vec{q}_s , представляет собой проекцию вектора \vec{q} на линию s.

На практике важно знать, какое количество теплоты проходит через определенную изотермическую поверхность в единицу времени. Это количество может быть определено суммированием плотности теплового потока во всех точках изотермической поверхности. В результате такого суммирования получим величину, которая носит название теплового потока Q. Если плотность теплового потока во всех точках поверхности одинакова, то тепловой поток определяется формулой

$$Q = qF$$
,

где F — площадь изотермической поверхности; $q = |\vec{q}|$ — абсолютная величина (модуль) вектора плотности теплового потока.

Закон Фурье. Этот закон устанавливает количественную связь между температурным полем в теле и интенсивностью распространения в нем теплоты посредством теплопроводности (за счет движения микрочастиц вещества). Более конкретно: закон определяет связь вектора плотности теплового потока с вектором градиента температуры. Согласно закону Фурье вектор плотности теплового потока пропорционален вектору градиента температуры

$$\vec{q} = -\lambda \left(\frac{d\vec{t}}{dn}\right). \tag{11-1}$$

Знак «минус» в математическом выражении закона Фурье отражает тот физический факт, что теплота распространяется в сторону уменьшения температуры. Вектор же градиента температуры по своему определению направлен в сторону возрастания температуры. Если мы хотим приравнять два вектора, лежащих на одной прямой, но направленных в разные стороны, то один из них следует взять со знаком «минус».

Коэффициент пропорциональности в выражении (11-1) носит название коэффициента теплопроводности и является индивидуальным физическим свойством каждого вещества. При одном и том же значении градиента температуры плотность теплового потока может в десятки раз превышать этот вектор для металлов и, наоборот, быть намного меньше градиента температуры — для газов например. Это соотношение между длинами обоих векторов и определяется коэффициентом теплопроводности.

Все величины в выражении (11-1) закона Фурье имеют определенные для системы СИ единицы измерения. Плотность теплового потока измеряется в Дж/(с·м²), но так как 1 Дж/с равен 1 Вт, то единица измерения плотности теплового потока такова:

$$[q] = BT/M^2$$
.

Градиент температуры измеряется в К/м. Единица измерения коэффициента теплопроводности определяется единицами измерения плотности теплового потока и

175

градиента температуры. Из выражения (11-1) следует, что

$$\lambda = \left| \frac{q}{(dt/dn)} \right|.$$

Следовательно,

$$[\lambda] = \frac{[q]}{[dt/dn]} = \frac{B\mathbf{T} \cdot \mathbf{M}}{\mathbf{M}^2 \cdot \mathbf{K}} = B\mathbf{T}/(\mathbf{M} \cdot \mathbf{K}).$$

Таким образом, коэффициент теплопроводности численно равен плотности теплового потока при градиенте температуры 1 К/м.

Закон Фурье был установлен опытным путем в результате измерения количества теплоты Q_{τ} , Дж, которое проходило за время т при стационарном режиме работы экспериментальной установки через стенку небольшой толщины Δn с площадью F при разности температур на ее поверхностях Δt , которая также поддерживаласъ небольшой. Результаты опытов показали, что величина Q_{τ} определяется выражением

$$Q_{\tau} = -\lambda \frac{\Delta t}{\Delta n} F \tau,$$

где коэффициент пропорциональности λ остается постоянным, если средняя температура стенки меняется в опытах не слишком сильно (в противном случае коэффициент теплопроводности зависит от этой температуры). На основании этих опытов был сформулирован вакон, выражаемый зависимостью (11-1) и используемый в расчетах процессов теплопроводности.

Коэффициент теплопроводности. Этот физический параметр характеризует способность вещества проводить теплоту; чем больше значение λ, тем лучше данное вещество проводит теплоту.

Несмотря на то что теплопроводность всегда связана с движением микрочастиц вещества, характер этого движения различен для газов, жидкостей и твердых тел. В газах при обычных давлениях и температурах перенос теплоты осуществляется за счет перемещения молекул, обладающих определенной кинетической энергией. Вся совокупность молекул газа движется хаотически, молекулы сталкиваются между собой. Процесс теплопроводности осуществляется в газе в том случае, если в нем имеется неоднородное поле температуры (что, впрочем, является необходимым условием любого процесса теплообмена). Можно представить себе две области газа с различной температурой, между которыми происходит обмен молекулами. Количество молекул, переходящих из нагретой области в более холодную, равно в среднем количеству молекул, движущихся в обратном направлении (из-за хаотического характера движения всех молекул газа). Но молекулы нагретой области несут с собой большее количество энергии молекулярного движения, чем молекулы холодной области. Таким образом, в энергетическом отношении эти потоки молекул неодинаковы. Если составить баланс энергии для обоих потоков молекул. получим некоторый результирующий тепловой поток, направленный из нагретой области в холодную. Это и есть тепловой поток теплопроводности. Коэффициент теплопроводности газов лежит пределах 0.006 в 0,6 Вт/(м·К). Высоким коэффициентом теплопроводности отличаются гелий и водород; это связано с малой массой молекул этих газов и их большой подвижностью. Коэффициент теплопроводности воздуха при 20°C и 0,1 MПа равен 0,026 Вт/(м·К).

В жидкостях молекулы расположены почти вплотную друг к другу. Каждая молекула колеблется около положения равновесия, сталкиваясь при этом с соседними молекулами. Время от времени молекула переходит в новое положение равновесия, находящееся неподалеку от предыдущего. Время перехода примерно в 100 раз меньше, чем время пребывания в положении равновесия. Теплота в жидкости передается путем распространения этих беспорядочных колебаний. Коэффициент теплопроводности различных жидкостей меняется от 0,07 до 0,7 Вт/(м·К). Коэффициент теплопроводности воды при 20°С и 0,1 МПа равен 0,6 Вт/(м·К).

Механизм распространения теплоты в твердых телах зависит от того, является ли данное твердое тело металлом или диэлектриком. В металлах носителями теплоты являются свободные электроны, своеобразный «электронный газ». Роль свободных электронов приблизительно соответствует роли хаотически движущихся молекул газообразного вещества. Поскольку свободные электроны являются носителями и электрической энергии в металлах, коэффициенты теплопроводности и электропроводности их пропорциональны между собой. Коэффициенты теплопроводности чистых металлов могут достигать

12-702

	λ, BT/(M·K)
Медь	396 _
Алюминий	250
Углеродистая сталь	50
Легированная сталь	20

Диэлектрики используются на практике чаще всего как строительные или теплоизоляционные материалы. Многие такие тела имеют пористую структуру. Поэтому они характеризуются некоторым условным (эффективным) коэффициентом теплопроводности, зависящим от теплопроводности вещества твердых зерен и теплопроводности газа (например, воздуха с определенной влажностью), заполняющего поры. Коэффициент теплопроводности пористого материала возрастает с увеличением объемной плотности (масса твердого вещества, приходящаяся на объем, занятый твердым веществом и порами). Так, например, при возрастании плотности асбеста от 400 до 800 кг/м³ его коэффициент теплопроводности увеличивается от 0,105 до 0,248 Вт/(м·К). Это происходит потому, что теплопроводность воздуха, заполняющего поры, значительно меньше, чем твердого асбеста. При увеличении объемной плотности на единицу объема, занятого материалом, приходится большая доля твердого асбеста, чем раньше, и эффективная теплопроводность становится больше.

Эффективная теплопроводность пористых материалов зависит также от их влажности. С увеличением влажности λ возрастает. Эффективная теплопроводность влажного материала может оказаться больше теплопроводности отдельно взятых сухого материала и воды. Так, например, теплопроводность сухого кирпича равна 0,35 Вт/(м·К), воды — 0,6 Вт/(м·К), а теплопроводность влажного кирпича — примерно 1,0 Вт/(м·К). Описанное явление объясняется тем, что в действие вступает перенос теплоты, отличный от теплопроводности (молекулярного переноса); этот механизм обусловлен капиллярными свойствами воды, которые проявляются в порах малых размеров. Коэффициенты теплопроводности строительных и те-

Коэффициенты теплопроводности строительных и теплоизоляционных материалов меняются в пределах примерно от 0,023 до 2,9 Вт/(м·К). При этом теплоизоляционными считаются материалы с низким значением коэффициента теплопроводности — менее 0,25 Вт/(м·К). Из рассмотрения механизма теплопроводности в различных средах ясно, что в газах и жидкостях не всегда может осуществляться в чистом виде молекулярный перенос теплоты. Для реализации чистой теплопроводности в этом случае необходимо полностью исключить движение газа или жидкости. При наличии движения носителями теплоты становятся не только молекулы, но и относительно крупные частицы жидкости — макрочастицы, которые содержат в себе огромное количество моле-

Рис. 11-4. Порядок значений коэффициентов теплопроводности различных веществ.

кул, хотя размеры макрочастиц по сравнению малы с объемом жидкости, в котором рассматривается теплообмен. Перенос теплоты движущимися макрочастицами, так называемый конвективный перенос теплоты, характеризуется большей интенсивностью, чем молекулярный перенос. Поэтому при движении газе или В жидкости конвективный перенос накладывается на молекулярный и затушевывает его. Для того чтобы получить теплопроводность в чистом виде в жидкой среде, конвекцию необходимо исключить.

В твердых телах такой проблемы не возникает. Здесь теплопроводность реализуется в чистом виде без принятия специальных мер. Поэтому рассматриваемые ниже 12* 179 задачи теплопроводности на практике в подавляющем большинстве случаев применяются для твердых тел.

Коэффициенты теплопроводности различных веществ (рис. 11-4) определяются опытным путем. Результаты таких экспериментов представляют в виде таблиц в справочниках (см. табл. П8). Коэффициент теплопроводности твердых тел зависит от температуры, поэтому в расчетах теплопроводности тел с резко неоднородным температурным полем следует учитывать переменность коэффициента теплопроводности.

11-2. Теплопроводность в плоской стенке

Задача о теплопроводности в плоской стенке ставится с целью определить, с какой интенсивностью будет распространяться теплота теплопроводностью через плоскую стенку, на обеих поверхностях которой заданы различные по значению и постоянные во времени температуры. При этом используются основные понятия, введенные в предыдущем параграфе, закон Фурье — основной закон теплопроводности, а также закон сохранения энергии.

На практике возникает большое количество разнообразных задач теплопроводности. В технике это чаще всего задачи о распространении теплоты в твердых телах (металлах, изоляционных материалах, строительных конструкциях и т. п.). Однако все эти задачи имеют одну общую характерную черту—они являются тем или иным вариантом основной задачи теплопроводности, которая сводится к нахождению температурного поля в теле.

Температурное поле в теле может быть найдено, если установлен характер распределения плотности теплового потока в теле. Зависимость величины плотности теплового потока от координат устанавливается на основании закона сохранения энергии. Если распределение плотности теплового потока известно, то, применяя закон Фурье, можно найти выражение для температурного попя. Рассмотрим решение задачи теплопроводности для цанного простейшего случая.

Дана плоская стенка из однородного материала с коэффициентом теплопроводности λ , который не зависит от температуры. Толщина этой стенки значительно меньше ширины и высоты, что позволяет считать стенку 180
«тонкой» (рис. 11-5). Левая граничная поверхность стенки поддерживается при температуре t_{c1} , которая во времени и вдоль поверхности не меняется. Таким образом, левая граница стенки представляет собой изотермическую плоскость со стационарной температурой. Правая граничная поверхность стенки находится в аналогичных условиях, но температура ее t_{c2} , причем $t_{c1} > t_{c2}$.

В таких условиях теплота будет передаваться слева направо и в толще стенки установится стационарное температурное поле, причем изотермические поверхности будут представлять собой плоскости, параллельные граничным плоскостям; чем правее расположена изотермическая поверхность, тем более низкая температура t ($t_{c1} < t < t_{c2}$) ей соответствует. Температура, следова-

Рис. 11-5. Теплопроводность в плоской стенке.

тельно, меняется только вдоль оси x, такое температурное поле t = t(x) называется одномерным.

Для нахождения закона распределения плотности теплового потока по толщине плоской стенки выделим в толще стенки на расстоянии x от левой граничной поверхности тонкий слой толщиной Δx . На основе закона сохранения энергии рассмотрим тепловой баланс для параллелепипеда, представляющего собой часть выделенного слоя. Через левую грань параллелепипеда внутрь поступает тепловой поток q(x)F (F — площадь грани), через правую грань из параллелепипеда уходит тепловой поток $q(x+\Delta x)F$. Через остальные грани параллелепипеда нет переноса теплоты, так как теплота не распространяется вдоль изотермических поверхностей. По закону сохранения энергии алгебраическая сумма указанных потоков равна нулю, т. е.

$$q(x)F - q(x + \Delta x)F = 0.$$

Это означает, что

$$q(x)F = q(x + \Delta x)F = \text{const.}$$

Следовательно, плотность теплового потока не изменяется вдоль оси *х* и является величиной постоянной:

$$q = \text{const.}$$
 (11-2)

Выражение (11-2) представляет собой закон распределения плотности теплового потока по толщине плоской стенки. Этот закон очень прост — плотность теплового потока q по толщине стенки не изменяется. Согласно закону Фурье имеет место следующее со-

Согласно закону Фурье имеет место следующее соотношение:

$$\frac{dt}{dx} = -\frac{q}{\lambda}.$$

Проинтегрируем это выражение:

$$t = -\frac{q}{\lambda}x + c; \qquad (11-3)$$

здесь c — произвольная постояниая интегрирования, которая определяется граничным условием: при x=0 имеем $t=t_{c1}$. Если подставить это условие в уравнение (11-3), то получим следующее выражение:

$$t = -\frac{q}{\lambda} x + t_{ci}. \tag{11-4}$$

Таким образом, изменение температуры по толщине плоской стенки происходит по закону прямой линии. Выражение (11-4) представляет собой функцию, описывающую температурное поле в плоской стенке, т. е. функцию t = t(x).

В выражение (11-4), однако, входит величина плотности теплового потока q, которая по условию поставленной задачи не является наперед заданной величиной. Но в условии задачи сказано, что при $x=\delta$ температура на поверхности стенки равна $t=t_{c2}$. Подставим это условие в формулу (11-4). Тогда получим:

$$t_{c2} = t_{c1} - \frac{q}{\lambda} \delta. \tag{11-5}$$

Отсюда можно найти плотность теплового потока:

$$q = \frac{\lambda}{\delta} (t_{c_1} - t_{c_2}). \tag{11-6}$$

Выражение (11-6) является основной расчетной формулой для теплопроводности в плоской стенке. Подставляя значение q в выражение (11-4), получаем функцию температурного поля, все параметры которой представляют собой заданные в задаче величины:

$$t = t_{c_1} - \frac{t_{c_1} - t_{c_2}}{\delta} x.$$
 (11-7)

Это выражение и представляет собой конечную цель при решении основной задачи теплопроводности для данного простого случая.

Зная температурное поле в стенке, можно рассчитать различные величины, представляющие интерес для практики: градиент температуры, температуру в заданной точке и т. д.

Так, например, из - выражения (11-7) видно, что график изменения температуры вдоль оси *х* представляет собой прямую (см. рис. 11-5). Угловой коэффициент этой прямой равен градиенту температуры и представляется в виде

$$\frac{dt}{dx} = -\frac{t_{c1} - t_{c2}}{\delta}.$$
 (11-8)

Выражение для плотности теплового потока может быть записано также следующим образом:

$$q = \frac{t_{\rm c1} - t_{\rm c2}}{\delta/\lambda};$$

здесь величина t_{c1} — t_{c2} называется температурным напором, величина δ/λ —термическим сопротивлением теплопроводности. Обратная величина λ/δ называется термической проводимостью.

Таким образом, плотность теплового потока через плоскую стенку при заданных температурах на ее поверхностях равна частному от деления температурного напора на термическое сопротивление теплопроводности. Термическое сопротивление тем меньше, чем меньше толщина стенки и чем больше коэффициент теплопроводности материала, из которого изготовлена стенка. Термическое сопротивление тонких металлических стенок, например, мало.

Пример 11-1. Вычислить плотность теплового потока через плоскую однородную стенку, толщина которой значительно меньше ширипы и высоты, если стенка выполнена: а) из стали, $\lambda = = 40 \text{ Вт/(м·K)}; 6)$ из бетона, $\lambda = 1,1 \text{ Вт/(м·K)}; в)$ из диатомитового кирпича $\lambda = 0,11 \text{ Вт/(м·K)}$. Во всех трех случаях толщина стен-

ки $\delta = 50$ мм. Температуры на поверхностях стенки поддерживаются постоянными и равными $t_{c1} = 100^{\circ}$ С и $t_{c2} = 90^{\circ}$ С.

Решение. Для расчета плотности теплового потока воспользуемся выражением (11-10). Вычислим термические сопротивления теплопроводности для трех заданных случаев:

$$\left(\frac{\delta}{\lambda}\right)_{1} = \frac{50 \cdot 10^{-3}}{40} = 1,25 \cdot 10^{-3} \text{ M}^{2} \cdot \text{K/BT};$$

$$\left(\frac{\delta}{\lambda}\right)_{2} = \frac{50 \cdot 10^{-3}}{1,1} = 45,5 \cdot 10^{-3} \text{ M}^{2} \cdot \text{K/BT};$$

$$\left(\frac{\delta}{\lambda}\right)_{3} = \frac{50 \cdot 10^{-3}}{0,11} = 455 \cdot 10^{-3} \text{ M}^{2} \cdot \text{K/BT}.$$

В этих выражениях толщина стенки всюду подставлялась в метрах. Следует запомнить, что в формулы удобно подставлять величины, выраженные в основных единицах измерения (т. е. с использованием основных единиц СИ: метр, килограмм, секунда — и образованных на их основе производных единиц: ньютон, джоуль, ватт, квадратный метр и т. д.). В этом случае результат автоматически будет получаться также в единицах, являющихся производными от основных единиц СИ. Подстановка в формулу величин в кратных единицах, например длины — в миллиметрах, времени — в часах, минутах и т. п., не рекомендуется, так как вносит ненужную путаницу и увеличивает время вычислений.

Рассчитанные результаты показывают, что наименьшим термическим сопротивлением обладает металлическая стенка, сопротивление кирпичной стенки больше примерно в 36 раз.

Плотность теплового потока равна:

$$q_{1} = \frac{100 - 90}{1,25 \cdot 10^{-2}} = 8000 \text{ Br/m}^{2};$$

$$q_{2} = \frac{100 - 90}{45,5 \cdot 10^{-3}} = 220 \text{ Br/m}^{2};$$

$$q_{3} = \frac{100 - 90}{455 \cdot 10^{-3}} = 22 \text{ Br/m}^{2}.$$

Следует отметить, что во всех трех случаях в стенке создается один и тот же граднент температуры, равный $\frac{100-90}{50\cdot10^{-5}} = 200$ К/м.

В металлической стенке при помощи такого градиента можно создать плотность теплового потока $q_1 = 8000 \text{ Br/m}^2$, а в кирпичной стенке с малой теплопроводностью тот же градиент создает величину плотности теплового потока, намного меньшую предыдущей $q_3 = 22 \text{ Br/m}^2$.

Пример 11-2. Плотность теплового потока через плоскую стенку толщиной $\delta = 50$ мм равна q = 70 Вт/м². Определить разность температур на поверхности стенки и численные значения градиента температуры в стенке, если она выполнена: а) из латуни, $\lambda = 70$ Вт/(м·K); 6) из красного кирпича, $\lambda = 0.7$ Вт/(м·K); в) из пробки, $\lambda = 0.07$ Вт/(м·K). Решение. Из формулы (11-10) следует:

$$\Delta t_{\rm c} = t_{\rm c1} - t_{\rm c2} = q \frac{\delta}{\lambda} \, .$$

Подставляя заданные значения величин, имеем:

$$\Delta t_{c1} = \frac{70 \cdot 50 \cdot 10^{-3}}{70} = 0,05^{\circ}C;$$

$$\Delta t_{c2} = \frac{70 \cdot 50 \cdot 10^{-3}}{0,7} = 5^{\circ}C;$$

$$\Delta t_{c3} = \frac{70 \cdot 50 \cdot 10^{-3}}{0,07} = 50^{\circ}C.$$

Градиент температуры определяется выражением (11-8):

$$\frac{dt}{dx} = \frac{t_{c1} - t_{c2}}{\delta}.$$

Подставляя заданные значения величин, имеем:

$$\left(\frac{dt}{dx}\right)_{1} = \frac{0,05}{50\cdot10^{-3}} = 1 \text{ K/m};$$

$$\left(\frac{dt}{dx}\right)_{2} = \frac{5}{50\cdot10^{-3}} = 100 \text{ K/m};$$

$$\left(\frac{dt}{dx}\right)_{3} = \frac{50}{50\cdot10^{-3}} = 1000 \text{ K/m}.$$

Видно, что для создания определенного теплового потока в пробке необходим градиент температуры, который в 1000 раз превышает градиент в латуни при прочих равных условиях.

Пример 11-3. Определить тепловой поток Q, Вт, который теряется через стенку из красного кирпича длиной l=5 м, высотой h=4 м и толщиной $\delta=0.25$ м, если температуры на поверхностях стенки поддерживаются равными $t_{c1}=110^{\circ}$ С и $t_{c2}=40^{\circ}$ С. Коэффициент теплопроводности красного кирпича $\lambda=0.7$ Вт/(м К).

Решение. Определим плотность теплового потока через кирпичную стенку:

$$q = \frac{t_{c1} - t_{c2}}{\delta/\lambda} = \frac{110 - 40'}{0,25/0,7} = 196 \mathbf{I} Br/M^2.$$

Определим площадь поверхности стенки:

$$F = lh = 5 \cdot 4 = 20 \text{ m}^2$$
.

Поскольку-плотность теплового потока имеет одно и то же значение во всех точках поверхности стенки, то

$$Q = qF = 196 \cdot 20 = 3920$$
 BT.

Многослойная плоская стенка. Рассмотрим стационарную теплопроводность многослойной плоской стенки, каждый слой которой является однородной стенкой, подобной той, которая рассматривалась выше. Предпола-

Рис. 11-6. Многослойная плоская стенка.

гается, как и ранее, что общая толщина многослойной стенки, равная сумме толщин отдельных слоев, намного меньше высоты и ширины стенки. В этом случае изотермическими поверхностями являются плоскости, параллельные граничным плоскостям (в том числе и плоскости стыка между отдельными слоями, рис. 11-6). Отдельные слои стенимеют гладкие граничные ки поверхности, плотно прилегающие друг к другу так, что температуры контактирующих поверхностей равны.

Температура левой граничной поверхности обозначена t_{c1} , температура на стыке первого и второго слоев — t_{c2} , температура на стыке второго и третьего слоев — t_{c3} и т. д. Заданными считаются температуры t_{c1} и t_{c4} , толщины отдельных слоев δ_1 , δ_2 и δ_3 , а также коэффициенты теплопроводности материала каждого слоя λ_1 , λ_2 и λ_3 .

При рассмотрении теплопроводности однослойной стенки было показано, что плотность теплового потока не изменяется при переходе от одной изотермической поверхности к другой при движении слева направо, т. е. вдоль оси *х*. Плоскость стыка между первым и вторым слоями также представляет собой изотермическую поверхность с тем же значением плотности теплового потока, что и в первом слое. Но эта плоскость является «начальной» по отношению ко второму слою, в котором, следовательно, также установится постоянная по толщине плотность теплового потока в первом слое. Такие же рассуждения справедливы и для всех последующих слоев.

С другой стороны, на каждый слой можно смотреть как на однородную стенку, для которой справедливо выражение (11-6), определяющее величину q. Запишем это выражение последовательно для всех слоев, начиная с первого:

$$q = \frac{\lambda_1}{\delta_1} (t_{c_1} - t_{c_2}); \quad q = \frac{\lambda_2}{\delta_2} (t_{c_2} - t_{c_3});$$
$$q = \frac{\lambda_3}{\delta_3} (t_{e_2} - t_{c_4}).$$

Преобравуем полученные выражения следующим обра зом:

Сложим полученные уравнения (левые части с левыми, а правые — с правыми):

$$q\left(\frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3}\right) = t_{c_1} - t_{c_4}.$$

Отсюда легко найти формулу для плотности теплового потока через многослойную стенку:

$$q = \frac{t_{c_1} - t_{c_4}}{\frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3}} .$$
(11-9)

Все рассуждения проведены для трехслойной стенки, однако метод получения расчетного выражения остается справедливым и при большем числе слоев. Если стенка состоит из *n* слоев, то расчетная формула принимает вид:

$$q = \frac{t_{c_1} - t_{c(n+1)}}{\sum_{i=1}^{l-n} \delta_i / \lambda_i}; \qquad (11-10)$$

здесь в числителе стоит полный температурный напор многослойной стенки, а в знаменателе — полное термическое сопротивление теплопроводности многослойной стенки, равное сумме термических сопротивлений отдельных слоев.

При расчете теплопроводности многослойной плоской стенки удобно использовать понятие эквивалентного коэффициента теплопроводности. Эквивалентный коэффициент теплопроводности вводится на основе замены реальной многослойной стенки, в состав которой входят слои, имеющие различную толщину δ_i и выполненные из различных материалов с коэффициентами теплопроводности λ_i , некоторой воображаемой однослойной стенкой с эквивалентной толщиной δ_{3KB} и эквивалентной теплопроводностью λ_{3KB} . Эквивалентность здесь нужно понимать в том смысле, что сохраняются эквивалентными, т. е. равными между собой, термические сопротивления двух указанных стенок: реальной многослойной и воображаемой однослойной. Записывая это условие, будем иметь:

 $\sum_{i=1}^{l=n} \frac{\delta_i}{\lambda_i} = \frac{\delta_{3KB}}{\lambda_{9KB}}.$

Эквивалентная толщина воображаемой однослойной стенки равна просто сумме толщин отдельных слоев реальной многослойной стенки:

$$\delta_{\mathbf{g}\mathbf{K}\mathbf{B}} = \sum_{i=1}^{l=n} \delta_i.$$

Эквивалентный коэффициент теплопроводности может быть определен из двух приведенных выше выражений:

$$\lambda_{\text{SKB}} = \frac{\sum_{i=1}^{l=n} \delta_i}{\sum_{i=1}^{l=n} \frac{\delta_i}{|\lambda_i|}} . \quad (11-11)$$

Видно, что эквивалентный коэффициент теплопроводности не является теплофизическим свойством вещества, он зависит от количества отдельных слоев, их толщин и коэффициентов теплопроводности тех материалов, из которых они изготовлены.

Порядок расчета теплопроводности через многослойную стенку с использованием понятия эквивалентного коэффициента теплопроводности таков: вначале рассчитывают эквивалентный коэффициент теплопроводности для многослойной стенки, а затем по выражению (11-6) определяют плотность теплового потока *q*, подставляя в эту формулу полную толщину многослойной плоской стенки и значение эквивалентного коэффициента теплопроводности. • Температуры на стыках отдельных слоев, которые также являются величинами искомыми, определяются следующими формулами:

$$t_{c_{2}} = t_{c_{1}} - q \frac{\delta_{1}}{\lambda_{1}};$$

$$t_{c_{2}} = t_{c_{1}} - q \left(\frac{\delta_{1}}{\lambda_{1}} + \frac{\delta_{2}}{\lambda_{2}}\right);$$

$$t_{c(l+1)} = t_{c_{1}} - q \left(\frac{\delta_{1}}{\lambda_{1}} + \frac{\delta_{2}}{\lambda_{2}} + \dots + \frac{\delta_{l}}{\lambda_{l}}\right).$$

График температурного поля в многослойной плоской стенке представляет собой ломаную линию, причем ее угловой коэффициент (тангенс угла наклона) для каждого слоя определяется как

$$\frac{t_{\mathrm{c}i}-t_{\mathrm{c}(i+1)}}{\delta_i}=\frac{q}{\lambda_i}.$$

График температурного поля многослойной плоской стенки изображен на рис. 11-6.

Теплопередача через плоскую стенку. Теплопередачей называют теплообмен между двумя теплоносителями через разделяющую их твердую стенку. Процесс теплопередачи является комплексным и включает в себя процесс теплоотдачи от горячего теплоносителя к поверхности твердой стенки, процесс теплопроводности через твердую стенку и процесс теплоотдачи от поверхности твердой стенки к холодному теплоносителю.

Теплоотдачей называется теплообмен между жидкостью и соприкасающейся с ней поверхностью твердой стенки. Это явление весьма сложно и будет подробно рассматриваться в гл. 12, посвященной конвективному теплообмену. В процессах, которые разбираются в настоящей главе, считается, что все данные, связанные с теплоотдачей и необходимые для расчета теплопередачи, заданы в условии задачи. Здесь имеются в виду две величины: температура жидкости и коэффициент теплоотдачи.

Температура жидкости t_{m} — это осредненная по объему температура жидкой среды (капельной жидкости или газа), взятая на таком удалении от стенки, где тепловое влияние последней не сказывается. Пусть, например, имеется сосуд с нагретой жидкостью; жидкость неподвижна и температурное поле в ней однородно.

Вокруг сосуда находится воздух с более низкой температурой и жидкость в сосуде в связи с этим охлаждается; при этом, в частности, происходит процесс теплоотдачи от жидкости в сосуде к внутренней поверхности его стенки. Если на эту поверхность поместить измеритель температуры (например, термопару), то она измерит температуру стенки t_c . Будем передвигать измеритель от стенки в объем жидкости; при этом он будет фиксировать возрастающую температуру $t > t_c$ до тех пор, пока не исчезнет тепловое влияние холодной стенки. При дальнейшем передвижении измерителя устаноки. При дальнейшем передвижении измерителя устано-вится постоянное значение температуры, которое и принимается за температуру жидкости t_{m} . Плотность теплового потока в процессе теплоотдачи определяется за коном Ньютона — Рихмана, со-

гласно которому величина q пропорциональна разности между температурой жидкости и температурой стенки:

$$q = \alpha(t_{\rm H} - t_{\rm c}).$$
 (11-12)

Коэффициентом пропорциональности в этом выраже-нии служит коэффициент теплоотдачи а. Ко-эффициент теплоотдачи — это основная количественная характеристика интенсивности переноса теплоты от жид-кости к поверхности стенки (или от поверхности стенки к жидкости). Коэффициент теплоотдачи зависит от це-лого ряда факторов, связанных в основном с процессом движения жидкости и ее физическими свойствами; движения жидкости и ее физическими свойствами; влияние этих факторов на процесс теплоотдачи и на коэффициент теплоотдачи подробно рассматривается в гл. 12. Коэффициент теплоотдачи численно равен коли-честву теплоты, переносимому в единицу времени через единицу поверхности стенки при разности температур между жидкостью и поверхностью стенки, равной 1 К. Размерность коэффициента теплоотдачи определяется выражением (11-12):

$$[\mathbf{a}] = \frac{[q]}{[(t_{\mathbf{x}} - t_{\mathbf{c}})]} = \mathrm{Br}/(\mathrm{M}^{\mathbf{s}} \cdot \mathrm{K}).$$

Рассмотрим процесс теплопередачи через твердую стенку, удовлетворяющую условиям, перечисленным выше (рис. 11-7). Слева от стенки находится горячий теплоноситель, для которого заданы температура t_{n1} и коэффициент теплоотдачи α_1 , который не меняется вдоль поверхности. Справа от стенки имеется холодный тепло-190

носитель с температурой t_{m2} , коэффициент теплоотдачи от стенки к жидкости здесь α_2 .

Согласно закону сохранения энергии при стационарном режиме плотность теплового потока в рассматриваемой плоской стенке не изменяется вдоль *x*: к единице левой поверхности стенки от нагретой жидкости за счет теплоотдачи в единицу времени поступает количество теплоты *q*, это же количество теплоты проходит в единицу времени через единицу любой изотермической поверхно-

Рис. 11-7. Теплопередача • через плоскую стенку.

сти и, наконец, то же количество теплоты отдается от единицы правой поверхности стенки к холодной жидкости в единицу времени. В связи с этим справедливы соотношения

 $q = a_1 (t_{xx1} - t_{c1});$ $q = \frac{\lambda}{\delta} (t_{c1} - t_{c2});$ $q = a_1 (t_{c2} - t_{xx3}).$

Разделим первое и третье соотношения на α_1 и α_2 , а второе — на λ/δ и сложим все три полученных выражения. Тогда имеем следующую формулу для плотности теплового потока:

$$q = \frac{t_{\pi_1} - t_{\pi_2}}{\frac{1}{|\alpha_1|} + \frac{\delta}{\lambda} + \frac{1}{|\alpha_2|}}.$$
 (11-13)

Величин**а**

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}$$
(11-14)

называется коэффициентом теплопередачи. Коэффициент теплопередачи характеризует интенсивность теплопередачи и численно равен плотности теплового потока при разности температур теплоносителей 1 К. Измеряется коэффициент теплопередачи в тех же единицах, что и коэффициент теплоотдачи, — в Вт/(м²·K).

Величина, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередачи: она представляет собой сумму термических сопротивлений теплоотдачи 1/α₁ и 1/α₂ и термического сопротивления теплопроводности δ/λ:

$$R = \frac{1}{k} = \frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}.$$

В соответствии со сказанным термическое сопротивление многослойной плоской стенки в процессе теплопередачи равно:

$$R = \frac{1}{\alpha_1} + \sum_{l=1}^{l=n} \delta_l / \lambda_l + \frac{1}{\alpha_2}$$

а коэффициент теплопередачи

$$k = \frac{1}{\frac{1}{\alpha_1} + \sum_{i=1}^{i=n} \delta_i / \lambda_i + \frac{1}{\alpha_2}}$$

Тепловой поток Q, Вт, через твердую стенку с площадью поверхности F, м², равен:

$$Q = k(t_{m1} - t_{m2})F.$$
(11-15)

Температуры на внешних поверхностях стенки и на границе двух любых слоев в многослойной стенке определяются по формулам:

$$t_{c_1} = t_{\pi_1} - q \frac{1}{\alpha_1};$$

$$t_{c_2} = t_{\pi_1} - q \left(\frac{1}{\alpha_1} + \frac{\delta_1}{\lambda_1}\right);$$

$$t_{c(n+1)} = t_{\pi_1} - q \left(\frac{1}{\alpha_1} + \sum_{i=1}^{l=n} \frac{\delta_i}{\lambda_i}\right).$$

Пример 11-4. Кирпичная стена помещения толщиной в два кирпича (δ =510 мм) с коэффициентом теплопроводности λ = =0,8 Br/(м·K) с внутренней поверхности соприкасается с воздухом, имеющим температуру t_{m1} =18°С, коэффициент теплоотдачи к внутренней поверхности стенки a_1 =7,5 Br/(м²·K); температура наружного воздуха t_{m2} =-30°С, коэффициент теплоотдачи от наружной поверхности стены, обдуваемой ветром, a_2 =20 Br/(м²·K). Опредемить плотность q теплового потока, уходящего из помещения, а также температуры на поверхности стены t_{c1} и t_{c2} . Решение. Коэффициент теплопередачи равен:

$$k = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{7,5} + \frac{0,51}{0,8} + \frac{1}{20}} = 1,22 \text{ BT}/(M^2 \cdot \text{K}).$$

Плотность теплового потока равна:

$$q = k(t_{m1} - t_{m2}) = 1.22[18 - (-30)] = 58.6 \text{ Bt/m}^2.$$

Температуры на поверхности стенки равны: внутренняя поверхность

$$t_{c1} = t_{\pi 1} - q_{-\alpha_1}^{-1} = 18 - 58, 6 \frac{1}{7, 5} = 10, 2^{\circ}C;$$

наружная поверхность

$$t_{c2} = t_{\pi 1} - q \left(\frac{1}{\alpha_1} + \frac{\delta}{\lambda}\right) =$$

= 18 - 58.6 $\left(\frac{1}{7,5} + \frac{0,51}{0,8}\right) = -27.1^{\circ}\text{C}.$

Для уменьшения тепловых потерь из помещения стена покрыта снаружи слоем тепловой изоляции толщиной $\delta_{из}{=}50$ мм с коэффициентом теплопроводности $\lambda_{из}{=}0.08~{\rm Bt}/({\rm M}{\cdot}{\rm K})$. Определить плотность теплового потока через изолированную стенку.

Решение. Коэффициент теплопередачи равен

$$k' = \frac{1}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{\delta_{H3}}{\lambda_{H3}} + \frac{1}{\alpha_2}} = \frac{1}{\frac{1}{\frac{1}{7,5} + \frac{0,51}{0,8} + \frac{0,05}{0,08} + \frac{1}{20}}} = 0,692 \text{ Br}/(M^2 \cdot \text{K}).$$

Плотность теплового потока равна:

$$q' = k'(t_{\text{H}1} - t_{\text{H}2}) = 0.692[18 - (-30)] = 33.2 \text{ BT/M}^2.$$

Таким образом, в результате использования теплоизоляции потери теплоты существенно уменьшились на

$$\frac{58,6-33,2}{58,6} \cdot 100 = 43,4\%.$$

11-3. Теплопроводность в цилиндрической стенке

Дана цилиндрическая стенка из однородного материала с коэффициентом теплопроводности λ , не зависящим от температуры. Длина цилиндрической стенки значительно превышает ее средний диаметр, что позволяет считать стенку «бесконечно длинной». На внутренней граничной цилиндрической поверхности стенки радиусом 13—702 193

 r_1 (рис. 11-8) поддерживается температура t_{c1} , которая постоянна во времени и не меняется на поверхности. Внутренняя граничная поверхность стенки представляет собой, таким образом, изотермическую цилиндрическую поверхность со стационарной температурой. Наружная граничная поверхность стенки радиусом r_2 находится в аналогичных условиях, но ее температура равна t_{c2} , причем $t_{c2} \ll t_{c1}$.

Изотермическими поверхностями в данном случае являются цилиндрические поверхности, ось которых сов-

Рис. 11-8. Теплопроводность в цилиндрической стенке.

падает с осью цилиндрической стенки. Каждая изотермическая поверхность, расположенная от центра дальше, чем предыдущая, иметь более низкую будет температуру. Теплота не распространяется вдоль изотермических линий, поэтому будет натепловой поток правлен по радиусу. Имеет место, таким образом, одномерное температурное поле t = t(r).

Для решения задачи о теплопроводности в цилиндрической стенке установим прежде всего, как и в случае плоской стенки, закон распределения плотности тепло-

вого потока по радиусу. С этой целью применим закон сохранения энергии к рассматриваемому процессу теплопроводности. Для этого выделим в цилиндрической стенке на расстоянии r от оси слой малой толщины Δr (рис. 11-8). Рассмотрим условие теплового баланса участка цилиндрического слоя длиной l. Через внутреннюю поверхность выделенного слоя в него входит тепловой поток $q \cdot 2\pi r l$, через наружную поверхность выходит тепловой поток $q (r + \Delta r) \cdot 2\pi (r + \Delta r) l$. Тепловой поток через верхнее и нижнее основания выделенного слоя равен нулю, поскольку теплота не распространяется вдоль изотермических поверхностей. Согласно закону сохранения энергии алгебраическая сумма тепловых потоков в данном случае равна нулю (в противном случае происходило бы накопление или уменьшение теплоты в выделенном объеме, что привело бы к росту или уменьшению его температуры с течением времени, но это противоречит предварительному условию стационарности процесса):

$$q(r)f_1 + q(r + \Delta r)f_2 = 0.$$
 (11-16)

Внутреннее и наружное сечения выделенного цилиндрического слоя соответственно равны:

$$f_1 = 2\pi r l; \quad f_2 = 2\pi (r + \Delta r) l.$$
 (11-17)

Между плотностью теплового потока, входящего в цилиндрический слой, q(r) и плотностью выходящего теплового потока $q(r + \Delta r)$ имеет место следующее соотношение:

$$q(r + \Delta r) = q(r) + \frac{dq}{dr} \Delta r. \qquad (11-18)$$

Действительно, если известно значение функции yв точке x, то ее значение в близкой точке $(x + \Delta x)$ можно приближенно выразить

на основании геометрических соотношений, которые иллюстрируются рис. 11-9.

Подставим выражения (11-17) и (11-18) в выражение (11-16) и произведем необходимые преобразования; при этом необходимо отбросить член с величиной Δr^2 ввиду его малости по отношению к остальным слагаемым. Тогда получим следующее уравнение:

Рис. 11-9. Приближенное определение значения функции по заданному значению ее в соседней точке и производной.

$$\frac{dq}{dr} = -\frac{q}{r}$$
, или $\frac{dq}{q} = -\frac{dr}{r}$. (11-19)

Его интегрирование дает:

$$\ln q = -\ln r + \ln c_1;$$

здесь с₁ — постоянная интегрирования. Полученное соотношение между логарифмами можно переписать сле-13* 195 дующим образом:

$$q = \frac{c_1}{r}.$$
 (11-20)

Следовательно, плотность теплового потока в цилиндрической стенке изменяется по радиусу по закону гиперболы (пропорционально величине 1/r).

Найдем теперь выражение для температурного поля. Для этого нужно использовать закон Фурье, согласно которому

$$\frac{dt}{dr} = -\frac{q}{\lambda}.$$

Подставляя сюда значение q из выражения (11-20), получаем:

 $\frac{dt}{dr} = -\frac{c_1}{\lambda} \frac{1}{r}.$

После интегрирования приходим к следующему выражению:

$$t = -\frac{c_1}{\lambda} \ln r + c_2.$$
 (11-21)

Таким образом, температура в цилиндрической стенке меняется вдоль радиуса по закону логарифма.

Определим постоянные интегрирования c_1 и c_2 . Для этого необходимо использовать граничные условия: при $r = r_1$ имеем $t = t_{c_1}$ и при $r = r_2$ имеем $t = t_{c_2}$. Подставим эти граничные условия в выражение (11-21). Тогда получим систему из двух уравнений для определения постоянных интегрирования c_1 и c_2 :

$$t_{c_1} = -\frac{c_1}{\lambda} \ln r_1 + c_2;$$

$$t_{c_2} = -\frac{c_1}{\lambda} \ln r_2 + c_2.$$

Решив эту систему двух уравнений относительно c₁ и c₂, получим:

$$c_{1} = \frac{t_{c_{1}} - t_{c_{2}}}{\frac{1}{\lambda} \ln \frac{r_{2}}{r_{1}}}; \quad c_{2} = t_{c_{1}} - (t_{c_{1}} - t_{c_{2}}) \frac{\ln r_{1}}{\ln \frac{r_{2}}{r_{1}}}.$$

Подставим значения постоянных интегрирования в уравнение (11-32), тогда получим уравнение темпера-196 Зная световое сопротивление R_{св} фоторезистора при макситурного поля:

$$t = t_{c_1} - (t_{c_1} - t_{c_2}) \frac{\ln \frac{r}{r_1}}{\ln \frac{r_2}{r_1}},$$

или

$$t = t_{c_1} - (t_{c_1} - t_{c_2}) \frac{\ln \frac{d}{d_1}}{\ln \frac{d_2}{d_1}}.$$
 (11-22)

График температурного поля (логарифмическая кривая) приведен на рис. 11-8.

Относительная сложность температурного поля в цилиндрической стенке по сравнению с плоской (логарифмическая кривая по сравнению с прямой линией) связана с изменением плотности теплового потока вдоль радиуса. Вспомним, что в плоской стенке плотность теплового потока не изменяется вдоль оси *х*. Выражение для плотности теплового потока в цилиндрической стенке можно получить, подставив найденное значение постоянной *c*₁ в выражение (11-20):

$$q = \frac{t_{c_1} - t_{c_2}}{\frac{1}{\lambda} \ln \frac{r_2}{r_1}} \frac{1}{r} .$$
 (11-23)

Физический смысл закона изменения плотности теплового потока вдоль радиуса цилиндрической стенки состоит в следующем. Согласно закону сохранения энергии через последовательно расположенные изотермические поверхности в единицу времени проходит одно и то же количество теплоты, но площадь этих поверхностей с увеличением радиуса становится все больше, поэтому плотность теплового потока падает. Уменьшению плотности теплового потока соответствует уменьшение градиента температуры dt/dr. Геометрическим отражением этого факта является приближение касательной, проведенной через какую-либо точку температурной кривой, к горизонтальному положению по мере того, как эта точка перемещается от внутренней поверхности цилиндрической стенки к наружной (рис. 11-8). Поэтому температурная кривая обращена выпуклостью вниз.

Если на практике возникает необходимость рассчитать количество теплоты, проходящее через цилиндрическую стенку в единицу времени, то пользоваться соотношением типа Q = qF (как для плоской стенки) неудобно, поскольку определенной поверхности (например, внутренней или наружной) будет соответствовать свое значение плотности теплового потока. Поэтому принято определять количество теплоты, которое проходит за единицу времени через цилиндрическую стенку, длина которой равна единице; это количество теплоты носит название линейной плотности теплового потока q_l и измеряется в Bт/м:

$$q_l = \frac{Q}{l} = q \cdot 2\pi r. \tag{11-24}$$

Как и для случая плоской стенки, согласно закону сохранения энергии тепловой поток Q и линейная плотность теплового потока q_l не меняются вдоль радиуса, поскольку при стационарном режиме в единицу времени через любую изотермическую поверхность трубы определенной длины проходит одно и то же количество теплоты.

Подставив значение плотности теплового потока *q* в выражение (11-24), получим расчетную формулу для линейной плотности теплового потока:

$$q_{l} = \frac{\pi (t_{c1} - t_{c2})}{\frac{1}{2\lambda} \ln \frac{d_{2}}{d_{1}}} = \frac{\pi (t_{c1} - t_{c2})}{2,303 \frac{1}{2\lambda} \log \frac{d_{2}}{d_{1}}} .$$
(11-25)

Имея выражение для q_l, можно следующим образом записать формулы для плотности теплового потока:

на внутренней поверхности трубы

$$q_{1} = \frac{2\lambda (t_{c1} - t_{c2})}{d_{1} \ln \frac{d_{2}}{d_{1}}}$$

и на наружной поверхности трубы

$$q_{2} = \frac{2\lambda (t_{c1} - t_{c2})}{d_{2} \ln \frac{d_{2}}{d_{1}}}$$

Знаменатель в правой части формулы (11-25)

$$\frac{1}{2\lambda} \ln \frac{d_2}{d_1}$$

называется термическим сопротивлением теплопроводности цилиндрической стенки.

Многослойная цилиндрическая стенка. Метод расчета теплопроводности многослойной цилиндрической стенки строится на тех же принципах, что и для плоской многослойной стенки. Однако в случае цилиндрической стенки плотность теплового потока q(r) не сохраняется постоянной по толщине, таким свойством обладает линейная плотность теплового потока $q! \neq f(r)$. Пусть задана трехслойная цилиндрическая стенка (рис. 11-11) с известными диаметрами поверхностей каждого слоя, коэффициентами теплопроводности каждого слоя и температурами t_{c1} н t_{c4} . Стыки между отдельными слоями считаются достаточно плотными, так что соприкасающиеся поверхности соседних слоев имеют одну и ту же температуру. Запишем выражения линейной плотности теплового потока для отдельных слоев:

$$q_{l} = \frac{\pi (t_{c_{1}} - t_{c_{2}})}{\frac{1}{2\lambda_{1}} \ln \frac{d_{2}}{d_{1}}};$$

$$q_{l} = \frac{\pi (t_{c_{2}} - t_{c_{3}})}{\frac{1}{2\lambda_{2}} \ln \frac{d_{3}}{d_{2}}};$$

$$q_{l} = \frac{\pi (t_{c_{3}} - t_{c_{4}})}{\frac{1}{2\lambda_{3}} \ln \frac{d_{4}}{d_{3}}}.$$

Эти выражения можно переписать следующим образом:

$$\frac{\frac{1}{\pi} q_{l} \frac{1}{2\lambda_{1}} \ln \frac{d_{2}}{d_{1}} = t_{c_{1}} - t_{c_{2}};}{\frac{1}{\pi} q_{l} \frac{1}{2\lambda_{2}} \ln \frac{d_{3}}{d_{2}}} = t_{c_{2}} - t_{c_{3}};}$$
$$\frac{\frac{1}{\pi} q_{l} \frac{1}{2\lambda_{3}} \ln \frac{d_{4}}{d_{3}}}{= t_{c_{3}} - t_{c_{4}}}.$$

Сложим полученные уравнения:

$$\frac{1}{\pi} q_l \left(\frac{1}{2\lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{2\lambda_2} \ln \frac{d_3}{d_2} + \frac{1}{2\lambda_3} \ln \frac{d_4}{d_3} \right) = t_{c_1} - t_{c_4}.$$

Отсюда можно найти выражение для линейной плотности теплового потока через цилиндрическую стенку:

$$q_{l} = \frac{\pi (t_{c_{1}} - t_{c_{4}})}{\frac{1}{2\lambda_{1}} \ln \frac{d_{2}}{d_{1}} + \frac{1}{2\lambda_{2}} \ln \frac{d_{3}}{d_{2}} + \frac{1}{2\lambda_{3}} \ln \frac{d_{4}}{d_{3}}}.$$
 (11-26)

Если стенка состоит из большего числа слоев, метод принципиально не изменяется. Для многослойной цилиндрической стенки, составленной из *n* слоев, выражение линейной плотности теплового потока будет иметь следующий вид:

$$q_{i} = \frac{\pi \left(t_{c1} - t_{c(n+1)} \right)}{\sum_{i=1}^{n} \frac{1}{-2\lambda_{i}} \ln \frac{d_{i+1}}{d_{i}}}; \qquad (11-27)$$

здесь в знаменателе — полное термическое сопротивление теплопроводности многослойной цилиндрической стенки.

Как и в случае расчета теплопроводности через многослойную плоскую стенку, здесь также можно использовать понятие эквивалентного коэффициента теплопроводности. При этом реальная многослойная цилиндрическая стенка заменяется воображаемой однослойной по условию эквивалентности термического сопротивления:

$$\sum_{i=1}^{l=n} \frac{1}{2\lambda_i} \ln \frac{r_{l+1}}{r_l} = \frac{1}{2\lambda_{\text{SKB}}} \ln \frac{r_{n+1}}{r_1}.$$

Отсюда получаем выражение для эквивалентного коэффициента теплопроводности:

$$\lambda_{\text{SKB}} = \frac{\ln \frac{r_{n+1}}{r_1}}{\sum_{i=1}^{i=n} \frac{1}{2\lambda_i} \ln \frac{r_{i+1}}{r_i}} .$$
 (11-28)

Таким образом, эквивалентный коэффициент теплопроводности зависит от радиусов отдельных слоев и их коэффициентов теплопроводности.

Температуру на границах между отдельными слоями можно определить по формулам

График температурного поля в многослойной цилиндрической стенке приведен на рис. 11-10.

Пример 11-5. Змеевики пароперегревателя выполнены из труб жароупорной стали днаметром $d_1/d_2 = 32/42$ мм с коэффициентом теплопроводности $\lambda = 14$ Вт/(м·К). Температура внешней поверхности трубы $t_{c2} = 580^{\circ}$ С и внутренней поверхности $t_{c1} = 450^{\circ}$ С. Определить линейную плотность теплового потока q_i .

Решение. Линейная плотность теплового потока определяется по формуле (11-25):

$$q_{l} = \frac{\pi (t_{c1} - t_{c2})}{\frac{1}{2\lambda} \ln \frac{d_{2}}{d_{1}}} = \frac{3,14 (450 - 580)}{\frac{1}{2 \cdot 14} 2,303 \ln \frac{42}{32}} = -42\,100 \text{ Br/m.}$$

В последнем выражении использовано соотношение между натуральным и десятичным логарифмом:

$$\ln \frac{d_2}{d_1} = 2,303 \lg \frac{d_2}{d_1}$$

Знак минус, с которым получено значение линейной плотности теплового потока, означает, что тепловой поток направлен внутрь трубы, в то время как формула (11-17) получена для положительного направления теплового потока из трубы.

Пример 11-6. Стальной трубопровод днаметром d_1/d_2 =100/110 мм с коэффициентом теплопроводности λ_1 =50 Вт/(м·К) покрыт изоляцией в два слоя одинаковой толщины δ_2 = δ_3 =50 мм. Первый слой изоляции, накладываемый на поверхность трубы, выполнен из материала с коэффициентом теплопроводности λ_2 =0,06 Вт/(м·К), второй слой — из материала с коэффициентом теплопроводности λ_3 =0,12 Вт/(м·К). Температура внутренней поверхности трубы t_{c1} =250°С, температура наружной поверхности изоляции t_{c4} =50°С. Определить тепловые потери с единицы длины трубы.

Рис. 11-10. Многослойная цилиндрическая стенка.

Решение. Тепловые потери с 1 м трубы представляют собой линейную плотность теплового потока через трехслойную стенку и определяются выражением (11-26):

$$q_{l} = \frac{\pi (t_{c1} - t_{c4})}{\frac{1}{2\lambda_{1}} \ln \frac{d_{2}}{d_{1}} + \frac{1}{2\lambda_{2}} \ln \frac{d_{3}}{d_{2}} + \frac{1}{2\lambda_{3}} \ln \frac{d_{4}}{d_{3}}} = \frac{3,14 \ (250 - \frac{1}{2\cdot50} \ 2,303 \ \lg \frac{110}{100} + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} + \frac{1}{2\cdot0} \rightarrow \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} \ + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} \ + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} \ + \frac{1}{2\cdot0,06} \ 2,303 \ \lg \frac{110 + 2 \cdot 50}{110} \ + \frac{1}{2\cdot0,06} \$$

$$\rightarrow \frac{-50}{+\frac{1}{2\cdot0,12} + 2\cdot303 \log \frac{110 + 2\cdot50 + 2\cdot50}{110 + 2\cdot50}} = \frac{3,14\cdot200}{0,97\cdot10^{-8} + 5,38 + 1,63} = 89,5 \text{ BT/M}.$$

Из расчета видно, что металлическая стенка обладает ничтожным термическим сопротивлением по сравнению со слоями теплоизоляционного материала.

Можно определить также температуру tes на стыке двух слоев изоляции:

$$t_{c_3} = t_{c_1} - \frac{1}{\pi} q_l \left(\frac{1}{2\lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{2\lambda_2} \ln \frac{d_3}{d_2} \right) =$$

= 250 - $\frac{1}{3.14}$ 89,5 (0,97 \cdot 10^{-3} + 5,38) = 97°C.

Поменяем теперь слои изоляции местами: непосредственно на трубу будет наложен слой с $\lambda_3 = 0.12 \text{ Br}/(\text{M} \cdot \text{K})$, а наружным станет слой с $\lambda_2 = 0.06 \text{ Br}/(\text{M} \cdot \text{K})$. В этом случае линейная плотность теплового потока будет равна:

$$q_{l} = \frac{\pi (t_{c1} - t_{c4})}{\frac{1}{2\lambda_{1}} \ln \frac{d_{2}}{d_{1}} + \frac{1}{2\lambda_{3}} \ln \frac{d_{3}}{d_{2}} + \frac{1}{2\lambda_{2}} \ln \frac{d_{4}}{d_{3}}} = \frac{3,14 \ (250 - 50)}{0,97 \cdot 10^{-3} + 2,69 + 3,26} = 105,5 \text{ BT/M.}$$

Температура t_{c3} на стыке двух слоев изоляции также изменится:

$$t_{c_3} = t_{c_1} - \frac{1}{\pi} q_l \left(\frac{1}{2\lambda_1} \ln \frac{d_2}{d_1} + \frac{1}{2\lambda_3} \ln \frac{d_3}{d_2} \right) =$$

= 250 - $\frac{1}{3,14}$ 105,5 (0,97 \cdot 10^{-3} + 2,69) = 159°C.

Рис. 11-11. К примеру 11-6.

Таким образом, тепловые потери после перестановки слоев изотяции возросли примерно на (105,5-89,5)/89,5=17,9%. Температура t_{c3} возросла на 62°С. График температуры для двух вариантов расположения изоляции изображен на рис. 11-11.

Рассмотренное явление характерно для цилиндрической стенки. Плотность теплового потока q(r) уменьшается по мере удаления от поверхности металлической трубы. В области большой плотности теплового потока необходимо ставить хорошую изоляцию (первый вариант), та же изоляция, установленная в области с малой плотностью теплового потока, работает менее эффективно. Вот почему тепловые потери возрастают. Следует отметить, что подобное явление не произойдет, если поменять местами слои теплоизоляции в плоской стенке, где плотность теплового потока не меняется по толщине.

Теплопередача через цилиндрическую стенку. Весьма распространенным элементом теплообменных устройств

является труба. В этом случае теплоносители разделены цилиндрической стенкой. Рассмотрим процесс теплопередачи через цилиндрическую стенку (рис. 11-12); стенка удовлетворяет условиям, изложенным выше.

Цилиндрическая стенка изнутри омывается жидкостью с температурой t_{m1} , теплоотдача от жидкости к стенке характеризуется коэффициентом теплоотдачи α_1 , с на-

Рис. 11-12. Теплопередача через цилиндрическую стенку.

ружной стороны аналогичным образом заданы величины t_{m2} и α_2 . Линейная плотность теплового потока имеет одно и то же значение на внутренней поверхности цилиндрической стенки с радиусом r_1 , внутри цилиндрической стенки для любого текущего значения радиуса $r_1 < r < r_2$ и на наружной поверхности стенки с радиусом r_2 . В связи с этим можно записать следующие выражения:

$$q_{l} = a_{1}\pi d_{1}(t_{m1} - t_{c1});$$

$$q_{l} = \frac{\pi (t_{c1} - t_{c2})}{\frac{1}{2\lambda} \ln \frac{d_{2}}{d_{1}}};$$

$$q_{l} = a_{2}\pi d_{2}(t_{c2} - t_{m2}).$$

Представим эти выражения в следующем виде:

$$t_{x1} - t_{c1} = \frac{q_l}{\pi} \frac{1}{a_1 d_1};$$

$$t_{c1} - t_{c2} = \frac{q_l}{\pi} \frac{1}{2\lambda} \ln \frac{d_2}{d_1};$$

$$t_{c2} - t_{x2} = \frac{q_l}{\pi} \frac{1}{a_2 d_2}.$$

Сложим написанные выше соотношения и найдем величину [q₁:

$$q_{I} = \frac{t_{\mathcal{H}1} - t_{\mathcal{H}2}}{\frac{1}{a_{1}d_{1}} + \frac{1}{2\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{1}{a_{2}d_{2}}}; \qquad (11-29)$$

здесь величина

$$\boldsymbol{k}_{l} = \frac{1}{\frac{1}{\boldsymbol{\alpha}_{1}\boldsymbol{d}_{1}} - \frac{1}{2\lambda}\ln\frac{d_{2}}{d_{1}} + \frac{1}{\boldsymbol{\alpha}_{2}d_{2}}}$$

называется линейным коэффициентом теплопередачи, единица измерения его — Вт/(м·К). Линейный коэффициент теплопередачи численно равен количеству теплоты, которое проходит в единицу времени через цилиндрическую стенку длиной 1 м при разности температур теплоносителей 1 К.

Величина

$$R_{l} = \frac{1}{\alpha_{1}d_{1}} + \frac{1}{2\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{1}{\alpha_{2}d_{2}}$$
(11-30)

называется линейным термическим сопротивление теплопередачи и определяется как сумма термических сопротивлений теплоотдачи $1/\alpha_1 d_1$ и $1/\alpha_2 d_2$ и термического сопротивления теплопроводности $\frac{1}{2\lambda} \ln \frac{d_2}{d_2}$. Следует подчеркнуть одну особенность термического сопротивления для цилиндрической стенки: это термическое сопротивление зависит не только от коэффициента теплоотдачи (как в случае плоской стенки), но и от диаметра соответствующей поверхности. Это означает, что при сохранении коэффициента теплоотдачи неизменным термическое сопротивление лермическое сопротивление теллоотдачи неизменным термическое сопротивление лермическое сопротивление теплоотдачи неизменным термическое сопротивление теплоотдачи неизменным термическое сопротивление лерми

мер, уменьшаться с увеличением ее диаметра.

Тепловой поток Q, Вт, определяется выражением

$$Q = k_l (t_{m1} - t_{m2}) l. \tag{11-31}$$

Для многослойной цилиндрической стенки линейный коэффициент теплопередачи определяется выражением

$$k_{l} = \frac{1}{\frac{1}{\alpha_{1}d_{1}} + \sum_{i=1}^{l} \frac{1}{2\lambda_{i}} \ln \frac{d_{i+1}}{d_{i}} + \frac{1}{\alpha_{2}d_{2}}}, \quad (11-32)$$

которое предлагаем получить самим учащимся.

Температуры на внешних поверхностях стенки и на границе любых двух слоев в многослойной цилиндрической стенке рассчитывают по формулам

$$t_{c_{1}} = t_{\pi_{1}} - \frac{q_{l}}{\pi} \frac{1}{\alpha_{1}d_{1}};$$

$$t_{c_{2}} = t_{\pi_{1}} - \frac{q_{l}}{\pi} \left(\frac{1}{\alpha_{1}d_{1}} + \frac{1}{2\lambda_{1}} \ln \frac{d_{2}}{d_{1}} \right);$$

$$t_{c(n+1)} = t_{\pi_{1}} - \frac{q_{l}}{\pi} \left(\frac{1}{\alpha_{1}d_{1}} + \sum_{i=1}^{i=n} \frac{1}{2\lambda_{i}} \ln \frac{d_{i+1}}{d_{i}} \right).$$

Пример 11-7. Поверхность нагрева парогенератора выполнена из труб с внутренним диаметром $d_1 = 70$ мм и наружным $d_2 = 80$ мм. Температура дымовых газов, омывающих трубу снаружи, $t_{w2} = 1000^{\circ}$ С, коэффициент теплоотдачи от газов к наружной поверхности трубы $a_2 = 100$ Вт/(м²·K). Температура килящей воды внутри труб $t_{w1} = 200^{\circ}$ С, коэффициент теплоотдачи от внутренней поверхности трубы к воде $a_1 = 5000$ Вт/(м²·K). Коэффициент теплопроводности материала стенки трубы $\lambda = 50$ Вт/(м·K). В процессе эксплуатации поверхность нагрева парогенератора со стороны дымовых газов покрылась слоем сажи толщиной $\delta_c = 1$ мм [$\lambda_c = 0.98$ Вт/(м·K)]. и со стороны воды — слоем накипи толщиной $\delta_n = 2$ мм [$\lambda_m = 0.8$ Вт/(м·K)].

Сравнить теплопередачу через чистую стенку трубы и через загрязненную стенку.

Решение. Линейный коэффициент теплопередачи для чистой поверхности нагрева парогенератора

$$k_{I} = \frac{1}{\frac{1}{\alpha_{1}d_{1}} + \frac{1}{2\lambda} 2,303 \text{ lg } \frac{d_{2}}{d_{1}} + \frac{1}{\alpha_{2}d_{2}}} = \frac{1}{\frac{1}{5000 \cdot 0,070} + \frac{1}{2 \cdot 50} 2,303 \frac{80}{70} + \frac{1}{100 \cdot 0,080}} = 7,75 \text{ Br/(M·K)}.$$

Линейная плотность теплового потока для чистой поверхности напрева парогенератора

 $q_l = k_l \pi (t_{m2} - t_{m1}) = 7,75 \cdot 3,14 \cdot (1000 - 200) = 19500 \text{ Bt/m}.$

Линейный коэффициент теплопередачи для загрязненной поверхности нагрева парогенератора

$$k'_{l} = \frac{1}{\frac{1}{\alpha_{1}d_{1}} + \frac{1}{2\lambda_{H}} 2,303 \, \lg \frac{d_{1}}{(d_{1} - 2\delta_{H})} + \frac{1}{2\lambda} 2,303 \, \lg \frac{d_{2}}{d_{1}} + \frac{1}{2\lambda_{L}} 2,303 \, \lg \frac{d_{2}}{d_{1}} + \frac{1}{2\lambda_{L}} 2,303 \, \lg \frac{d_{2}}{d_{2}} + \frac{1}{\alpha_{2}d_{2}} = \frac{1}{\frac{1}{5000 \cdot 0,070} + \frac{1}{2 \cdot 0,8} \times \frac{1}{2 \cdot 0,8} \times \frac{1}{2 \cdot 0,08} \times \frac{1}{2 \cdot 0,0$$

Линейная плотность теплового потока для загрязненной коверхности нагрева парогенератора

 $q'_{l}=k'_{l}\pi(t_{m2}-t_{m1})=3,15\cdot3,14\cdot(1000-200)=7900$ BT/M.

Таким образом, в результате загрязнения поверхности нагрева парогенератора линейная плотность теплового потока уменьшилась на

 $\frac{19\,500-7900}{19\,500}\cdot 100 = 59,5\,\%.$

11-4. Теплопроводность в шаровой стенке

Пусть имеется, например, сосуд в форме полого шара; необходимо определить количество теплоты, которое уходит в единицу времени через единицу поверхности шаровой стенки и через всю поверхность. Задана тем-

Рис. 11-13. Теплопроводность в шаровой стенке. пература на внутренней поверхности шаровой стенки — при $r = r_1$ имеем $t = t_{c1}$, а также температура на наружной поверхности — при $r = r_2$ имеем $t = t_{c2}$. Задан также коэффициент теплопроводности материала, из которого изготовлен полый шар. Температуры на поверхностях шаровой стенки не изменяются при переходе от точки к точке (рис. 11-13).

Изотермическими поверхностями в рассматриваемом случае будут

сферы с текущим радиусом r, причем $r_1 < r < r_2$. Тепловой поток Q через каждую изотермическую поверхность имеет одну и ту же величину — это является следствием закона сохранения энергии. На основании этого можно получить закон изменения плотности теплового потока вдоль радиуса шаровой стенки:

$$q = \frac{Q}{4\pi} \frac{1}{r^2}.$$
 (11-33)

Таким образом, плотность теплового потока вдоль радиуса шаровой стенки меняется обратно пропорционально квадрату радиуса.

Согласно закону Фурье

$$\frac{dt}{dr} = -\frac{q}{\lambda} = -\frac{Q}{4\pi\lambda} \frac{1}{r^2}.$$

После интегрирования имеем:

$$t = \frac{Q}{4\pi\lambda} \frac{1}{r} + c.$$
 (11-34)

Следовательно, температура вдоль радиуса шаровой стенки изменяется по закону гиперболы (пропорционально 1/r).

Постоянную интегрирования найдем из граничного условия: при $r = r_1$ имеем $t = t_{c1}$. Подставив ее значение в (11-34), получим следующее выражение для температурного поля в шаровой стенке:

$$t = t_{c_1} - \frac{Q}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r}\right).$$
 (11-35)

Это выражение, в частности, справедливо и для наружной поверхности стенки, где $r_1 = r_2$ и $t = t_{c2}$:

$$t_{c2} = t_{c_1} - \frac{Q}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$

Отсюда находим выражение для теплового потока в зависимости от параметров, заданных в качестве исходных данных в условии задачи:

$$Q = \frac{4n\lambda (t_{c1} - t_{c2})}{\left(\frac{1}{r_1} - \frac{1}{r_2}\right)} = \frac{2n\lambda (t_{c1} - t_{c2})}{\left(\frac{1}{d_1} - \frac{1}{d_2}\right)}.$$
 (11-36)

Теплопередача через шаровую стенку. Внутри полого шара имеется жидкость с температурой t_{m1} , коэффициент теплоотдачи от этой жидкости к внутренней поверхности шаровой стенки равен α_1 ; на наружной поверхности заданы соответственно величины t_{m2} и α_2 .

Согласно закону сохранения энергии при стационарном процессе теплопередачи к внутренней поверхности шаровой стенки в единицу времени подводится количество теплоты Q, это же количество теплоты проходит в единицу времени через изотермические поверхности с текущим радиусом r, $r_1 < r < r_2$ и такое же количество теплоты отводится от наружной поверхности ко второй жидкости. На основании этого можно записать соотношения:

$$Q = \alpha_{1} (t_{xx1} - t_{c1}) \cdot 4\pi r^{2};$$

$$Q = \frac{\pi (t_{c1} - t_{c2})}{\frac{1}{4\lambda} \left(\frac{1}{r_{1}} - \frac{1}{r_{2}}\right)};$$

$$Q = \alpha_{2} (t_{c2} - t_{x2}) \cdot 4\pi r^{2}.$$

Отсюда получаем выражение для теплового потока через шаровую стенку в процессе теплопередачи:

$$Q = \frac{\pi (t_{\pi 1} - t_{\pi 2})}{\frac{1}{4\alpha_1 r_1^2} + \frac{1}{4\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) + \frac{1}{4\alpha_2 r_2^2}}; \qquad (11.37)$$

здесь величина

$$k_{\rm III} = \frac{1}{\frac{1}{4\alpha_1 r^2_1} + \frac{1}{4\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) + \frac{1}{4\alpha_2 r^2_2}}$$
(11-38)

носит название коэффициента теплопередачи шаровой стенки и представляет собой обратную величину по отношению к суммарному термическому сопротивлению шаровой стенки. Как и в случае цилиндрической стенки, термическое сопротивление теплоотдачи шаровой стенки определяется не только коэффициентом теплоотдачи, но и квадратом радиуса поверхности теплоотдачи (т. е. площадью поверхности).

Если рассмотреть процесс теплопередачи через многослойную шаровую стенку, то путем анализа, основан-208 ного на применении закона сохранения энергии, можнополучить следующую формулу для теплового потока:

$$Q = \frac{\pi (t_{\pi 1} - t_{\pi 2})}{\frac{1}{4\alpha_1 r_1^2} + \sum_{i=1}^{i=n} \frac{1}{4\lambda_i} \left(\frac{1}{r_i} - \frac{1}{r_{i+1}}\right) + \frac{1}{4\alpha_2 r_2^2}}; \quad (11-39)$$

здесь величина $\sum_{i=1}^{i=n} \frac{1}{-4\lambda_i} \left(\frac{1}{r_i} - \frac{1}{r_{i+1}} \right)$ представляет собой

суммарное термическое сопротивление теплопроводности шаровой стенки.

Аналогично тому, как это было сделано в предыдущих случаях, можно ввести эквивалентный коэффициент теплопроводности по соотношению

$$\sum_{i=1}^{i=n} \frac{1}{\lambda_i} \left(\frac{1}{r_i} - \frac{1}{r_{i+1}} \right) = \frac{1}{\lambda_{\mathfrak{H}\mathfrak{B}}} \left(\frac{1}{r_1} - \frac{1}{r_{n+1}} \right).$$

Отсюда эквивалентный коэффициент теплопроводности: равен:

$$\lambda_{\text{SKB.III}} = \frac{\left(\frac{1}{ir_{1}} - \frac{1}{r_{n+1}}\right)}{\sum_{i=1}^{i=n} \frac{1}{\lambda_{i}} \left(\frac{1}{r_{i}} - \frac{1}{r_{i+1}}\right)} .$$
 (11-40).

Выше были рассмотрены методы расчета теплопроводности в плоской стенке и в двух криволинейных стенках — цилиндрической и шаровой. Основной особенностью этих криволинейных стенок являлось то обстоятельство, что плотность теплового потока q по их толщине не оставалась постоянной (как для плоской стенки), а изменялась по соответствующему закону: по закону гиперболы для цилиндрической стенки и обратно пропорционально квадрату радиуса для шаровой стенки. Физический смысл этого явления заключается в том, что количество теплоты по толщине стенки не изменяется (величина q_l для цилиндрической стенки и величина Q — для шаровой), а изотермические поверхности, по которым рассчитывается q, становятся больше с увеличением текущего радиуса.

14-702

209°

В технической практике рассмотренные криволинейные стенки часто имеют относительно небольшую толщину, т. е. отношение d_2/d_1 несущественно отличается от единицы. В этом случае изменение изотермической поверхности вдоль радиуса незначительно и величины

Рис. 11-14. К упрощенному расчету теплопроводности в цилиндрической стенке.

$$q_{\mu} = \frac{q_l}{2\pi r}; \quad q_{\mu} = \frac{Q}{4\pi r^2}$$

изменяются не слишком сильно. При этом криволинейные стенки приближаются с точки зрения теплопроводности к плоской стенке, у которой величина *q* строго постоянна по толщине. Следовательно, возникает возможность использовать простые расчетные формулы плоской стенки для цилиндрической и шаровой стенок.

Термическое сопротивление теплопроводности плоской стенки равно δ/λ. Термическое сопротивление цилиндрической стенки равно:

$$\frac{1}{2\lambda} \ln \frac{d_2}{d_1}$$

Обратимся к рис. 11-14, где представлена зависимость $\ln \frac{d_2}{d_1} = f\left(\frac{d_2}{d_1}\right)$. Логарифмическая функция проходит через нуль при $d_2/d_1=1$, ее производная в этой точке равна единице, в чем можно убедиться непосредственной проверкой. Следовательно, касательная в этой точке проходит под углом 45° и является биссектрисой координатного угла. Из рисунка видно, что

$$\ln\frac{d_2}{d_1}\approx\frac{d_2}{d_1}-1,$$

причем это равенство соблюдается тем точнее, чем ближе отношение диаметров к единице. Таким образом, можно преобразовать выражение для термического сопротивления цилиндрической стенки следующим образом:

$$\frac{1}{2\lambda}\ln\frac{d_2}{d_1}\approx\frac{1}{2\lambda}\left(\frac{d_2}{d_1}-1\right)=\frac{\delta}{\lambda}\frac{1}{d_p},$$

где $d_{\rm p}$ — расчетный диаметр. 210 При этом выражение для линейной плотности теплового потока примет следующий вид:

$$q = \frac{\pi \left(t_{c_1} - t_{c_2} \right)}{\frac{1}{2\lambda} \ln \frac{d_2}{d_1}} \approx \frac{t_{c_1} - t_{c_2}}{\lambda} \pi d_p.$$
(11-41)

Термическое сопротивление теплопроводности шаровой стенки равно:

$$\frac{1}{4\lambda}\left(\frac{1}{r_1}-\frac{1}{r_2}\right).$$

При условии $r_1 \approx r_2$ имеем следующие соотношения:

$$\frac{1}{4\lambda}\left(\frac{1}{r_1}-\frac{1}{r_2}\right)=\frac{1}{4\lambda}\left(\frac{r_2-r_1}{r_1r_2}\right)\approx\frac{\delta}{\lambda}\frac{1}{d^2_p}.$$

При этом выражение для теплового потока через ша-ровую стенку примет следующий вид:

$$Q = \frac{\pi (t_{c1} - t_{c2})}{\frac{1}{4\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)} \approx \frac{t_{c1} - t_{c2}}{\frac{\delta}{\lambda}} \pi d_p^2.$$
 (11-42)

Величина d_p в формулах (11-41) и (11-42) представляет собой специально подобранный расчетный диаметр криволинейной стенки; подбирают его с таким расчетом, чтобы ошибка, вносимая применением приближенной формулы, была минимальной. Анализ выражений (11-41) и (11-42) показывает, что в случае цилиндрической стенки в качестве расчетного диаметра следует брать средний логарифмический диаметр, а в случае шаровой стенки — средний геометрический диаметр; в этом случае вносимая ошибка равна нулю, однако определение расчетного диаметра связано по сути дела с такими же вычислениями, как и использование точной формулы. Поскольку различие между d_2 и d_1 в рассматриваемом случае невелико, то правило осреднения не имеет решающего значения и можно использовать самое простое осреднение — арифметическое. Таким образом, расчетный диаметр находят как среднее арифметическое значение:

$$d_{\rm p} = \frac{1}{2} (d_{\rm 1} + d_{\rm 2}).$$

При этом можно использовать приближенные формулы плоской стенки для расчета теплопроводности 14* 211 в цилиндрической стенке с $d_2/d_1 \leq 2,0$ и в шаровой стенке с $d_2/d_1 \leq 1,5$; ошибка в обоих случаях не будет превышать 4%.

Приближенные формулы (11-41) и (11-42) можно применять и для приближенного расчета теплопередачи через криволинейные стенки. Для того чтобы уменьшить ошибку, руководствуются следующим правилом: в качестве расчетного диаметра d_p выбирают диаметр той поверхности, на которой коэффициент теплоотдачи а имеет минимальное значение: $d_p=d_1$ при $a_1\ll a_2$; $d_p=d_2$ при $a_2\ll a_1$. Если же коэффициенты теплоотдачи с двух сторон криволинейной стенки имеют примерно одинаковое значение, то принимают $d_p=\frac{1}{2}(d_1+d_2)$.

Применительно к процессу теплопередачи формулы (11-41) и (11-42) переходят в следующие выражения:

$$q_l = q_{\mathbf{n},\mathbf{n}} \pi d_{\mathbf{p}}; \ Q = q_{\mathbf{n},\mathbf{n}} \pi d_{\mathbf{p}}^*,$$

где

$$q_{\mathbf{u}_{n}} = \frac{t_{\mathbf{x}_{1}} - t_{\mathbf{x}_{2}}}{\frac{1}{\alpha_{1}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{2}}}; \quad \delta = \frac{1}{2} (d_{\mathbf{z}} - d_{\mathbf{1}}).$$

Пример 11-8. Для условий, изложенных в примерах 11-5 и 11-7, определить тепловой поток через цилиндрическую стенку по упрощенным формулам.

Решение. В примере 11-5 рассматривается цилиндрическая стенка с d_1 =32 мм и d_2 =42 мм. Отношение d_2/d_1 =42/32=1,31, следовательно, можно использовать приближенную формулу.

Толшина стенки трубы $\delta = \frac{1}{2} (d_2 - d_1) = \frac{1}{2} (42 - 32) = 5$ мм.

Линейная плотность теплового потока равна:

$$q_{l} = \frac{t_{c1} - t_{c2}}{\frac{\delta}{\lambda}} \pi d_{p} = \frac{\frac{580 - 450}{0,005}}{\frac{1}{14}} \cdot 3,14 \cdot 0,037 = 42\ 300\ \text{Bt/m}^{2}.$$

Расхождение со значением, определенным по точной формуле, составляет:

$$\frac{42\,300-42\,100}{42\,100}\approx 0.5\%.$$

В примере 11-7 рассматривается теплопередача через поверхность нагрева парогенератора, выполненную из труб с отношением диаметров d_2/d_1 —80/70 мм в двух вариантах: для чистой поверхности нагрева и для загрязненной поверхности нагрева. Использо-

вание приближенной формулы для чистой поверхности нагрева дает:

$$\boldsymbol{q}_{l} = \frac{t_{\mathbf{x}1} - t_{\mathbf{x}2}}{\frac{1}{a_{1}} + \frac{\delta}{\lambda} + \frac{1}{a_{2}}} \pi d_{p} = \frac{1000 - 200}{\frac{1}{5000} + \frac{0,005}{50} + \frac{1}{100}} \cdot 3,14 \cdot 0,080 =$$

$$= 19520 \text{ Bt/m}^2$$
.

Расхождение со значением, определенным по точной формуле, составляет:

$$\frac{19\,520-19\,500}{19\,500}\approx 0,1\%.$$

Здесь принято: $d_p = d_2 = 80$ мм, так как $\alpha_2 \ll \alpha_1$.

С учетом загрязнений стенка трубы рассматривается как многослойная, однако толщина ее при этом относительно невелика и отношение диаметров $d'_2/d'_1 = 82/66 = 1,24$, следовательно, можно применять формулу плоской стенки. В качестве расчетного диаметра снова берется наружный диаметр $d_p = d_2 + 2\delta_0 = 82$ мм, ибо коэффициент теплоотдачи α_1 и при наличии слоя сажи сохраняет свое значение $\alpha_2 = 100$ Вт/(м²·K), что существенно меньше коэффициента теплоотдачи от внутренней стенки к кипящей воде $\alpha_1 = = 5000$ Вт/(м²·K).

Таким образом, линейная плотность теплового потока в варианте с загрязнениями равна:

$$q_{l} = \frac{t_{m1} - t_{m2}}{\frac{1}{\alpha_{1}} + \frac{\delta_{H}}{\lambda_{H}} + \frac{\delta}{\lambda} + \frac{\delta_{C}}{\lambda_{C}} + \frac{1}{\alpha_{2}}} \pi d_{p} = \frac{1000 - 200}{\frac{1}{5000} + \frac{0,002}{0,8} + \frac{0,005}{50} + \frac{0,001}{0,08} + \frac{1}{100}} 3,14.82 \cdot 10^{-3} = \frac{1000 - 200}{1000 - 200} - \frac{1}{1000} - \frac{1}{1$$

= 8160 Вт/м.

Расхождение со значением, определенным по точной формуле, составляет:

$$\frac{8160-7900}{7900}=3,3\%.$$

Таким образом, использование упрощенных расчетных формул для цилиндрической стенки в случае ее малой относительной толщины существенно облегчает расчет, обеспечивая при этом приемлемую точность.

ГЛАВА ДВЕНАДЦАТАЯ

конвективный теплообмен

12-1. Основные положения

В жидкой или газообразной среде перенос теплоты осуществляется не только теплопроводностью (на молекулярном уровне), но и конвекцией за счет движения самой жидкости или газа. При этом относительно крупные * частицы жидкости или газа, перемещаясь из области низкой температуры в область высокой температуры или наоборот, являются носителями теплоты. Одновременно в жидкой среде осуществляется и перенос теплоты теплопроводностью, ибо в жидкости имеется однородное поле температуры и существует, следовательно, градиент температуры. Теплообмен, обусловленный совместным действием конвекции и теплопроводности, называется конвективным теплообменом.

Чаще всего жидкость соприкасается с поверхностью тела или канала (трубы), по которому она протекает. Если при этом температура стенки отличается от температуры жидкости, то происходит конвективный теплообмен между жидкостью и стенкой. Конвективный теплообмен между потоком жидкости и соприкасающейся с ней поверхностью твердого тела называется теплоотдачей. Именно расчет теплоотдачи и представляет чаще всего практический интерес; следует отметить, что теплоотдача неразрывно связана с конвективным теплообменом внутри жидкости.

Совокупность значений температуры во всех точках объема, занятого жидкостью, называется температурным полем жидкости. Представление о температурном поле в потоке жидкости можно получить, если вообразить, что в жидкость помещена неподвижная пространственная решетка из тонкой проволоки, которая почти не создает помех при течении жидкости. Если в узлах такой решетки разместить измерители температуры (например, термопары), то их показания и дадут количественную информацию о температурном поле в движущейся жидкости.

Каждой фиксированной точке в потоке жидкости (узлу воображаемой неподвижной координатной решетки) соответствует и свое значение скорости жидкости. Таким образом, в жидкости существует полескорости. Поскольку скорость — это вектор, то полескорости количественно выражается более сложно, чем поле температуры. Некоторой точке с координатами (x, y, z) в жидкости соответствуют температура

^{*} Имеются в виду такие частицы жидкости или газа, которые содержат большое количество молекул, но все же имеют малые размеры по отношению ко всему объему жидкости. В отличие от микрочастиц их называют макрочастицами.

t(x, y, z) — скалярная величина и три проекции вектора скорости \vec{w} : $w_x(x, y, z)$, $w_y(x, y, z)$ и $w_z(x, y, z)$.

Как отмечалось выше, конвективный теплообмен органически связан с движением жидкости, частицы которой являются носителями теплоты. Следовательно, поле температуры и поле скорости взаимосвязаны. Вот почему расчет температурного поля в жидкости намного сложнее, чем в твердом теле.

При установлении основных физических закономерностей процесса теплопроводности рассматривались закон сохранения тепловой энергии и закон Фурье. Основные физические закономерности конвективного теплообмена могут быть установлены на основании предыдущих законов, а также законов, описывающих движение жидкости. К последним относится основной закон динамики (второй закон динамики Ньютона) и закон сохранения массы (принцип неразрывности жидкости). Два этих закона позволяют найти поле скорости жидкости.

Основные понятия, введенные в главе о теплопроводности, сохраняются и в случае конвективного теплообмена, но становятся более сложными. Так, вектор плотности теплового потока определяется теперь не только градиентом температуры в жидкости, но и полем скорости; плотность теплового потока в жидкой среде имеет две составляющих: одну, определяемую законом Фурье (теплопроводность), и вторую, определяемую движением жидкости (конвекция):

$$\vec{q} = \vec{q}_{\mathrm{TR}} + \vec{q}_{\mathrm{K}} = -\lambda \left(\frac{\vec{dt}}{dn}\right) + \rho \vec{w} c_{\rho} t; \qquad (12-1)$$

здесь ρ — плотность жидкости, кг/м³; c_p — изобарная теплоемкость жидкости, $Дж/(кг \cdot K)$; t — температура жидкости, °C.

Конвективная составляющая плотности теплового потока непосредственно связана с полем скорости движущейся жидкости и представляет собой количество теплоты, которое переносится в направлении вектора скорости \vec{w} через единицу поверхности в единицу времени; носителем теплоты является здесь жидкость с массовым расходом через единицу поверхности, равным ρw_{0} .

В большинстве случаев конвективная составляющая плотности теплового потока намного больше, чем со-

ставляющая, обусловленная теплопроводностью. Однако так обстоит дело только при заметной скорости движения жидкости. Если рассматривать движение жидкости вблизи поверхности твердого тела (внутренняя поверхность трубы, по которой течет жидкость; наружная поверхность одной из труб пучка, через который проходят продукты сгорания: наружная поверхность турбинной лопатки, обтекаемой паром, и т. п.), то можно установить явление так называемого «прилипания» жидкости к твердой поверхности тела. Это явление заключается в том, что находящиеся в непосредственной близости к твердой поверхности тела частицы жидкости «прилипают» к этой поверхности, образуя тонкий слой неподвижной жидкости вблизи тела. Поскольку эта неподвижна, плотность теплового потока жидкость в ней определяется только теплопроводностью, т. е. второе слагаемое в правой части уравнения (12-1) обращается в нуль, так как w=0. Таким образом, вблизи поверхности твердого тела (стенки) плотность теплового потока определяется коэффициентом теплопроводности жидкости и градиентом температуры (рис. 12-1):

$$q_{\rm c} = -\lambda \left(\frac{dt}{dn}\right)_{n=0}; \qquad (12-2)$$

индекс n=0 означает, что берется значение градиента температуры жидкости на твердой поверхности тела. Знак вектора опущен, так как предполагается, что вектор плотности теплового потока направлен по нормали к твердой поверхности. Индекс «с» означает «стенка».

С другой стороны, плотность теплового потока между жидкостью и поверхностью твердого тела (т. е. тепловой поток в процессе теплоотдачи) определяют на основе закона Ньютона—Рихмана:

$$q_{\rm c} = \alpha \left(t_{\rm c} - t_{\rm m} \right), \tag{12-3}$$

где $q_{\rm c}$ — плотность теплового потока на границе «стенка — жидкость», Вт/м²; $t_{\rm c}$ — температура поверхности твердого тела (температура стенки), °C; $t_{\rm m}$ — температура жидкости вдали от стенки, °C; α — коэф ициент теплоотдачи; $t_{\rm c}$ — $t_{\rm m}$ — температурный напор.

Коэффициент теплоотдачи на основании (12-3) можно представить в виде:

$$\alpha = \frac{q_{\rm c}}{t_{\rm c} - t_{\rm w}}.$$
 (12-4)
Таким образом, коэффициент теплоотдачи численно равен плотности теплового потока при температурном напоре, равном 1°С. Единица измерения коэффициента теплоотдачи устанавливается на основании (12-4):

 $[\alpha] = BT/(M^2 \cdot K).$

Поскольку равенства (12-2) и (12-3) определяют одну и ту же величину — плотность теплового потока на границе «стенка — жидкость», то можно записать:

$$\alpha \left(t_{\rm c}-t_{\rm w}\right) = -\lambda \left(dt/dn\right)_{n=0},$$

или

$$\alpha = -\frac{\lambda}{t_{\rm c} - t_{\rm sc}} \left(\frac{dt}{dn}\right)_{n=0}.$$
 (12-5)

Уравнение (12-5) устанавливает связь между температурным полем в жидкости и коэффициентом теплоотдачи. Таким образом,

если температурное поле в жидкости найдено, то, вычислив градиент температуры жидкости на ee границе с твердой поверхностью (стенкой), уравнению можем по (12-5) найти коэффициент теплоотдачи. Знание температурного поля позволяет определить И плотность теплового потока на стенке по урав-

Рис. 12-1. Процесс теплоотдачи от жидкости к поверхности твердого тела.

нению (12-2); можно найти также температуру в любой интересующей нас точке жидкой среды, вычислить среднюю температуру жидкости в сечении канала и найти другие величины, которые могут представить практический интерес. Вот почему основной задачей теории конвективного теплообмена является задача об определении температурного поля в жидкости.

В качестве примера, хорошо иллюстрирующего проблему конвективного теплообмена, рассмотрим один из наиболее типичных процессов — теплоотдачу при течении жидкости в трубе (рис. 12-2).

Движение жидкости, как и движение любого тела, осуществляется под действием сил. Движение жидкости в трубе осуществляется под действием разности давлений: давление во входном сечении (будем считать его во времени неизменным) больше, чем давление на выходе из трубы. На достаточном удалении от входа частицы жидкости движутся с постоянной скоростью, их ускорение равно нулю — силы давления уравновешиваются силами внутреннего трения в жидкости. Поле скорости при названных условиях не изменяется вдоль оси

Рис. 12-2. Поле скорости и поле температуры при течении жидкости в трубе (а). К определению динамического коэффициента вязкости (б).

трубы. Такое течение жидкости называется стабилизированным.

Внутреннее трение жидкости связано с ее физическим свойством, которое носит название вязкости.

Сущность вязкости легко понять на следующем примере (рис. 12-2).

Пусть имеется гладкая поверхность, на плоская которую налит слой какой-либо жидкости, намасла. На слой пример сверху масла положим тонкую пластину площадью F и приведем ее в движение с некоторой скоростью Δω. Для этого необходимо к пластине

приложить силу T. Жидкость прилипает к верхней и нижней поверхностям и оказывает сопротивление их взаимному перемещению; внутри слоя жидкости возникает трение, обусловленное вязкостью. Так как толщина слоя Δr мала, то можно считать, что скорость меняется в слое по закону прямой линии. Опыт показывает, что усилие, приложенное к верхней пластине и отнесенное к едмнице ее поверхности (напряжение внутреннего трения τ), пропорционально скорости движения пластины $\Delta \omega$ и обратно пропорционально расстоянию между пластинами Δr :

$$\mathbf{x} = \frac{T}{F} = \mu \frac{\Delta \omega}{\Delta r} \approx \mu \frac{d\omega}{dr}.$$
 (12-6)

Коэффициент пропорциональности μ в выражении (12-6), которое носит название закона трения Ньютона, является индивидуальным свойством данной жидкости и называется динамическим коэффициентом вязкости. Этот коэффициент численно равен напряжению внутреннего трения в жидкости т, если отношение dw/dr — градиент скорости — равен 1 с⁻¹.

Единица измерения динамического коэффициента вязкости определяется соотношением (12-6):

 $[\mu] = \frac{[\tau]}{[dw/dr]} = \frac{H}{M^2(1/c)} = H \cdot c/M^2.$

Благодаря вязкости поле скорости принимает вид, изображенный на рис. 12-2. Течение жидкости при относительно невысоких скоростях можно условно представить себе как скольжение друг по другу тонких коаксиальных цилиндров. Ближайший к стенке цилиндр «прилипает» к ней и поэтому неподвижен. Следующий цилиндр тормозится неподвижным за счет вязкости, но из-за той же вязкости он увлекается движущимся цилиндром, расположенным по другую сторону от него; в результате рассматриваемый цилиндр движется с некоторой небольшой скоростью. Третий цилиндр движется с еще большей скоростью и т. д. до самой оси трубы, где скорость максимальна. Если в каждой точке поперечного сечения трубы восстановить вектор скорости, то через их концы можно провести плавную поверхность вращения, осевое сечение которой и представлено на рис. 12-2 в виде профиля скорости. Для стабилизированного течения профили скорости в произвольных сечениях 1 и 2 одинаковы.

Если известен профиль скорости — функция w = w(r), где r — радиальная координата в трубе, меняющаяся от нуля на оси трубы до значения внутреннего радиуса трубы $r = r_0$, то можно определить массовый расход жидкости через поперечное сечение трубы G, кг/с. Этот расход равен:

$$G = \int_{0}^{r_{o}} \rho w(r) \cdot 2\pi r dr. \qquad (12-7)$$

Если плотность жидкости — величина постоянная (ρ =const), то жидкость называется несжимаемой. Капельные жидкости (например, вода, масло) практически несжимаемы. Газы, которые также отнесены к условному понятию «жидкость», сжимаются под действием давления, но если изменение давления вдоль потока невелико (при этом газы движутся с невысокими скоростями, намного меньшими скорости распространения в них звука), то газ можно считать несжимаемым. Для потока несжимаемой жидкости в трубе выражение для расхода можно записать еще и так:

$$G = \rho w_0 \pi r^{2_0},$$
 (12-8)

где w_0 — среднее в поперечном сечении трубы значение скорости жидкости, которое определяется соотношением

$$w_{\circ} = \frac{1}{\pi r_{\circ}^{2}} \int_{0}^{r_{\circ}} w(r) \cdot 2\pi r dr,$$

полученным на основании (12-7) и (12-8).

Стенки трубы непроницаемы для жидкости, поэтому массовый расход жидкости, а также средняя скорость w_0 (для несжимаемых жидкостей) остаются постоянными вдоль трубы. Это положение связано с принципом неразрывности жидкости и справедливо не только для участка стабилизированного течения, но и для начального участка, где профиль скорости еще не установился.

Профиль температуры (см. рис. 12-2) изменяется при переходе от сечения 1 к сечению 2. Изменение это связано с теплоотдачей, которая происходит на участке трубы между этими сечениями. По трубе движется жидкость, температура которой выше, чем температура стенки. На рис. 12-2 изображен профиль избыточной температуры $\vartheta(r, x) = t(r, x) - t_c$. На стенке температура жидкости принимает температуру стенки, поэтому избыточная температура $\vartheta(r_0, x)$ равна нулю. Наиболее высокая температура жидкости - на оси трубы. Если представить, что движение жидкости осуществляется в виде скольжения друг по другу коаксиальных цилиндров, то теплота от внутренних, более нагретых слоев к наружным переносится теплопроводностью (микрочастицами, переходящими из слоя в слой). Здесь уместно отметить, что тот же обмен микрочастицами 220

между соседними слоями жидкости обусловливает и ее вязкость. Микрочастицы переносят не только теплоту, но и количество движения (импульс), ускоряя или затормаживая слой, в который они переходят. Вдоль оси *x* происходит уменьшение температуры всех слоев движущейся жидкости. Если бы труба имела бесконечную длину, то профиль температуры становился бы все более плоским до тех пор, пока вся жидкость в поперечном сечении трубы не приняла бы температуру стенки. Предполагается, что температура стенки вдоль *x* постоянна.

Средняя по сечению температура жидкости определяется следующим выражением:

$$\overline{t} = \frac{1}{\pi r^2 {}_0 w_0} \int_0^{r_0} t(r) w(r) \cdot 2\pi r dr.$$
(12-9)

Эта температура уменьшается вдоль трубы по мере охлаждения жидкости.

Описанный выше режим течения жидкости, при котором передача теплоты и сил трения поперек потока происходит за счет движения молекул, называется ламинарным (слоистым). При определенных условияхмалой вязкости жидкости, большой скорости, большом диаметре трубы — течение жидкости становится неустойчивым и ламинарный режим течения переходит в турбулентный (бурный). При этом отдельные струйки жидкости теряют свои очертания, макрочастицы жидкости движутся в хаотическом беспорядке, совершая неустойчивые колебания. Как и при ламинарном режиме, у стенки трубы выполняется условие «прилипания» и профиль скорости качественно сохраняет свой вид, однако он становится более плоским, чем при ламинарном режиме. Это происходит потому, что скорость в поперечсечении турбулентного потока выравнивается ном в большей степени, чем в поперечном сечении ламинарного, так как передача количества движения по радиусу происходит теперь не за счет молекул, а за счет поперечных неупорядоченных движений макрочастиц жидкости (каждая макрочастица содержит большое количество молекул, поэтому ее эффективность как носителя возрастает). Профиль температуры при турбулентном движении также становится более плоским, чем при ламинарном, потому что и теплота переносится поперек потока макрочастицами, и не молекулами.

По аналогии с молекулярной передачей трения и молекулярной теплопроводностью при ламинарном режиме рассматривают турбулентную вязкость и турбулентную теплопроводность при турбулентном режиме. Эти характеристики имеют существенно бо́льшую интенсивность, чем соответствующие молекулярные характеристики. Следует подчеркнуть, что турбулентная вязкость и турбулентная теплопроводность не являются физическими свойствами жидкости, а представляют собой характеристики конкретного потока; например, при течении одной и той же жидкости с различными скоростями в трубах различного диаметра эти характеристики будут иметь различные значения.

Одной из наиболее важных практических задач, возникающих в области конвективного теплообмена, является определение коэффициента теплоотдачи. Например, заданными являются следующие величины: массовый расход жидкости в трубе, температура жидкости на входе, температура стенки трубы, внутренний радиус. Требуется дать ответ на вопрос: какую длину должна иметь труба, чтобы жидкость имела на выходе заданную температуру? Для ответа на этот вопрос определяют вначале тепловой поток, уходящий из жидкости в стенку трубы:

$$Q = Gc_p(t_l - t_0);$$
 (12-10)

здесь t_l , t_0 — температуры жидкости (средние в поперечном сечении) на выходе из трубы и входе в трубу соответственно. Приведенное выражение дает уменьшение энтальпии потока жидкости.

Но тот же тепловой поток может быть выражен с использованием закона Ньютона—Рихмана:

$$Q = \alpha \Delta t \cdot 2\pi r_0 l; \qquad (12-11)$$

здесь Δt — средний по длине трубы температурный напор; l — длина трубы.

Из последнего выражения может быть найдена необходимая длина трубы, если известен коэффициент теплоотдачи а. Принципиально существует два пути нахождения коэффициента теплоотдачи — теоретический и экспериментальный. Теоретическое определение коэффициента теплоотдачи включает следующие этапы: расчет поля скорости, расчет поля температуры и ис-222 пользование соотношения (12-5) для определения коэффициента теплоотдачи. Такой путь приводит к положительному результату лишь в очень немногих простых случаях. Чаще всего коэффициент теплоотдачи определяется экспериментальным путем, при этом измеряют значения величин, которые входят в написанные выше выражения (12-10) и (12-11).

и находят коэффициент теплоотдачи. Меняя условия эксперимента, можно получить зависимость коэффициента теплоотдачи от различных параметров — скорости течения жидкости, ее физических свойств (вязкости, теплопроводности, плотно-

Рис. 12-3. К примеру 12-1.

сти, теплоемкости), радиуса трубы. Результаты эксперимента могут быть представлены в виде таблиц или графиков, но ими неудобно пользоваться при технических расчетах. Подбирать формулу, которая дает зависимость коэффициента теплоотдачи от большого числа различных параметров, сложно. Но даже в том случае, если такая формула подобрана, она находит лишь ограниченное применение, так как оказывается справедливой только для условий проведенного эксперимента. Возникают, следовательно, две проблемы: сделать формулу для расчета коэффициента теплоотдачи простой и обеспечить возможно бо́льшую универсальность этой формулы. Обе эти проблемы помогает решить теория подобия.

Пример 12-1. По трубе круглого поперечного сечения с внутренним раднусом r_0 течет несжимаемая (ρ =const) жидкость с динамическим коэффициентом вязкости μ . Установить закон изменения сил давления и сил вязкого трения по длине трубы.

Решение. Будем рассматривать с табилизированное течение в трубе, т. е. такое течение, при котором поле скорости остается неизменным вдоль оси трубы. В данном случае на жидкость действуют два рода сил: силы давления (движущие силы) и силы вязкого трения (тормозящие силы). При стабилизированном течении любая частица жидкости движется с постоянной скоростью, следовательно, ее ускорение равно нулю, а значит равна нулю и равнодействующая сил, действующих на частицу. Рассмотрим равновесие элемента жидкости под действием сил давления и сил вязкого трения (рис. 12-3). Сила давления равна произведению давления на площадь поперечного сечения трубы; с одной стороны давления меньше, в эту сторону и движется частица. Сила вязкого трения приложена к жидкости со стороны стенки и полностью тормозит поверхностный слой жидкого элемента (явление «прилипания»); от поверхностного слоя сила вязкости передается следующему слою, который также тормозится, но уже не полностью и т. д. Условие равновесия элемента можно записать следующим образом:

$$(p+\Delta p)\pi r_{0}^{2}-p\pi r_{0}^{2}+\tau_{c}2\pi r_{0}\Delta x=0;$$

здесь первое слагаемое — сила давления, действующая на элемент слева; второе слагаемое — сила давления, действующая на элемент справа; третье слагаемое — сила вязкого трения (τ_c — напряжение трения на стенке).

Отсюда получим:

$$\frac{\Delta p}{\Delta x} = -\frac{2\tau_c}{r_0}$$

Но по закону трения Ньютона напряжение трения на стенке равно:

$$\tau_{\rm c} = \mu \left(dw/dr \right)_{r=r_{\rm o}}.$$

В последнем выражении величина $(dw/dr)_{r=r_0}$ представляет собой производную от профиля скорости w=w(r) при значении $r=r_0$. Эта величина остается неизменной вдоль оси трубы, ибо сама функция w(r) вдоль оси трубы не изменяется, так как течение стабилизированное. Следовательно,

$$\frac{\Delta p}{\Delta x} = \frac{2\mu}{r_0} \left(\frac{dw}{dr}\right)_{r=r_0} = \text{const.}$$

Таким образом, *давление меняется вдоль трубы по закону прямой линии*. Если имеется участок трубы длиною l и на входе в этот участок давление равно p_1 , а на выходе равно p_2 , то

$$\frac{\Delta p}{\Delta x} = \frac{p_1 - p_2}{l}$$

Напряжение вязкого трения те не изменяется вдоль трубы. Законы изменения давления и напряжения трения, установленные здесь, справедливы как для ламинарного, так и для турбулентного стабилизированного течения.

12-2. Основные положения теории подобия

Подобие в геометрии. Наиболее доступно понятие о подобии геометрических фигур. Две плоские фигуры, составленные из прямых линий, например треугольники, по определению называются подобными, если их стороны пропорциональны, а углы равны. Пропорциональность сторон (и других линейных элементов) следует понимать в том смысле, что любую сторону одного треугольника можно получить, если взять сходственную 224 сторону другого, подобного ему треугольника и умножить ее на некоторый коэффициент, который можно назвать коэффициентом подобия (рис. 12-4):

$$a_2 = c_l a_1; h_2 = c_l h_1.$$

Если рассматривать другой элемент подобных треугольников — их площадь, то в этом случае также имеется связь через коэффициент подобия, но сам коэффициент имеет другое значение:

Рис. 12-4. Подобие плоских геометрических фигур.

Связь между коэффициентами c_l и c_s устанавливается на основании связи между самими сравниваемыми элементами одного и того же треугольника. Площадь треугольника связана с основанием и высотой соотношением

$$S = \frac{1}{2} ch.$$

Отсюда имеем:

$$S_{1} = \frac{1}{2} c_{1} h_{1}; \ S_{2} = \frac{1}{2} c_{2} h_{2}; \ \frac{S_{2}}{S_{1}} = \frac{\frac{1}{2} c_{2} h_{2}}{\frac{1}{2} c_{1} h_{1}} = c^{2}_{l}; \ c_{s} = c^{2}_{l}.$$

Интересно отметить следующий факт: следствием подобия треугольников является пропорциональность сторон и равенство углов, в то же время само подобие будет выполняться уже в силу пропорциональности 15—702 225 сторон, равенство углов при этом обеспечивается автоматически. Таким образом, достаточные условия подобия треугольников являются более узкими, чем следствия этого подобия.

Подобие физических процессов. Физические процессы, которые рассматриваются при изучении конвективного теплообмена — это движение жидкости (гидродинамические процессы) и перенос теплоты. Основной характеристикой движения жидкости является поле скорости. Подобными гидродинамическими процессами на-

Рис. 12-5. Подобие процессов теплообмена при течении жидкости в трубе.

зывают такие процессы, у которых подобны поля скорости и давления *. Пусть, например, рассматриваются два подобных процесса течения жидкости в трубе с круглым поперечным сечением (рис. 12-5). Как произвести сравнение двух полей скорости (в трубе 1 и в трубе 2) и установить факт подобия этих полей? Сравнение осуществляется следующим образом. В процессе 1 выбирается произвольная точка, например A_1 с координатами r_{A1} и x_{A1} ; скорость в этой точке имеет значение w_{A1} . В процессе 2 необходимо найти с ход с твенную точку, то есть такую точку A_2 , у которой координаты пропорциональны координатам точки A_1 :

 $r_{A2} = c_l r_{A1}; \quad x_{A2} = c_l x_{A1}.$

^{*} Для простоты изложения поле давления в дальнейшем не рассматривается.

Скорость в этой точке имсет значение w_{A2} , которое можно следующим образом выразить через w_{A1} :

$w_{A2} = c_w w_{A1}$.

Коэффициенты пропорциональности c_l и c_w называются множителями преобразования подобия (константами подобия). Если процессы подобны, то множители преобразования не зависят от координат. Это зпачит, что для любой пары сходственных точек — B_1 и B_2 , C_1 и C_2 и т. д. — скорость w_1 преобразуется в скорость w_2 через один и тот же множитель преобразования c_w . При этом координаты любой пары сходственных точек связаны одним и тем же множителем преобразования c_l . В частности, такую пару могут образовать сходственные точки, лежащие на внутренней поверхности трубы; в этом случае для точки с любым значением координаты x имеем:

$r_{02} = c_w r_{01}$.

Радиусы r₀₁ и r₀₂ — это характерные размеры для процессов 1 и 2 соответственно.

Можно выбрать также характерные скорости для этих процессов, например средние в сечении скорости w_{01} и w_{02} . Поскольку скорости в отдельных сходственных точках связаны одним и тем же множителем преобразования c_w , то и средние скорости связаны этим множителем:

$w_{02} = c_w w_{01}.$

Характерные величины могут быть использованы в качестве масштабов измерения координат и скоростей в отдельных точках. В этом случае они как бы подменяют обычные единицы измерения координат и скоростей. Координата r_{A1} , измеренная в новом масштабе r_{01} (а не в метрах), обозначается заглавной буквой и равна:

$$R_{A1} = \frac{r_{A1}}{r_{01}} . \qquad .$$

Координата R_{A1} называется безразмерной координатой. Так же определяются безразмерная координата X_{A1} и безразмерная скорость W_{A1} в точке A_1 :

$$X_{A1} = \frac{x_{A1}}{r_{01}}; \quad W_{A1} = \frac{w_{A1}}{w_{01}}.$$

Для точки A₂ имеем следующие соотношения:

$$R_{A2} = \frac{r_{A2}}{r_{o2}}; \ X_{A2} = \frac{x_{A2}}{r_{o2}}; \ W_{A2} = \frac{w_{A2}}{w_{o2}}.$$

15*

Выше было показано, что переход от заданного поля скоростей к подобному полю может быть осуществлено преобразованием подобия — профиль скоростей при переходе от процесса 1 к процессу 2 деформируется равномерно, все значения скорости удлиняются в c_w раз. Введение безразмерных величин позволяет дать еще одно определение подобия процессов. Применительно к двум рассматриваемым процессам течения жидкости оно выглядит так: для подобных процессов в сходственных точках, определяемых равными безразмерными координатами, безразмерные скорости равны. Действительно, из ранее написанных соотношений имеем:

$$r_{A2} = c_{l}r_{A1} = \frac{r_{02}}{r_{01}}r_{A1}; \quad \frac{r_{A2}}{r_{02}} = \frac{r_{A1}}{r_{01}};$$
$$R_{A1} = R_{A2}.$$

Аналогичным образом можно записать:

$$\begin{aligned} x_{A2} &= c_l x_{A1} = \frac{r_{02}}{r_{01}} x_{A1}; \quad \frac{x_{A2}}{r_{02}} = \frac{x_{A1}}{r_{01}}; \quad X_{A1} = X_{A1}; \\ w_{A2} &= c_w w_{A1} = \frac{w_{02}}{w_{01}} w_{A1}; \quad \frac{w_{A2}}{w_{02}} = \frac{w_{A1}}{w_{01}}; \quad W_{A1} = W_{A2}. \end{aligned}$$

Используя понятие безразмерных величин для двух подобных гидродинамических процессов 1 и 2, можно рассматривать поле безразмерной скорости W, которое является общим для обоих процессов. Это поле безразмерной скорости будет сохранять свой вид и для любого другого гидродинамического процесса, если он подобен процессам 1 и 2, или вся совокупность подобных процессов имеет одно и то же поле безразмерной скорости.

Перейдем к рассмотрению процессов конвективного переноса теплоты. В предыдущем параграфе было сказано, что конвективный перенос теплоты определяется двумя полями: полем скорости и полем температуры. Следовательно, подобие процессов конвективного теплообмена имеет место в том случае, когда подобны поля скорости и поля температуры в этих процессах. Факт подобия температурных полей устанавливается таким же образом, как и в случае подобия полей скорости. Рассмотрим это на примере теплообмена при течении жидкости в трубе. Поскольку перенос теплоты осуществляется под действием разности температур, то интерес представляет не поле абсолютных температур жидкости, 228 а поле температурных напоров (избыточной температуры) $\vartheta = t - t_c$. Преобразование подобия для температурных полей осуществляется следующим образом:

$$\vartheta_{A2} == c_{\vartheta} \vartheta_{A1}.$$

Множитель преобразования определяется соотношением для температурных напоров в начальных сечениях:

$$\vartheta_{\mathfrak{o}\mathfrak{d}} = c_{\vartheta}\vartheta_{\mathfrak{o}\mathfrak{l}}; \ \vartheta_{\mathfrak{o}} = t_{\mathfrak{o}} - t_{\mathfrak{c}}.$$

Температурные напоры ϑ_{01} и ϑ_{02} являются характерными для процессов 1 и 2 и могут использоваться в качестве масштабов для получения безразмерных полей температуры. Если процессы конвективного теплообмена подобны, то в сходственных точках безразмерные температуры равны. Например, для сходственных точек A_1 и A_2 , в которых R_{A1} — R_{A2} и X_{A1} — X_{A2} , имеем:

 $\vartheta_{A2} = c_{\vartheta} \vartheta_{A1} = \frac{\vartheta_{o2}}{\vartheta_{o1}} \vartheta_{A1}; \quad \frac{\vartheta_{A2}}{\vartheta_{o2}} = \frac{\vartheta_{A1}}{\vartheta_{o1}}; \quad \theta_{A1} = \theta_{A2};$ здесь $\Theta = \vartheta / \vartheta_0 = (t - t_c) / (t_0 - t_c)$ — безразмерная температура.

Подводя итог сказанному, можно прийти к следующему выводу: процессы конвективного теплообмена называются подобными, если подобны поля скорости и температуры в этих процессах (а поля безразмерной скорости и безразмерной температуры — идентичны).

Условия подобия физических процессов. Установление факта подобия физических процессов путем измерения или расчета полей соответствующих величин на практике неудобно, а часто и просто невозможно. А между тем сама проблема весьма важна с практической точки зрения, ибо метод подобия позволяет, например, использовать результаты исследования процесса на относительно простой, недорогой и небольшой модели для создания реальных энергетических установок. Необходимо поэтому установить некоторые общие и удобные с практической точки зрения условия, которым должны удовлетворять два процесса (или несколько процессов), чтобы они были подобными. Эти условия сводятся к следующим положениям.

Подобные процессы должны иметь одинаковую физическую природу и подчиняться одним и тем же физическим законам. Пусть необходимо создать процесс, подобный процессу теплопроводности в твердом теле, на-

пример, изучить процесс нагрева крупной отливки (патурный процесс) на небольшой модели. Физическая природа натурного процесса состоит в переносе теплоты микрочастицами вещества, из которого состоит данное твердое тело. Процесс этот подчиняется закону сохранения тепловой энергии, имеющему общий характер, и закону Фурье, который применим только к процессам теплопроводности и посит поэтому частный характер. Процесс, подобный данному и осуществляемый в модели, должен иметь такую же физическую природу и подчиняться тем же двум законам; он, как и натурный процесс, должен быть процессом теплопроводности.

Природа процесса конвективного теплообмена состоит в переносе теплоты за счет конвекции жидкости и теплопроводности в ней. К физическим законам, которые управляют этим процессом, относятся: закон сохранения энергии, основной закон динамики, закон сохранения массы (принцип неразрывности жидкости), а также закон теплопроводности Фурье и закон вязкого трения Ньютона. Процесс, подобный данному, должен иметь ту же физическую природу и подчиняться тем же законам — он, как и натурный процесс, должен быть процессом конвективного теплообмена.

Иногда для моделирования можно использовать процесс с другой физической природой, если законы, управляющие этим вторым процессом, по своей форме соответствуют законам натурного процесса. Например, можно изучать температурное поле в сложной по конфигурации стене здания на электрической модели этой стены, изготовленной из электропроводящей бумаги. При этом процесс теплопроводности заменяется процессом электропроводности, имеющим другую физическую природу, но законы, управляющие процессом в модели, по форме соответствуют законам, управляющим натурным процессом: сохранению тепловой энергии соответствует сохранение электрического заряда, а закону Фурье соответствует закон Ома. В отличие от подобных процессов такие процессы называются а налогичными (вместо физического подобия имеет место формальная аналогия).

Подобные процессы должны осуществляться в геометрически подобных системах. Например, если в качестве натурного процесса изучается процесс течения жидкости в трубе круглого поперечного сечения, то моделью

должна служить такая же труба, но она может иметь другой диаметр. Теплоотдачу при поперечном обтекании круглого цилиндра можно изучать на модели, представляющей собой круглый цилиндр другого диаметра; если поток жидкости набегает на цилиндр под некоторым углом к его оси, то этот угол должен быть сохранен точно таким же и в модели. Если моделируется процесс теплоотдачи при поперечном обтекании пучка, то модель должна представлять собой точную геометрическую копию натурного пучка с сохранением соотношения между диаметром пучка и шагом между трубками (продольным и поперечным). При наличии на трубках ребер, интенсифицирующих теплопередачу, в модели должна быть воспроизведена в определенном масштабе конфигурация этих ребер. Ясно, что все геометрические размеры должны воспроизводиться в одном и том же масштабе, который определяется константой геометрического подобия. Если осуществляется моделирование сложного устройства, например парогенератора, на котором изучается гидродинамика и теплообмен от продуктов сгорания топлива к поверхностям нагрева, то в модели должно быть точно воспроизведено внутреннее устройство парогенератора. Внешние детали, не имеющие отношения к изучаемому процессу моделировать, конечно, не нужно.

Поля физических величин, определяющих подобные процессы, должны быть заданы на своих границах подобным образом (подобие граничных условий). Жидкость, в которой осуществляется процесс конвективного. теплообмена, занимает в пространстве определенную область. Например, при течении жидкости в трубе такой областью является цилиндр радиусом ro и длиной l. Поле температуры, которое существует в натурном процессе, имеет в начальном поперечном сечении трубы определенный профиль темнературы жидкости; задано некоторое распределение температуры и на стенке трубы; в простейшам случае задается равномерный начальный профиль температуры t==to и постояниая температура на стенке $t_c = const.$ Точно таким же образом следует задавать и граничные условия в модели, причем численные значения to и tc могут быть различными для натурного процесса и для модели, важно соблюдать один и тот же характер распределения температуры на границах изучаемой области. Такое же положение су-

ществует и для поля скорости — профили скорости во входных сечениях натурного объекта и модели должны быть подобны (хотя значения средней скорости w_0 могут быть различными). На стенке в большинстве случаев подобие граничных условий обеспечивается автоматически — здесь и для натурного процесса и для модели выполняется условие «прилипания»: при $r=r_0$ имеем w=0. Если граничные условия для модели и для натурного процесса записать в безразмерном виде, то эти записи будут одинаковыми. Следует отметить, что граничные условия для поля температуры могут быть заданы не только значением температуры на стенке, но и значением плотности теплового потока на стенке, например, $q_c=$ const.

Для подобных процессов должны быть равны одноименные критерии подобия. Число подобия является одним из центральных понятий теории подобия; если число подобия составлено только из заданных параметров математического описания процесса, то оно называется критерием подобия.

В общем случае картина физического процесса складывается под влиянием различных действующих факторов. Для конкретного физического процесса можно установить эти факторы и найти для них математические выражения. Некоторые из этих факторов действуют сильнее, другие — слабее; с точки зрения теории подобия важен относительный эффект, показывающий, насколько сильнее один фактор процесса действует по сравнению с другим фактором того же процесса (например, натурного).

Если нужно создать процесс в модели, который должен быть подобен натурному, то необходимо сохранить те же соотношения между отдельными факторами, которые имели место в натурном процессе.

Количественной характеристикой соотношений между различными действующими факторами процесса являются числа подобия. В этом и состоит их физический смысл.

Какие факторы действуют в гидродинамическом процессе? Этими факторами являются различные силы, действующие в жидкости. Поскольку жидкость можно рассматривать как совокупность отдельных макрочастиц, то достаточно изучить процесс движения отдельной частицы; этот процесс подчиияется основному закону динамики:

$$m_{q} \frac{dw}{d\tau} = \sum_{i=1}^{n} P_{i};$$

здесь $m_{\rm q}$ — масса частицы; w — ее скорость; τ — время; P_i — действующие на частицу силы.

Величина $m_{\rm H} d\omega/d\tau$ также имеет размерность силы и называется силой инерции. Поэтому основной закон динамики можно сформулировать еще и так: сумма всех действующих на частицу сил, включая силу инерции, равна нулю:

$$m_{\mathbf{q}} \frac{dw}{d\tau} - \sum_{i=1}^{n} P_{i} = 0.$$

При вынужденном движении в потоке жидкости могут действовать различные силы, например силы инерции, силы внутреннего трения (вязкости), силы давления и т. д. Рассмотрим соотношение между силами инерции и силами вязкости. Если частица движется вдоль оси x, то силу инерции можно представить:

$$m_{q}\frac{dw_{x}}{d\tau} = m_{q}\frac{dx}{d\tau}\frac{dw_{x}}{d\tau} = m_{q}w_{x}\frac{dw_{x}}{dx} = \rho w_{x}\frac{dw_{x}}{dx}V_{q},$$

где V_ч — объем частицы.

Сила вязкости приложена к поверхности частицы и определяется законом вязкого трения Ньютона:

$$\mu \frac{dw_x}{dy} S_y,$$

где у — ось координат, направленная нормально к направлению движения частицы; S_ч — площадь поверхности частицы.

Составим отношение силы инерции к силе вязкости; это отношение безразмерно, так как обе силы измеряются в ньютонах:

$$\frac{\rho w_x \frac{dw_x}{dx} V_q}{\mu \frac{dw_x}{dy} S_q} .$$
(12-12)

Если это отношение в натурном-процессе велико, то это значит, что силы инерции в потоке существенно превышают силы вязкости, если отношение мало — то наоборот. В модели необходимо сохранить то же соотношение между рассматриваемыми силами, что и в натурном процессе — в этом случае поля скорости, которые формируются под действием сил, будут подобны. Но как осуществить практически соблюдение равенства отношений сил инерции к силам вязкости? Ведь выражение (12-12) содержит функции и производные, записанные в общем виде для произвольной точки потока. Необходимо преобразовать выражение (12-12) так, чтобы в него входили параметры, характерные для всего процесса в целом. Для этого в теории подобия осуществляют следующую операцию: заменяют переменные величины их характерными значениями, а производные — отношением характерных значений. Так, входящую в выражение (12-12) скорость в производные точке потока заменяют значением скорости, характерным для всего прочавольной точке заменяют отношением характерной скорости к характерному размеру данного процесса ($\frac{dw_x}{dx}, \frac{dw_x}{dy} \rightarrow \frac{w_0}{l}$; отношение объема рассматриваемой частицы, который пропорционален ее линейному размеру в третьей степени ($V_{\rm I} \sim \Delta x^3$), к площади ее поверхности ($S_{\rm I} \sim \Delta x^2$) заменяют следующим образом:

$$\frac{V_{\rm q}}{S_{\rm q}} \sim \frac{\Delta x^3}{\Delta x^2} \rightarrow \frac{l^3_{\rm o}}{l^2_{\rm o}} \rightarrow l_{\rm o}.$$

После такой замены образуется безразмерный комплекс, составленный из наперед заданных параметров изучаемого процесса:

$$\frac{\rho w_x \frac{dw_x}{dx} V_y}{\mu \frac{dw_x}{dy} S_y} \rightarrow \frac{\rho w_0 l_0}{\mu}.$$

Таким комплексам присваивают имена ученых, которые внесли значительный вклад в развитие гидродинамики и теплообмена. В данном случае полученное число подобия носит название числа Рейнольдса

$$Re = \rho w_0 l_0 / \mu.$$

Таким образом, число Рейнольдса отражает соотношение сил инерции и сил вязкости в потоке жидкости. -Если в двух процессах вынужденного движения удовлетворяются указанные ранее условия подобия и, кроме 234 того, равны числа Рейнольдса: Re₁=Re₂, то поля скорости в таких процессах подобны (поля безразмерной скорости одинаковы).

При малых значениях числа Рейнольдса силы инерции малы по сравнению с силами вязкости, в этом случае устанавливается ламинарный режим течения. Если силы инерции велики (или малы силы вязкости), то ламинарный режим течения становится неустойчивым и переходит в турбулентный режим, для которого характерны большие числа Рейнольдса. Существует, очевидно, некоторое критическое число Рейнольдса Re_{кp}, которое устанавливает границу между ламинарным и турбулентным режимом движения жидкости: если Re < Re_{кp}, то имеет место ламинарный режим течения, если Re>Re_{кp} — турбулентный. Критическое числе Рейнольдса для различных процессов определяется по-разному и имеет различные числовые значения.

Основными факторами, действующими в процессе конвективного теплообмена, являются два тепловых потока — теплопроводности и конвекции. Например, при ламинарном течении жидкости в трубе теплота поперек потока передается теплопроводностью, а вдоль трубы — конвекцией. Плотность конвективного теплового потока определяется выражением $q_{\kappa} = \rho \underline{w}_{\kappa} c_{p} t$, плотность потока теплопроводности определяется законом Фурье

$$q_{\mathrm{TI}} = -\lambda \frac{dt}{du}$$
.

Составим отношение $q_{\kappa} \kappa q_{\tau\pi}$ (знак минус опустим, так как в данном случае он не имеет значения):

$$\frac{\rho w_x c_p t}{\lambda \frac{dt}{dy}} . \tag{12-13}$$

Это отношение записано для произвольной точки в жидкости и определяет значение температуры в этой точке; если в сходственных точках двух процессов эти отношения равны, то температуры в этих точках связаны константой подобия, которая имеет одно и то же числовое значение для любой точки температурного поля, а безразмерные температуры в указанных точках двух процессов равны между собой. Важно подчеркнуть при этом, что конвективные потоки в двух процессах могут быть не равны друг другу ($q_{\kappa1}\neq q_{\kappa2}$); то же самое можно сказать и о потоках теплопроводности: $q_{1т\pi}\neq q_{2т\pi}$,

необходимо лишь соблюдать равенство отношений (12-13) для двух рассматриваемых процессов конвективного теплообмена. Если произвести замену значений скорости, температуры и температурного градиента в произвольной точке значениями скорости, избыточной температуры и размера, характерными для всего рассматриваемого процесса в целом, то получим:

$$\frac{\mathsf{p}\omega_{x}c_{p}t}{\lambda\frac{dt}{dy}} \to \frac{\mathsf{p}\omega_{0}c_{p}v_{0}}{\lambda\frac{\mathsf{i}v_{0}}{l_{0}}};$$

здесь произведена замена

$$w_x \to w_{o}; t \to t - t_{c} = \vartheta \to \vartheta_{o}; \frac{dt}{dy} \to \frac{\vartheta_{o}}{l_{o}}.$$

Полученное число подобия

$$\mathrm{Pe} = \frac{\mathsf{P}\boldsymbol{w}_{0}\boldsymbol{c}_{p}\boldsymbol{l}_{0}}{\lambda}$$

носит название числа Пекле. Физический смысл числа Пекле состоит в том, что оно отражает соотношение между конвективным тепловым потоком и тепловым потоком теплопроводности.

В процессах конвективного теплообмена при вынужденном движении жидкости число Рейнольдса является критерием гидродинамического подобия, а число Пекле — критерием теплового подобия. Таким образом, если соблюдаются предыдущие условия подобия, а также равенство чисел Рейнольдса и чисел Пекле соответственно для двух процессов, то процессы будут подобными. В более сложных случаях движения жидкости, кроме

В более сложных случаях движения жидкости, кроме названных выше сил инерции, вязкости и давления, могут действовать и другие силы; например силы тяжести, центробежные силы и т. д. В этом случае появляются дополнительные числа подобия (а если они составлены из заданных величин — то критерии подобия); вообще количество чисел гидродинамического подобия на единицу меньше, чем количество действующих в жидкости сил, так как каждое число подобия отражает соотношение двух сил. В следующем параграфе будет показано, что не все числа подобия являются критериями.

Если в процессе переноса теплоты появляется лучистый тепловой поток, который существует наряду с конвективным тепловым потоком и тепловым потоком теп-

лопроводности, то это также влечет за собой появление нового числа подобия. Оно должно отражать соотношение между лучистым тепловым потоком и конвективным тепловым потоком (или тепловым потоком теплопроводности). В зависимости от того, из каких величин составляется это число, оно может быть или не быть критерием подобия.

Приведенное выше число Пекле можно следующим образом преобразовать, умножив и разделив его на динамический коэффициент вязкости µ:

$$\mathrm{Pe} = \frac{\rho w_0 c_p l_0}{\lambda} \frac{\mu}{\mu} = \frac{\rho w_0 l_0}{\mu} \frac{\mu c_p}{\lambda}.$$

Первый сомножитель в полученном выражении — это число Рейнольдса, а второй носит название числа Прандтля

 $\Pr = \mu c_p / \lambda$

и представляет собой комплексную физическую характеристику свойств вещества.

Таким образом, вместо равенства чисел Рейнольдса и чисел Пекле для подобных процессов можно соблюдать равенство чисел Рейнольдса и чисел Прандтля.

Поскольку число Прандтля составлено из физических свойств вещества, которые заданы обычно наперед, то число Прандтля — критерий подобия. Как и другие теплофизические свойства вещества, число Прандтля приводится в таблицах в зависимости от температуры. Для воздуха число Pr≈0,7 и слабо изменяется с температурой; для воды число Pr меняется в широких пределах в зависимости от температуры (уменьшается с ростом температуры из-за вязкости); для масел число Pr может достигать при низкой температуре больших значений, что связано с большой вязкостью масел, для жидких металлов число Pr весьма мало в связи с большой теплопроводностью.

Пример 12-2. По трубе круглого поперечного сечения с внутренним радиусом r_0 течет несжимаемая жидкость с дипамическим коэффициентом вязкости μ . Найти безразмерное поле скорости на участке стабилизированного течения при ламинарном режиме.

Решение. Поле скорости при стабилизированном течении не изменяется вдоль оси трубы, поэтому достаточно найти функцию w = w(r) — профиль скорости и привести ее к безразмерному виду. В соответствии с законом вязкого трения Ньютона производ-

ная скорости жидкости по радиусу может быть выражена:

$$\frac{d\omega}{dr} = \frac{\tau}{\mu}.$$
 (12-14)

Необходимо, следовательно, зпать распределение напряжения вязкого трения по радиусу, подставить его в правую часть (12-14), проинтегрировать это выражение и найти таким образом искомую функцию w(r).

Как уже упоминалось выше (см. пример 12-1), в жидкости в данном случае действуют два рода сил: давления и трения. Со-

Рис. 12-6. К примеру 12-2.

гласно второму закону динамики равнодействующая всех сил, действующих на выделенную частицу, равна массе этой частицы, умноженной на ускорение. Поскольку мы имеем дело со стабилизированным движением, то скорость определенной частицы остается постоянной вдоль оси трубы и ускорение частицы равно нулю. Линии действия сил и траектории частиц направлены вдоль оси. Выделим в жидком объеме частицу в виде кольца с малыми размерами Δx и Δr (рис. 12-6). Алгебраическая сумма всех сил, действующих на частицу, равна нулю:

$$pf_3 - (p + \Delta p)f_3 + \tau(r)f_1 - \tau(r + \Delta r)f_2 = 0;$$
 (12-15)

здесь pf_3 — сила давления, приложенная к частице слева и вызывающая ее движение; $(p+\Delta p)f_3$ — сила давления, приложенная к частице справа и тормозящая частицу, эта сила меньше предыдущей, ибо приращение Δp отрицательно; $\tau(r)f_1$ — сила вязкого трения, приложенная к частице изнутри со стооны более быстрого слоя, эта сила увлекает частицу вправо; $\tau(r+\Delta r)f_2$ — сила вязкого трения, приложенная к частице снаружи со стороны более медленного слоя, эта сила к частице снаружи со стороны более медленного слоя, эта сила тормозит частицу.

Если выразить площади f_1 , f_2 и f_3 через размеры жидкого элемента и провести преобразования, аналогичные проведенным ранее (см. § 11-3), то получим уравнение для напряжения трения:

$$\frac{d\tau}{dr} + \frac{\tau}{r} = -\frac{\Delta p}{\Delta x}; \qquad (12-16)$$

здесь левая часть выражает изменение напряжения трения в радиальном направлении, а правая часть—изменение давления в осе-

вом направлении. Правая часть, как было показано ранее (см. пример 12-1), есть величина постоянная, обозначим ее $A_p = \Delta p / \Delta x$.

Для нахождения функции $\tau = \tau(r)$ решим вначале однородное уравнение $\frac{d\tau}{dr} + \frac{\tau}{r} = 0$, а затем таким образом подберем произвольную лостоянную интегрирования, чтобы полученное решение удовлетворяло и неоднородному уравнению (12-16). Решение однородного уравнения имеет вид: (см. § 11-3):

$$\tau = c/r. \tag{12-17}$$

Положим теперь c=z=z(r) и подберем функцию z так, чтобы получить решение уравнения (12-16). Для этого продифференцируем (12-17) и подставим в уравнение (12-16). Получим выражение:

$$z = -A_p r^2/2 + c_1$$

Подставим найденную функцию z в выражение для напряжения трения:

$$\tau = -A_p r/2 + c_1/r.$$

Постоянная интегрирования c_1 может принимать только нулевое значение. Действительно, если $c \neq 0$, то при $r \rightarrow 0$ напряжение т неограниченно возрастает, что не имеет физического смысла. С учетом сказанного получим следующую зависимость напряжения трения от раднуса:

$$\tau = -A_p r/2.$$
 (12-18)

Таким образом, напряжение трения изменяется вдоль радиуса по закону прямой линии, принимая на оси значение $\tau_0 = 0$, а на стенке — значение $\tau_0 = -A_p r_0/2$.

Теперь можно найти профиль скорости. Подставим закон изменения папряжения (12-18) в выражение (12-14):

$$\frac{dw}{dr} = \frac{A_p}{y_1} \frac{r}{2}$$

Отсюда после интегрирования получим:

$$w = -(A_p/4\mu)r^2 + c_2.$$

Постоянная интегрирования определяется граничным условием, задающим значение скорости на стенке: при $r=r_0$ имеем w=0. Тогда

$$c_2 = (A_p/4\mu) r^2_0$$

Выражение для профиля скорости принимает вид:

$$w = \frac{!A_{\rho}}{4\mu} \left(r_0^2 - r^2 \right) = \frac{A_{\rho} r_0^2}{4\mu} \left(1 - \frac{r^2}{r_0^2} \right).$$
(12-19)

Таким образом, при стабилизированном течении ламинарного потока жидкости в трубе имеет место параболический профиль скорости — она изменяется по радиусу по закону параболы второй степени.

Определим среднюю по сечению скорость жидкости, которая используется в качестве масштаба скоростей. По определению средняя скорость равна:

$$w_0 = \frac{1}{\pi r_0^2} \int_0^{r_0} w \cdot 2\pi r dr.$$

Подставив сюда выражение профиля скорости и произведя интегрирование, получим:

$$w_0 = A_p r_0^2 / 8\mu$$
.

Сравнив данное выражение с (12-19), можно записать:

$$w = 2w_0(1 - r^2/r_0^2). \tag{12-20}$$

Ранее были введены понятия безразмерного радиуса $R = r/r_0$ и безразмерной скорости $W = w/w_0$. Используя эти понятия, можно записать выражение для профиля скорости в безразмерном виде:

$$W=2(1-R^2).$$
 (12-21)

Выражение (12-21) описывает поле скорости в трубах с произвольным сочетанием параметров r_0 и w_0 при стабилизированном ламинарном течении. На оси трубы при R=0 безразмерная скорость W=2, на стенке W=0. Средняя безразмерная скорость по определению равна $W_0=1$. Таким образом, максимальное значение скорости в поперечном сечении вдвое больше, чем ее среднее значение.

Приведенные здесь выражения (12-20) и (12-21) для поля скорости в трубе будут использованы при определении поля температуры жидкости и коэффициента теплоотдачи от жидкости к стенке трубы.

12-3. Применение теории подобия при обработке результатов опытов

Подавляющее большинство применяемых в технических расчетах формул в области конвективного теплообмена получено с использованием теории подобия. Эти формулы не совсем обычны, они целым рядом особенностей отличаются от формул, которыми учащиеся привыкли пользоваться, например, в курсе физики. Правильное использование формул конвективного теплообмена возможно только в том случае, если имеется ясное представление о том, как эти формулы были получены.

Выше отмечалось, что знание температурного поля в жидкости позволяет определить различные характеристики процесса, важные в практическом отношении, в частности — коэффициент теплоотдачи. Рассмотрим подробнее, от каких факторов зависит температурное поле в жидкости. Анализ проведем на примере теплообмена прч течении жидкости в трубе.

Поле температуры, описываемое в дапном случае функцией t = t(r, x), определяется соотношением между конвективным тепловым потоком вдоль трубы и тепловым потоком теплопроводности, направленным по радиусу. Эти тепловые потоки определяются следующими величинами: начальной температурой жидкости t_0 , тем-

пературой стенки tc, постоянной вдоль трубы, а также теплофизическими характеристиками жидкости - теплопроводностью λ и теплоемкостью с_р. В связи с тем что конвективный поток связан со скоростью движения жидкости, поле температуры будет зависеть от поля скорости, которое определяется действующими в жидкости силами. Действие сил давления можно характеризовать тем массовым расходом, который устанавливается в трубе под влиянием перепада давлений; другими словами, вместо перепада давления можно задать массовую скорость ош. Профиль скорости формируется под влиянием сил вязкого трения, которые зависят от динамического коэффициента вязкости жидкости μ. Одним из характерных параметров рассматриваемого процесса является геометрическая характеристика области, занятой жидкостью, -- внутренний радиус трубы r_0 . Температурное поле будет зависеть, очевидно, от всех перечисленных параметров процесса и от координат г и х. Следовательно, можно в общем виде записать следующую функциональную зависимость для поля температуры в жидкости:

$$t = f_o(\rho w_o, r_o, t_o, t_c, \mu, c_p, \lambda, r, x).$$

Вводя температурный напор $\vartheta = t - t_c$, получаем:

$$\vartheta = f_1(\rho w_0, r_0, \vartheta_0, \mu, c_p, \lambda, r, x).$$
(12-22)

Ранее была установлена связь температурного поля жидкости и коэффициента теплоотдачи [см. формулу (12-5) в § 12-1]. Если для определения α взять производную от ϑ по r, считая при этом все остальные величины постоянными, и затем подставить значение $r = r_0$, то выражение (12-22) примет следующий вид:

$$a_{x} = f_{2}(\rho w_{o}, r_{o}, \vartheta_{o}, \mu, c_{\rho}\lambda, x). \qquad (12-23)$$

Это выражение определяет местный коэффициент теплоотдачи (т. е. коэффициент теплоотдачи при данном значении x). Средний коэффициент теплоотдачи не зависит от координаты x, следовательно, для него получим такую функциональную зависимость:

$$\overline{a} = f_{\mathfrak{z}}(\rho w_{\mathfrak{o}}, r_{\mathfrak{o}}, \vartheta_{\mathfrak{o}}, \mu, c_{\rho}, \lambda).$$
(12-24)

Таким образом, при течении жидкости в трубе средний коэффициент теплоотдачи зависит от шести параметров. Неизвестную функцию f_3 определяют экспери-16—702 241

ментальным путем. При этом используется теория по-добия — теоретическая база эксперимента. Эксперимент проводится чаще всего в лаборатории. Проведение эксперимента на реальных энергетических установках связано с трудностями организационного и экономического порядка. Реальные энергетические объ-екты предназначены для эксплуатации, а не для про-ведения исследований. Кроме того, в период проведе-иня исследования реального объекта наше всего не ведения исследовании. Кроме того, в период проведе-ния исследования реального объекта чаще всего не существует вообще — именно создание самого объекта (парогенератора, теплообменника) и вызвало необходи-мость проведения исследования с целью получения рас-четных формул для его проектирования. Поэтому со-здается небольшая модель объекта и на ней воспроизводится интересующий нас процесс теплообмена в лабораторных условиях. При этом проводятся все измерения, в результате чего накапливаются таблицы измеренных значений величин. Эти таблицы содержат, с одной стороны, произвольно изменяемые в процессе опыта независимые переменные (аргументы), например скорость течения жидкости, диаметр трубы, среднюю температуру жидкости, а с другой — значения искомой переменной, которой чаще всего является коэффициент теплоотдачи. Табличные данные можно представить теплоотдачи. Гаоличные данные можно представить в виде графиков. Можно также подобрать уравнения, соответствующие кривым линиям графиков, и использо-вать эти уравнения в качестве расчетных формул. На-пример, можно подобрать уравнение, которое связывает коэффициент теплоотдачи а со скоростью движения жидкости для определенного значения раднуса:

$$\alpha = f_4(w_0); r_0 = \text{const.}$$

Можно также подобрать уравнение связи α с радиу-сом при фиксированном значении скорости *w*₀:

$$\alpha = f_5(r_0); w_0 = \text{const.}$$

Несколько сложнее, но также возможно подобрать уравнение, связывающее значение α со скоростью w_0 и радиусом ro одновременно:

$$\alpha = f_6(w_0, r_0).$$

Но все эти формулы описывают процесс теплообме-на в лабораторной установке. Нас же интересуют фор-мулы, описывающие процесс теплообмена в реальном объекте, в котором имеют место другие скорости движе-242

ния теплоносителя, другие размеры труб и т. д. Желательны универсальные формулы, которые могут использоваться впоследствии и для других объектов — ведь такой процесс, как, например, теплообмен при течении жидкости в трубе, может встречаться в самых разнообразных энергетических установках и аппаратах. Возникшую проблему помогает решить теория подобия.

Теория подобия позволяет упростить функциональную зависимость (12-24) и сделать ее более универсальной. Для этой цели используются числа подобия и зависимость (12-24) преобразуется в так называемое у равнение подобия. Если найти конкретный вид такой безразмерной зависимости при помощи эксперимента, то она будет справедливой для всех подобных процессов и позволит рассчитывать коэффициент теплоотдачи во всех этих случаях.

В процессе конвективного теплообмена при течении жидкости в трубе речь идет о тепловом и гидродинамическом подобии. Если жидкость движется в трубе с заметной скоростью, то следует принимать во внимание три рода сил, действующих в жидкости: силы инерции, вязкости и давления. Поскольку заданы скорость w_0 и динамический коэффициент вязкости μ , то критерий подобия должен отражать соотношение между силами инерции и силами вязкости. Согласно § 12-2 таким критерием является критерий Рейнольдса, который применительно к течению в трубе можно записать:

$$\operatorname{Re} = \frac{\rho w_0 r_0}{\mu}.$$

Критерием теплового подобия будет в данном случае критерий Пекле. Действительно, в данном случае имеются только два потока: конвективный поток и поток теплопроводности. Соотношение между ними и характеризуется числом Пекле, которое для течения в трубе имеет следующий вид:

$$\mathrm{Pe} = \frac{\rho w_0 c_p r_0}{\lambda} ,$$

Два названных числа подобия составлены из заданных величин, поэтому они— критерии подобия. Однако у нас имеется еще величипа коэффициента теплоотдачи а, которая является искомой. Этой величине в уравнении подобия должно соответствовать искомое число подобия (которое критерием подобия не является). Такое 16* 243 число можно получить, приведя к безразмерному виду выражение (12-5). При этом используются безразмер-ные координаты и безразмерная температура, которые были введены в § 12-2. В безразмерном виде выраже-ние (12-5) выглядит так:

$$Nu = -\frac{1}{\overline{\Theta}} \left(\frac{d\Theta}{dR} \right)_{R=1}.$$
 (12-25)

В левой части выражения (12-25) имеется число Нуссельта

$$\mathrm{Nu} = \frac{\alpha r_0}{\lambda}.$$

Физический смысл числа Нуссельта состоит в том, что оно представляет собой безразмерный коэффициент теплоотдачи. Из выражения (12-25), следует, что число Нуссельта определяется полем безразмерной темпера-туры и равно отношению градиента температуры на стенке к средней температуре жидкости. С использованием указанных чисел подобия выраже-ние (12-24) приводится к следующему уравнению по-

добия:

$$\overline{Nu} = F_{a}(Re, Pe),$$

или, с учетом того, что Pe=Re.Pr,

$$\overline{\mathrm{Nu}} = \mathrm{F}_{1}(\mathrm{Re}, \mathrm{Pr}). \tag{12-26}$$

Возникает вопрос: правильно ли записано уравнение подобия? Нет ли в нем лишних чисел подобия? А может быть, какое-либо число подобия забыли ввести в правую часть? Для ответа на все эти вопросы используется а на лиз размерностей.

Основное положение анализа размерностей заклю-чается в следующем: математические выражения, опи-сывающие физический процесс, не должны зависеть от выбранной системы единиц измерения. Например, урав-нение основного закона динамики не изменяет свой вид при записи его в различных системах единиц измере-ния. А это значит, что отдельные слагаемые уравнения в данной системе единиц имеют одну и ту же размер-ность; можно разделить все слагаемые на одно из ность, можно разделять все слагаемые на одно но них — тогда получим основное уравнение динамики в безразмерном виде. Каждое слагаемое такого безраз-мерного уравнения равно отношению каких-либо двух сил, поскольку в размерном уравнении каждое слагае-мое соответствовало одной силе. Если вспомнить, что

физический смысл числа Рейнольдса как раз и состоит в том, что оно отражает соотношение между двумя силами — инерции и вязкости, то можно от анализа размерностей уравнения перейти к условиям подобия физических процессов. Этот пример указывает на тесную связь, которая существует между теорией подобия и анализом размерностей.

Конкретно проверка правильности составления уравнения подобия (12-26) по размерному выражению (12-24) осуществляется по следующему правилу: количество чисел подобия k равно разности между общим числом размерных переменных l и числом переменных, имеющих независимые размерности m. Таким образом, k=l-m.

В приведенном выражении (12-24) общее количество размерных величин l=7. Они имеют следующие единицы измерения:

$$\begin{bmatrix} \alpha \end{bmatrix} = \operatorname{Bt}/(\operatorname{M}^{2} \cdot \operatorname{K}); \quad [\rho w_{o}] = \kappa \Gamma/(\operatorname{M}^{2} \cdot \operatorname{C}); \quad [r_{o}] = \operatorname{M}; \quad [\vartheta_{o}] = \\ = \operatorname{K}; \quad [\mu] = \operatorname{H} \cdot \operatorname{C}/\operatorname{M}^{2}; \\ [c_{\rho}] = \operatorname{Am}/(\kappa \Gamma \cdot \operatorname{K}); \quad [\lambda] = \operatorname{Bt}/(\operatorname{M} \cdot \operatorname{K}). \end{aligned}$$

С учетом второго закона динамики (1 H=1 кг \times \times 1 м/с²), а также с учетом соотношений между единицами измерения 1 Дж=1 H·1 м; 1 Вт=1 Дж/1 с, единицы измерения приведенных выше величин можно переписать таким образом, чтобы в них входили только четыре основные единицы системы СИ — метр, секунда, килограмм, кельвин. Тогда получим:

$$[\alpha] = \kappa \Gamma / (c^{*} \cdot K); \quad [\rho w_{o}] = \kappa \Gamma / (M^{*} \cdot c); \quad [r_{o}] = M; \quad [\vartheta_{o}] = K; \quad [\mu] = \kappa \Gamma / (M \cdot c); \quad [c_{\rho}] = M^{*} / (c^{*} \cdot K); \quad [\lambda] = \kappa \Gamma \cdot M / (c^{*} \cdot K).$$

Из приведенной записи видно, что четыре величины имеют независимые размерности (ни одну из этих размерностей невозможно получить из трех остальных):

$$[r_0] = M; [\vartheta_0] = K; [\mu] = K\Gamma/(M \cdot c); [c_p] = M^2/(c^2 \cdot K).$$

Следовательно, m=4. Тогда k=l-m=7-4=3, т. е. в уравнении подобия должно быть три числа подобия. Таким образом, уравнение подобия составлено правильно, ибо в нем имеются три числа подобия: Nu, Re и Pr

(из них два — Re и Pr — являются критериями подобия).

Задача сводится теперь к нахождению конкретного вида уравнения подобия. В этом аспекте роль чисел подобия Re и Pr, с одной стороны, и числа $\overline{\text{Nu}}$ — с другой, различна. Чтобы подчеркнуть это обстоятельство, числа Re и Pr называют о пределяющи ми, а число Nu о пределяемым. Не все определяющие числа подобия являются критериями подобия, а лишь те, которые составлены из заданных параметров. Например, если записать в виде уравнения подобия размерную-зависимость для местного коэффициента теплоотдачи α_x (12-23), то в правой части появится безразмерная координата X, которая определяет собою расстояние от начала трубы до сечения, в котором находят местный коэффициент теплоотдачи α_x или местное число Нуссельта Nu_x. Эта координата— определяющее число подобия, но не критерий подобия, ибо сюда входит величина x, которая не является наперед заданным параметром.

Роль критериев подобия особенно важна. Выше при описании подобия треугольников отмечалось, что следствием такого подобия является пропорциональность сторон и равенство углов треугольника. В то же время для обеспечения подобия достаточно одной пропорциональности сторон. Таким образом, достаточные условия подобия более узки, чем следствия факта подобия. Примерно так же обстоит дело и в вопросе подобия физических процессов. Для обеспечения подобия достаточно обеспечить равенство только критериев подобия — в данном случае Re и Pr. Следствия же подобия более широки: в подобных процессах равны не только числа Re и Pr, но и число Nu. Кроме того, в сходственных точках (с одинаковыми координатами X, например) будут равны местные числа Нуссельта Nu_x. В этих процессах будут одинаковыми также безразмерные поля скорости и температуры.

Наряду с коэффициентом теплоотдачи большое значение для практики имеет потеря давления в трубе Δp , этой величиной определяется мощность, затрачиваемая на прокачку теплоносителя через трубу. Сила давления уже упоминалась ранее, но соответствующее число подобия не вводилось. В рассматриваемом случае заданной величиной является средняя расходная скорость w_n . 246

потеря давления Δp — величина искомая. В размерном виде зависимость для Δp можно представить так:

$$\Delta p = f_4(\rho w_0, r_0, \mu).$$
 (12-27)

Безразмерное представление зависимости (12-27) осуществляется с использованием анализа размерностей. Соответствующее уравнение подобия имеет вид:

$$Eu = F_2(Re);$$
 (12-28)

здесь число подобия

Eu= $\Delta p / \rho w^2_0$

носит название числа Эйлера. Смысл числа Эйлера заключен в следующем: оно отражает соотношение между силами давления и силами инерции. Число Эйлера является, искомым, это — определяемое число подобия.

При проведении эксперимента меняются различные параметры, входящие в зависимости (12-24) и (12-27). Для изменения от в опытах изменяют массовый расход жидкости: $G = \rho w_0 \pi r^2_0$; изменение ϑ_0 осуществляется пу-тем подачи в трубу жидкости с различной начальной температурой to и путем изменения температуры стенки $t_{\rm c}$: для того чтобы иметь различные значения $r_{\rm D}$, используются трубы различного диаметра; для изменения физических свойств μ, с_p, λ опыты проводят с различными жидкостями. Коэффициент теплоотдачи определяется с использованием выражений (12-10) и (12-11) из § 12-1. Измеренные значения величин пересчитывают в числа подобия Re, Pr, Nu и Eu. При вычислении чисел подобия физические свойства жидкости выбирают из таблиц по специально указанной температуре, которая носит название определяющей температуры. Определяющая температура выбирается по двум соображениям: во-первых, расчет ее должен быть по возможности простым (например, это должна быть средняя темпера-тура жидкости в трубе), во-вторых, она должна обеспечить хорошее совпадение экспериментальных данных с расчетной формулой, которую получают при их обработке.

Таким образом, в результате проведения опытов получены две неизвестные функции (12-26) и (12-28), представленные в табличном виде. Для удобства технических расчетов такую таблицу аппроксимируют формулой. Проще всего подобрать прямую линию, которая проходит по экспериментальным точкам; прямая линия

определяется двумя параметрами — постоянным коэффициентом и углом наклона; ее уравнение имеет вид:

$$y=y_0+cx;$$

эти параметры можно определить графически.

Зависимости для чисел Nu и Eu определяются выражениями

$$Nu = a_0 \operatorname{Re}^{a_1} \operatorname{Pr}^{a_2};$$
 (12-26a)

$$Eu = b_0 \operatorname{Re}^{b_1};$$
 (12-28a)

здесь a_0 , a_1 , a_2 , b_0 , b_1 — константы, подлежащие определению по опытным данным.

Зависимости (12-26) и (12-28) можно прологарифмировать и представить в следующем виде:

$$\ln Nu = \lg a_0 + a_1 \lg \operatorname{Re} + a_2 \lg \operatorname{Pr};$$
 (12-29)

$$\lg Eu = \lg b_0 + b_1 \lg Re.$$
 (12-30)

Если теперь для отыскания параметров b_0 и b_1 зависимости (12-30) представить соответствующей ей точки в системе координат с осями $y = \lg Eu$ и $x = \lg Re$, то по ним можно провести прямую линию. Угол наклона этой прямой линии дает возможность определить значение b_1 . Значение b_0 определяется по выражению

$$b_{0} = E u_{1} / Re_{1}^{b_{1}}$$
,

где Eu₁ и Re₁ соответствуют точке, лежащей на прямой линии.

Зависимость (12-29) более сложна, поэтому ее параметры отыскивают в два этапа. Внанале определяют константы частной зависимости

$$\lg \overline{\mathrm{Nu}} = \lg a_0 + a_1 \lg \operatorname{Re}$$

при условии Pr=const. Для этого в системе координат $y=\lg Nu$, $x=\lg Re$ откладывают экспериментальные точчи с одинаковым числом Прандтля. Можно откладывать все точки, тогда получится ряд параллельных прямых, у которых параметр a_1 одинаков (тангенс угла наклона), а параметры a_0 различны — a'_0 , a''_0 , a'''_0 . Найдя параметр a_1 , строят зависимость в координатах

$$\lg (\mathrm{Nu}/\mathrm{Re}^{u_2}) = \lg a_0 + a_2 \lg \mathrm{Pr};$$

здесь $y = (\overline{Nu}/\text{Re}^{a_1}); x = \lg \Pr$. Отсюда находят a_0 и a_2 . Полученные в эксперименте зависимости (12-26а) и

Полученные в эксперименте зависимости (12-26а) и (12-28а) рекомендуются затем для применения в тех-248 нических расчетах. При этом обязательно указывают: какая скорость берется в качестве характерной (в данном случае w_0 — средняя расходная скорость, в других процессах в качестве характерной может быть взята другая скорость, например, при обтекании потоком цилиндра в поперечном направлении в качестве характерной берется скорость не возмущенного цилиндром потока); какой размер берется в качестве характерного (здесь — внутренний радиус трубы r_0). Указывают также способ вычисления определяющей температуры, а также диапазон изменения определяющих чисел подобия (здесь — критериев подобия), в котором проводился эксперимент и в котором, следовательно, рекомендуемую формулу можно использовать для расчета.

Рассмотрим конкретный пример получения уравнения подобия и применения его для расчета.

Пример 12-3. На воздушной модели парогенератора, выполненной в масштабе ¹/₈ натуральной величины, производилось изучение теплоотдачи. Для первого газохода модели при различных скоростях воздуха были получены следующие значения коэффициента теплоотдачи:

 w_1 , M/c..., 2,00 3,14 4,65 8,80 α_1 , BT/(M²·°C), 50,4 68,6 90,6 141

Средняя температура воздуха, проходящего через модель, $t_{\pi_1}=20^{\circ}$ С. Диаметр трубок модели $d_1=12,5$ мм. Коэффициент теплоотдачи α_1 при обработке опытных данных был отнесен к средней арифметической разности температур между жидкостью и стенкой.

По данным, полученным на модели, найти уравнение подобия. Решение. В большинстве случаев при вынужденной конвек-

цни * уравнение подобия имеет вид, полученный выше для случая течения жидкости в трубе:

Nu = F(Re, Pr).

Продукты сгорания, имитируемые в модели воздухом, совершают в реальном парогенераторе сложное обтекание пучка трубок, тем не менее анализ, подобный проведенному дает такой же вид уравнения подобия. Особенностью является в данном случае лишь то, что число Прандтля $\Pr=\mu c_p/\lambda$ для воздуха почти не изменяется с температурой, поэтому в модели и принята одна температура. В этом случае число Прандтля необходимо вывести из уравнения подобия как параметр, который для всех опытов имеет постоянное значение. Число Рг в реальном парогенераторе, где в качестве теплоносителя используются продукты сгорания с высокой темпера-

^{*} Вынужденная конвекция происходит под действием внешних сил, приложенных к жидкости, например, со стороны лопаток насоса или вентилятора. Естественная конвекция (свободное движение) осуществляется под действием неоднородности температурного поля в жидкости, что приводит к возникновению архимедовой силы.

турой, также изменяется незначительно. Таким образом, уравнение подобия в данном случае имеет вид:

$$Nu = f(Re);$$

здесь число Re составлено из заданных параметров:

 $\operatorname{Re}_1 = w_1 d_1 \rho_1 / \mu_1$

а число Nu равно:

$$\operatorname{Nu}_1 = \alpha_1 d_1 / \lambda_1$$
.

Уравнение подобия будем искать в виде

$$Nu = CRe^n, \tag{12-31}$$

где константы С и п подлежат определению.

Все физические свойства воздуха берутся из таблицы, приводимой в приложении (см. табл. П10) для определяющей темпера-туры $t_{\#_1} = 20^{\circ}$ С: $\lambda_1 = 0.026$ Вт/(м·K); $\rho_1 = 1.205$ кг/м³; $\mu_1 = 18, 1 \times 10^{\circ}$ $\times 10^{-6}$ H·c/m².

Для приведенных выше четырех режимов рассчитаем значения чисел Rei и Nui:

Reı			. 1600	2600	3860	7300
Nu		•	. 24,2	33,0	43,6	68,0

Построим график зависимости Nu=f(Re), которая задана последней таблицей. График удобно строить в логарифмической системе координат, поскольку после логарифмирования уравнение (12-31) имеет вид:

$$\lg Nu = \lg C + n \lg Re$$

По оси абсцисс откладываем значения lg Re1, а по оси ординат — lg Nu₁. Если форма уравнения подобия (степенная зависи-

2,0 Nu. 1.8 1,6 0.665 Nu_M=0,15 Rem 1,4 lgReм 1,2 3.0 3.2 3.4 3.6

Рис. 12-7. К примеру 12-3.

мость) выбрана удачно, то по четырем экспериментальным точкам можно провести аппроксимирующую линию, которая в логарифмической системе координат представляет собой прямую с угловым коэффициентом п (рис. 12-7); индекс «м» означает «модель». Тангенс угла наклона прямой определяется графически, а по известному значению п и любой паре значений Nu1 и Re1, соот-` ветствующих друг другу, можно найти постоящную С:

$$C = Nu_1 / \text{Re}^{n_1}$$

После нахождения числовых значений констант получаем следующее уравнение подобия:

$$Nu=0,15Re^{0,665}$$
. (12-32)

Несмотря на то что уравнение подобия построено всего по четырем режимам процесса (четырем «опытным точкам»), оно остается справедливым и для любого промежуточного режима. Таким образом, уравнение подобия дает правильный результат при подстановке в него любого значения числа Рейнольдса из интервала

$$\lg Nu = \lg C + n \lg$$

Пусть теперь нам необходимо рассчитать теплоотдачу для какого-то режима в реальном парогенераторе. Уравнение подобня (12-32) описывает процесс теплоотдачи в совокупности подобных между собой процессов; такими процессами, в частности, могут являться два процесса — процесс в лабораторной установке (процесс 1) и процесс в реальном парогенераторе (процесс 2). Парогенератор по условию в 8 раз больше модели, следовательно, d_2 = =100 мм. Режим, для которого необходимо найти коэффициент теплоотдачи a_2 , характеризуется следующими данными: средняя температура продуктов сгорания t_{m2} =900°С, скорость движения их w_2 =10 м/с. По известному составу продуктов сгорания и температуре t_{m2} из таблиц, приведенных в справочниках, берем следующие значения физических свойств продуктов сгорания: λ_2 = =0,1 Вт/(м·К), ρ_2 =0,301 кг/м³; μ_2 =45,9·10⁻⁶ П·с/м². Определим число Рейнольдса:

 $\operatorname{Re}_2 = \omega_2 d_2 \rho_2 / \mu_2 = 10.0, 1.0, 301/45, 9.10^{-6} = 6530.$

Число Рейнольдса для реального парогенератора Re₂=6530 лежит в диапазоне 1660 ≪Re≪7300. Это озпачает, что при исследовании процесса на модели в область исследования включен и режим с Re₁=6530. В силу того, что число Рейнольдса является здесь единственным критерием подобия, а также в связи с выполнением остальных условий подобия процессов режим с Re₁=6530 на лабораторной установке и режим с Re₂=6530 на реальном парогенераторе представляют собой подобные процессы конвективного теплообмена. Следовательно, для этих двух процессов равны все числа подобия, в том числе и определяемые. В данном случае нас интересует равенство чисел Нуссельта для эксперимента и для реального объекта: Nu₁=Nu₂. Рассчитаем число Nu по уравнению подобия.

 $Nu=0.15Re^{0.665}=0.15(6530)^{0.665}=0.15\cdot 407=61.$

Следовательно, Nu₁=Nu₂=61. Зная d_2 и λ_2 , можно найти коэффициент теплоотдачи в пучке парогенератора α_2 :

$$\alpha_2 = \mathrm{Nu}_2 \frac{\lambda_2}{d_2} = 61 \frac{0.1}{0.1} = 61 \mathrm{Br}/(\mathrm{M}^2 \cdot \mathrm{K}).$$

Пусть требуется определить коэффициент теплоотдачи α_2 в пучке парогенератора при скорости движения продуктов сгорания $\omega_2 = =15 \text{ м/с.}$ Этой скорости соответствует число $\text{Re}_2 = 9795$, которое не попадает в диапазон 1660 $\ll \text{Re} \ll 7300$. Следовательно, среди исследованных режимов отсутствует режим, подобный тому режиму в парогенераторе, при котором скорость $\omega_2 = 15 \text{ м/с.}$ Уравнение подобия (12-32) в этом случае использовать нельзя. Каков выход из создавшегося положения? Можно, например, воспроизвести на лабораторной установке режим, подобный реальному. Для этого в установке нужно создать скорость:

Re₁ = Re₂ = 9795;
$$w_1 = \text{Re}_1 \frac{\mu_1}{d_1 \rho_1} = 9795 \frac{18, 1 \cdot 10^{-6}}{12, 5 \cdot 10^{-6} \cdot 1, 205} = 11,8 \text{ M/c.}$$

При этом будет измерен коэффициент теплоотдачи α_1 , по нему рассчитано число Нуссельта Nu₁ и затем определен интересующий нас коэффициент α_2 для скорости $w_2 = 15$ м/с из соотношения

$$\mathrm{Nu}_1 = \mathrm{Nu}_2; \ \alpha_2 = \mathrm{Nu}_2 \frac{\lambda_2}{d_2}.$$

12-4. Понятие о гидродинамическом и тепловом пограничном слое

Понятие о пограничном слое относится к числу важнейших в теории теплообмена. Анализ процессов в пограничном слое позволяет раскрыть физическую сущ-

Рис. 12-8. Гидродинамический пограничный слой при обтекании плоской поверхности. ность многих явлений в конвективном теплообмене. Рассмотрим пограничный слой на простейшем примере — обтекании жидкостью плоской поверхности.

При течении жидкости вдоль плоской поверхности тела частицы жидкости, непосредственно соприкасающиеся с поверхностью «прилипают» к ней вследствие адсорбции. Поскольку всякая реальная жидкость (капельная жидкость или газ) обладает вязкостью,

то слой жидкости, контактирующий с прилипшим слоем, тормозится последним. Однако сверху на этот второй слой в силу той же вязкости действует третий слой, побуждающий второй слой к движению. В результате второй слой движется с небольшой скоростью. Третий слой испытывает снизу тормозящее действие второго слоя, а сверху — движущее действие четвертого слоя; третий слой движется с несколько большей скоростью, чем второй. Слои скользят друг по другу, как и воображаемые коаксиальные цилиндры при течении жидкости в трубе. Чем больше расстояние у от стенки (рис. 12-8), тем скорость слоя больше. Однако увеличение скорости имеет предел, равный значению скорости wo в набегающем потоке. Следовательно, вблизи поверхности тела имеется область, в которой скорость жидкости меняется от значения ш=0 на поверхности до значения ш=ш₀ на некотором расстоянии б от поверхности. Эта область носит название гидродинамического пограничного слоя, а величина δ называется его толщиной. Толщина пограничного слоя увеличивается в направлении х.

Ранее было указано, что поле скорости при течении жидкости в трубе можно рассчитать, использовав основной закон динамики, закон трения Ньютона и условие сплошности (см. пример 12-2). Такой расчет возможен 252
и при обтекании плоской поверхности, в результате может быть получена формула, дающая зависимость толщины пограничного слоя от расстояния *x*:

$$\frac{\delta}{x} = \frac{4,64}{\sqrt{Re_x}}; \qquad (12-33)$$

здесь

$\operatorname{Re}_{x} = w_{0} x_{0} / \mu.$

Следует отметить, что в числе Рейнольдса в качестве линейного размера взято расстояние x, а не r₀ или d, как для трубы. Вообще для этой цели используется тот линейный размер, который характерен для данной задачи; такой размер называется определяющим.

Толщина гидродинамического пограничного слоя, как правило, мала по сравнению с расстоянием *x*. Например, для потока воздуха с $w_0 = 3$ м/с н $t_0 = 20$ °С (температура набегающего потока, по которой из таблиц выбираются физические свойства воздуха ρ н μ) величина $\delta = 10,4$ мм при x = 1 м.

Подобно тому, как воображаемые тонкие слои жидкости взаимодействуют друг с другом в динамическом отношении благодаря вязкости, происходит и тепловое взаимодействие этих слоев благодаря теплопроводностя жидкости. Через «прилипший» слой теплота передается, как через твердую стенку. Микрочастицы жидкости переходят во второй слой, внося в него при этом некоторое количество теплоты (предполагается, что температура стенки $t_{\rm c}$ выше, чем температура $t_{\rm 0}$ набегающего потока). Часть поступившей в него теплоты второй слой уносит, оставшаяся теплота переходит в третий слой и т. д. Переходящая из слоя в слой доля теплоты становится все меньше в связи с тем, что очередной слой уносит определенное количество теплоты. На некотором расстоянии k от стенки окажется такой слой, в который теплота не поступила. Таким образом, процесс теплообмена сосредоточен в области толщиной k вблизи стенки. Механизм переноса теплоты в направлении у — это механизм теплопроводности, при котором перенос осуществляется благодаря наличию градиента температуры dt /dy. Этот градиент имеет максимальное значение на стенке при у=0, так как здесь плотность потока имеет максимальное значение, и теплового стремится к нулю при у=k. При этом температура меняется от значения $t = t_c$ при y = 0 до значения темпера-

туры набегающего потока $t=t_0$ при y=k. Пристенная область, в которой происходит изменение температуры жидкости от температуры стенки до температуры набегающего потока, называется тепловым пограничиым слоем (см. рис. 12-8). Температурное поле в тепловом пограничном слое и его толщина k могут быть рассчитаны, если кроме физических законов, определяющих поле скорости, использовать законы сохранения энергии и Фурье. Расчет показывает, что толщина теплового пограничного слоя пропорциональна толщине гидродинамического пограничного слоя:

$$k = \frac{1}{\sqrt[q]{\mathrm{Pr}}} \delta. \tag{12-34}$$

Для воздуха, например, число Прандтля близко к единице ($\Pr \approx 0.7$), поэтому толщина теплового пограничного слоя примерно равна толщине гидродинамического пограничного слоя. Для масла число \Pr очень велико (сотни и даже тысячи), поэтому $k \ll \delta$. Для воды при температурах ниже 100°С толщины теплового и гидродинамического пограничного слоев имеют один порядок, причем $k < \delta$.

Знание толщины теплового пограничного слоя позволяет найти коэффициент теплоотдачи. Тепловой пограничный слой подобно твердой стенке отделяет поверхность тела от той области жидкости, в которой температурное поле однородно. Если бы жидкость в тепловом пограничном слое была неподвижной, плотность теплового потока через этот слой можно было бы определить по формуле теплопроводности

$$q = \frac{\lambda}{k} (t_{\rm c} - t_{\rm o}).$$

Движение в пограничном слое и связанное с этим отличие температурного поля от поля в твердой стенке можно учесть некоторым коэффициентом *a*. В этом случае

$$q = a \frac{\lambda}{k} (t_{\rm c} - t_{\rm o}).$$

С другой стороны, согласно закону Ньютона-Рихмана

$$q = \alpha (t_c - t_0).$$

Приравнивая правые части двух последних уравнений, получаем:

$$a = a \frac{\lambda}{k}.$$
 (12-35)

Согласно расчетам *a*=1,5. Следовательно, при некотором значении *x*, для которого толщина гидродинамического пограничного слоя определяется формулой (12-29), а толщина теплового пограничного слоя формулой (12-30), имеем следующее значение местного (т. е. в данной точке с координатой *x*) коэффициента теплоотдачи:

$$\alpha_x = \frac{1.5}{4.64} \frac{\lambda}{x} \sqrt{\operatorname{Re}_x} \sqrt[3]{\operatorname{Pr}}.$$

Перенесем в левую часть x и λ , тогда слева получим местное число Нуссельта Nu_x . Вычислив коэффициент, получим уравнение подобия для расчета местной теплоотдачи при обтекании плоской поверхности:

$$Nu_x = 0.33 Re_x^{0.5} Pr^{0.33};$$
 (12-36)

здесь Nu_x= $\alpha_x x/\lambda$; Re_x= $w_0 x \rho/\mu$; Pr= $\mu c_p/\lambda$; все физические параметры берутся из таблицы по температуре набегающего потока t_0 . Эта температура, как было указано ранее, называется определяющей.

Уравнение (12-31) справедливо для следующей области изменения числа Рейнольдса: Re<5.10⁵. При определении плотности теплового потока по найденному значению α_x необходимо использовать температурный напор, равный t₀—t_c.

Если подставить значения чисел Nu_x , Re_x н Pr в формулу (12-31) и перенести в правую часть все величины, кроме α_x , то можно легко проследить зависимость коэффициента теплоотдачи от различных величин, описывающих процесс теплообмена:

$$\alpha_{x} = 0.33 \omega_{0}^{0.5} x^{-0.5} \rho^{0.5} \mu^{-0.17} c_{\rho}^{0.33} \lambda^{0.66}. \qquad (12-37)$$

Пусть имеет место определенный режим с заданными значениями w_0 и t_0 . Тогда зависимость α_x от x может быть выражена соотношением

$$\alpha_x = Ax^{-0,5} = \frac{A}{Vx};$$

здесь $A = 0,33 w_0^{0.5} \rho^{0.5} \mu^{-0.17} c_{\rho}^{0.33} \lambda^{0.66}$, т. е. зависит только от w_0 и t_0 , которые в данном случае постоянны.

Таким образом, с увеличением расстояния x от передней кромки значение коэффициента теплоотдачи падает по закону квадратного корня (рис. 12-9). Чем объясняется уменьшение коэффициента теплоотдачи? Основная причина — увеличение толщины пограничного слоя. Гидродинамический пограничный слой увеличивает свою толщину δ в связи с действием вязкости: по мере движения потока вдоль поверхности скорость частиц внутри пограничного слоя уменьшается; если измерить скорость на определенном расстоянии от стенки внутри

Рис. 12-9. Теплоотдача при обтекании плоской поверхности.

пограничного слоя, а затем, продвинувшись вправо, снова измерить скорость на том же расстоянии от стенки внутри пограничного слоя, то во втором случае скорость окажется меньше: замедляющее действие стенки все глубже проникает в поток. Толщина теплового пограничного слоя k пропорциональна δ и также возрастает с увеличением x. Выше мы указывали на некоторую аналогию теплового пограничного слоя и плоской стенки — термическая проводимость теплового пограничного слоя пропорциональна теплопроводности λ и обратно пропорциональна толщине k. С увеличением толщины, следовательно, термическая проводимость падает, а вместе с ней падает коэффициент теплоотдачи.

Сказанное можно пояснить более детально, если обратиться к рис. 12-9. На нем изображены два профиля температуры в жидкости — в сечении A и в сечении \mathcal{B} , отстоящем от передней кромки на большем расстоянии. И в том, и в другом случае разность температур $\vartheta_0 = 256$

 $=t_0-t_c$ одна и та же, но в сечении Б толщина теплового пограничного слоя k'' больше, чем толщина k' в сечении А. Поэтому профиль температуры в сечении Б более вытянут по сравнению с профилем температуры в сечении А. Угол между касательной к температурной кривой и осью Ои при и=0, тангенс которого равен производной $(dt/dy)_{y=0}$, уменьшается при переходе от сечения А к сечению Б. Если вспомнить, что температурное поле в жидкости вблизи стенки определяет собой интенсивность теплоотдачи и что коэффициент теплоотдачи связан с температурным полем уравнением (12-5)

$$\alpha = -\frac{\lambda}{t_0 - t_c} \left(\frac{dt}{dy} \right)_{y=0},$$

то становится ясным, что в сечении \mathcal{B} коэффициент теп-лоотдачи должен быть меньше, ибо $\beta'' < \beta'$, tg $\beta'' < tg \beta'$ и производная $(dt/dy)_{y=0}$ (градиент температуры жидкости вблизи стенки) в сечении Б меньше.

Зависимость местного коэффициента теплоотдачи от расстояния х от передней кромки позволяет получить выражение для среднего коэффициента теплоотдачи на участке длиной 1:

$$\bar{a} = \frac{1}{l} \int_{0}^{l} a_{x} dx = \frac{1}{l} \int_{0}^{l} Ax^{-0.5} dx = \frac{A}{l} \left| 2\sqrt{x} \right|_{\delta}^{l} = 2 \frac{A}{\sqrt{l}}.$$

Следовательно, выражение для среднего коэффициента теплоотдачи имеет вид:

$$a = 2a_{x=l}.$$
 (12-38)

Таким образом, средний коэффициент теплоотдачи на участке длиной l вдвое больше местного коэффициента теплоотдачи при x=l.

На основании выражения (12-37) можно записать также

$$\alpha = B w_0^{0,5}$$
 ,

где $B = 0.33 x^{-0.5} \rho^{0.5} \mu^{-0.17} c_{\rho}^{0.33} \lambda^{0.66}$, т. е. зависит только от x и t_0 , которые в данном случае постоянны.

Следовательно, если увеличить скорость набегающего потока в 2 раза, то при определенном значении х коэффициент теплоотдачи α_x возрастет только в $\sqrt{2}$ =1,41 pasa. 17-702

Как ясно из сказанного, при расчете теплоотдачи по формуле (12-36) во внимание принимается только одна температура жидкости — температура набегающего потока t_0 , по которой из таблиц берутся физические свойства жидкости. В предыдущих рассуждениях также всегда предполагалось, что физические свойства жидкости постоянны и не зависят от температуры. Но это не соответствует реальному положению вещей: в жидкости имеется неоднородное температурное поле и в каждой точке физические свойства соответствуют местному значению температуры. Можно учесть это обстоятельство введением в формулу (12-36) специального коэффициента.

Такой коэффициент, учитывающий неизотермичность потока и равный $(\Pr_{m}/\Pr_{c})^{0.25}$, был предложен в свое время академиком М. А. Михеевым. Он вводится в виде дополнительного множителя в выражение (12-36), преобразованное предварительно в формулу для нахождения среднего числа Нуссельта, $\overline{Nu} = \overline{\alpha x}/\lambda$; для этого согласно (12-38) вместо 0,33 нужно взять коэффициент 2.0,33=0,66:

$$\overline{\mathrm{Nu}}_{l} = 0.66 \,\mathrm{Pe}_{l}^{0.5} \mathrm{Pr}_{*}^{0.33} (\mathrm{Pr}_{*}/\mathrm{Pr}_{c})^{0.25}. \quad (12-39)$$

Множитель (Pr_ж/Pr_c)^{0,25} представляет собой корень четвертой степени из отношения числа Pr_ж, взятого из таблиц при температуре жидкости (в данном случае — при температуре t_0), к числу \Pr_c , взятому из таблиц при температуре стенки t_c . Изменение числа \Pr с температурой происходит в основном из-за изменения вязкости μ , причем в ту же сторону, ибо вязкость входит в чи-слитель: $\Pr = \mu c_p / \lambda$. Вязкость газов возрастает с увеличением температуры в незначительной степени, а число Pr остается практически неизменным из-за одновременного увеличения теплопроизводности λ . Вязкость капельных жидкостей (воды, масла) существенно умень-шается с ростом температуры, число Pr при этом также уменьшается (рис. 12-10). Следовательно, если t_c>t_ж, т. e. происходит нагрев жидкости и тепловой поток направлен от стенки в жидкость, то множитель (Pr_ж/Pr_c)^{0,25}>1. В случае t_c<t_ж, когда происходит охлаждение жидкости и тепловой поток имеет обратное направление — от жидкости в стенку, множитель (Pr_ж/Pr_c)^{0,25}<1. Поэтому говорят еще, что множитель 258

(Рг_ж/Рг_с)^{0,25} учитывает направление теплового потока. Множитель (Рг_ж/Рг_с)^{0,25} используется только для капельных жидкостей.

Автоматическое влияние множителя (Pr_ж/Pr_c)^{0,25} в формуле (12-34) на рассчитываемое знакоэффициента чение среднего теплоотдачи а полностью соглафизической картиной сvется С формирования температурного поля вблизи стенки для случаев различного направления теплового потока. Это подробно иллю-стрируется рис. 12-11. Случаю нагрева жидкости на этом рисунке соответствует уменьшение вязко-

Рис. 12-10. Изменение числа Прандтля воды в зависимости от температуры.

сти вблизи стенки, ослабление тормозящего влияния стенки, выражающееся в уменьшении толщины гидродинамического пограничного слоя δ. При этом толщина теплового пограничного слоя k также уменьшается, ибо k пропорционально δ. С уменьшением k коэффициент

Рис. 12-11. Изменение скорости (*a*) и температуры (б) при нагревании и охлаждении капельной жидкости. 1 — нагревание: 2 — охлаждение: 3 — изотермическое течение.

теплоотдачи возрастает. Случай охлаждения жидкости предлагаем проанализировать самим учащимся.

Все написанное выше в данном параграфе относится к ламинарному движению жидкости. Ламинарный (слоистый) режим движения жидкости характеризует-17* 259 Ся наличием отдельных струек или слоев текущей жидкости, которые можно увидеть, если в воздушный поток пустить струйку дыма или добавить в поток воды несколько капель красящего растворимого вещества. Траектории движения частиц могут быть криволинейными, но остаются параллельными друг другу. Более глубокое изучение ламинарного режима течения указывает нам еще один характерный признак: теплота и количество движения поперек потока переносятся при ламинарном течении микрочастицами (например, молекулами) вещества. Это и понятно — макрочастицы движутся по параллельным траекториям и не переходят из слоя в слой. При изучении движения жидкостн было замечено, что с увеличением скорости, поперечного сечения канала (или толщины пограничного слоя) и уменьшением вязкости наступает момент, когда происходит резкое изменение картины течения. Траектории отдельных частиц хаотически переплетаются, отдельные частицы перемещаются в различных направлениях (в том числе и против течения). Измеритель скорости, помещенный в определенной точке потока, обнаруживает пульсации скорости, что свидетельствует о том, что различные частицы приходят в точку замера с различным вектором скорости. Обнаруживаются также пульсации температуры жидкости.

Такой режим движения жидкости называется турбулентным. Опыты показали, что турбулентный режим движения жидкости наступает тогда, когда превышено определенное значение числа Рейнольдса, называемое критическим. При получении числа Рейнольдса в процессе анализа картины течения жидкости указывалось, что это число характеризует соотношение между инерционными силами в потоке и силами вязкости. Турбулентный режим течения наступает вследствие существенного преобладания сил инерции над силами вязкость мала). При определенном соотношении этих величин ламинарное движение становится неустойчивым, этому моменту и соответствует критическое число Рейнольдса. Для случая обтекания плоской поверхности это значение равно

 $\operatorname{Re}_{\kappa p} = \frac{w_0 x \rho}{\mu} \approx 5 \cdot 10^{\circ}.$

Ранее указывалось, что формула (12-36) и полученная из нее осреднением формула (12-39) справедливы при Re<Re_{кр}=5·10⁵. Это указание сделано потому, что механизм конвективного теплообмена для турбулентного режима существенно отличается от механизма для ламинарного. Различными будут и расчетные формулы. Основное отличие переноса теплоты и количества движения поперек потока при турбулентном режиме заключается в том, что перенос этот осуществляется макро-

Рис. 12-12. Образование турбулентного пограничного слоя при обтекании плоской поверхности.

частицами жидкости. Этот перенос намного интенсивнее переноса на молекулярном уровне. Несмотря на то что

Рис. 12-13. Изменение местного коэффициента теплоотдачи вдоль плоской поверхности.

 ламинарный пограничный слой;
 слой;
 слой;
 слой,
 слой,
 слой,

поперечные «перескоки» макрочастиц происходят значительно реже, чем переходы молекул, первые значительно эффективнее последних. Это объясняется тем, что каждая макрочастица содержит колоссальное количество молекул и обладает большой массой, а количество переносимой теплоты или импульса пропорциональны массе.

Следует отметить, что турбулентный режим движения на практике встречается гораздо чаще, чем ламинарный.

Структура турбулентного пограничного слоя представлена на рис. 12-12. На передней части поверхности, омываемой невозмущенным потоком, образуется область ламинарного пограничного слоя, протяженность которой равна $x_{\rm kp}$, так что $\operatorname{Re}_{\kappa p} = w_0 x_{\kappa p} \rho / \mu = 5 \cdot 10^5$. Далее начинается турбулентный пограничный слой, отделенный от ламинарного некоторой переходной областью, замененной для простоты расчетов сечением с координатой $x_{\rm kp}$. Поскольку перенос поперек турбулентного пограничного слоя намного интенсивнее, чем в ламинарном слое, это способствует выравниванию скоростей и температур. Профили скорости и температуры в турбулентном ядре пограничного слоя более плоские по сравнению с ламинарным пограничным слоем. Основное изменение скорости и температуры происходит в тонком пристенном слое жидкости, в котором затухают турбулентные пульсации и который называется вязким подслоем. Изменение температуры и скорости в вязком подслое происходит по закону прямой линии. Вязкий подслой представляет собой основное термическое сопротивление переносу теплоты между жидкостью и стенкой. Это сопротивление тем больше, чем больше толщина вязкого подслоя $\delta_{\rm m}$ и чем меньше теплопроводность жидкости.

Толщина турбулентного пограничного слоя увеличивается вдоль пластины, а местный коэффициент теплоотдачи при этом уменьшается. Качественно это согласуется с аналогичной закономерностью для ламинарного пограничного слоя, но количественные зависимости совершенно иные.

Местный коэффициент теплоотдачи при обтекании плоской поверхности и турбулентном течении в пограничном слое рассчитывается по формуле

$$Nu_x = 0,0296 \operatorname{Re}_x^{0,8} \operatorname{Pr}^{0,43} (\operatorname{Pr}_{\star}/\operatorname{Pr}_{c})^{0,25};$$
 (12-40)

здесь все числа подобия определяются так же, как и для случая ламинарного пограничного слоя.

Средний коэффициент теплоотдачи, найденный таким же осреднением, как и в соотношении (12-33), равен:

$$\overline{a} = 1,25 a_{x=l}$$
 (12-41)

На участке с турбулентным пограничным слоем местный коэффициент теплоотдачи падает с увеличением *x*, но менее интенсивно, чем на участке с ламинарным пограничным слоем (рис. 12-13).

Перепишем формулу (12-35), опустив множитель (Pr_ж/Pr_c)^{0,25} и раскрыв содержание чисел подобия:

$$a_{x} = 0,0296 w_{0}^{0,8} x^{-0.2} \rho^{0,8} \mu^{-0.37} c_{p}^{0,43} \lambda^{0.57}.$$

Отсюда следует, что a_x падает вдоль x по закону корня пятой степени

$$a_x = A_1 x^{-0,2} = \frac{A_1}{\sqrt[5]{x}};$$

здесь $A_1 = 0,0296 \omega_0^{0,8} \rho^{0,8} \mu^{-0,37} c_p^{0.43} \lambda^{0,57}$ и является постоянной величиной для определенных значений ω_0 и t_0 .

Зависимость α_x от скорости в случае турбулентного пограничного слоя более сильная, чем для ламинарного:

$$a_x = B_1 w_0^{0,8};$$

здесь $B_1 = 0.0296 x^{-0.2} \rho^{0.8} \mu^{-0.37} c_p^{0.43} \lambda^{0.57}$ и является постоян-

ной величиной для определенных значений х и to.

Следовательно, при увеличении скорости набегающего потока в 2 раза местный коэффициент теплоотдачи возрастает в 2^{0,8}=1.74 ра-

за, если все остальные величины сохранить неизменными.

Пример 12-4. Тонкая пластина длиной l=125 мм (рис. 12-14) обтекается продольным потоком воды, скорость которой вне пограничного слоя равна $w_0=2$ м/с. Температура набегающего потока $t_0=$ $=20^{\circ}$ С. Температура поверхности пластины $t_c=50^{\circ}$ С. Ширина пластины b=1 м. Вычислить тепловой поток от пластины к жидкости.

Рис. 12-14. К примеру 12-2.

Решение. Для определения режима течения в пограничном слое рассчитаем расстояние $x_{\rm KP}$ от передней кромки пластины до сечения, после которого начинается турбулентный пограничный слой. Физические параметры воды берем из табл. П9 по температуре $t_0=20^{\circ}$ С: $\rho=998,2$ кг/м³; $\mu=1004\cdot10^{-6}$ H·c/м²; $\lambda=0.599$ Br/(м·K); Pr_ж=7,02; значение Pr_c берется для $t_c=50^{\circ}$ С; Pr_c=3,54.

Расстояние до критического сечения равно:

$$x_{\rm Kp} = {\rm Re}_{\rm Kp} \frac{\mu}{\omega_{\rm s} \rho} = 5 \cdot 10^5 \frac{1004 \cdot 10^{-6}}{2 \cdot 998 \cdot 2} = 0,25 \, {\rm M}.$$

Следовательно, вся пластина находится в области ламинарного пограничного слоя. Средний коэффициент теплоотдачи в этом слу-

чае определяется по формуле (12-34):

$$\overline{\mathrm{Nu}}_{l} = 0,66 \operatorname{Re}_{l}^{0,5} \operatorname{Pr}^{0,33} (\mathrm{Pr}_{\mathcal{K}}/\mathrm{Pr}_{c})^{0,25} = 0,66 \left(\frac{2 \cdot 0,125 \cdot 998,2}{1004 \cdot 10^{-6}}\right)^{0,5} \times (7,02)^{0,33} (7,02/3,54)^{0,24} = 0,66 \cdot 500 \cdot 1,91 \cdot 1,19 = 750; \ \overline{\alpha} = \overline{\mathrm{Nu}}_{l} \frac{\lambda}{l} = 750 \frac{0,599}{0,125} = 3600 \operatorname{Br}/(\mathrm{M}^{2} \cdot \mathrm{K}).$$

Тепловой поток от верхней и нижней поверхностей пластины к воде определится выражением

$$Q = 2\overline{a} (t_c - t_a) lb = 2.3600.30.0, 125 = 2.7.10^4 \text{ Br/m}^2$$

Пример 12-5. Плоская пластина длиной l=1 м обтекается продольным потоком воздуха. Скорость и температура набегающего потока воздуха: $w_0=80$ м/с и $t_0=10^{\circ}$ С. Перед пластиной установлена турбулизирующая решетка, вследствие чего с самого начала пластины на ней развивается турбулентный пограничный слой. Вычислить среднее значение коэффициента теплоотдачи.

Решение. Определяющая температура равна 10°С. Физические свойства воздуха берем для этой температуры из табл. П10: ρ =1,247 кг/м³; μ =17,6·10⁻⁶ H·c/м²; λ =0,0251 Вт/(м·K).

Вычислим местный коэффициент теплоотдачи на конце пластины (для x=1 м) по выражению (12-35). Множитель (Pr_ж/Pr_c)^{0,25} для газов не используется, поэтому его отбрасываем. Число Прандтля Pr=0,705. Следовательно имеем:

$$Nu_{x} = 0,0296 \operatorname{Re}_{x,i}^{0.8} \operatorname{Pr}^{0.43} = 0,0296 \left(\frac{{}^{*}80 \cdot 1 \cdot 1,247}{17,7 \cdot 10^{-6}}\right)^{0,*} (0,705)^{0,43} = 0,0296 (5,65 \cdot 10^{6})^{0,*} (0,705)^{0,43} = 0,0296 \cdot 2,51 \cdot 10^{5} \cdot 0,86 = 6400;$$

$$\alpha_{x} = \operatorname{Nu}_{x} \frac{\lambda}{x} = 6400 \frac{0,0251}{1} = 161 \operatorname{Br}/(\operatorname{M}^{2} \cdot \mathrm{K}).$$

Средний коэффициент теплоотдачи для случая развития с самого начала пластины турбулентного пограничного слоя определяется по формуле (12-36): $\overline{\alpha}=1,25 \alpha_{x=l}=1,25 \cdot 161=201 \text{ Вт/(M}^2 \cdot \text{K}).$

12-5. Теплоотдача при течении жидкости в трубе

Теплообмен при течении жидкости в трубе является широко распространенным в энергетике и других отраслях промышленности процессом, поэтому знание физических закономерностей этого процесса исключительно важно в практическом отношении. Как и в других случаях вынужденной конвекции, теплоотдача определяется здесь гидродинамическими характеристиками потока, которые существенно различны при ламинарном и турбулентном режимах движения жидкости. При ламинарном режиме движения возможно расчетное определение 264 поля температуры жидкости при некоторых простых условиях; расчет температурного поля рассматривается ниже. Знание температурного поля позволяет найти коэффициент теплоотдачи а — главную характеристику конвективного теплообмена.

Теплоотдача при ламинарном режиме. Ламинарный режим при течении жидкости в трубе существует в том случае, если число Рейнольдса, в котором в качестве характерного размера взят диаметр трубы, а в качестве характерной скорости — средняя расходная скорость жидкости, не превышает 2000, т. е.

$$\operatorname{Re}_{d} = \frac{w_{0}d\rho}{\mu} \lesssim 2000.$$

На начальном участке трубы формируется гидродинамический пограничный слой аналогично тому, как это происходит на пластине (пластину можно мысленно свернуть в трубу, картина течения при этом на началь-

Рис. 12-15. Гидродинамический начальный участок при течении жидкости в трубе. 1 — невозмущенное ядро лотока; 2 — пограничный слой.

ном участке не изменится). Часть поперечного сечения трубы (рис. 12-15) будет занята пограничным слоем, а в ядре потока будет сохраняться равномерный начальный профиль скорости. В соответствии с принципом сохранения постоянства массового расхода жидкости средняя расходная скорость w_0 при течении несжимаемой жидкости (ρ =const) по трубе постоянного поперечного сечения должна быть неизменной в любом поперечном сечении трубы, в связи с этим уменьшению, скорости в пограничном слое соответствует увеличение равномерной скорости в ядре потока (она становится больше начального значения w_0). По уравнению типа (12-33) можно рассчитать координату $x=l_{\rm н.r}$ сечения, в котором тол-

щина гидродинамического пограничного слоя становится равной радиусу трубы, т. е. $\delta == r_0$. Таким образом, пограничный слой заполняет все сечение трубы и дальнейшее увеличение его толщины невозможно. Указанным поперечным сечением трубы заканчивается *гидродинамический начальный участок* и начинается участок *стабилизированного течения*. На участке стабилизированного течения профиль скорости остается неизменным. Длина гидродинамического начального участка может быть определена по приближенному соотношению

l_{H.r}/d≈0,05Re_d.

Аналогично тому как на пластине развиваются гидродинамический и тепловой пограничные слои, в трубе происходит наряду с гидродинамической и тепловая стабилизация. Если теплообмен начинается с самого начала трубы, то тепловой пограничный слой формируется одновременно с гидродинамическим. То поперечное сечение трубы, в котором тепловой пограничный слой заполняет всю трубу, отделяет тепловой начальный участок от участка стабилизированного теплообмена. Длина теплового начального участка может быть найдена по приближенному соотношению

*l*_{н.т}/*d*≈0,05Re_dPr.

Из приведенного соотношения видно, что для воздуха длины гидродинамического и теплового начального участков приблизительно совпадают, а для воды при низких температурах длина теплового .начального уча-

Рис. 12-16. Тепловой начальный участок при течении жидкости в трубе.

больше, чем гидростка динамического. Для вязких жидкостей, у которых число Прандтля Рг намного больше единицы (например, для масел). начальный тепловой участок во много раз длиннее начального гидродинамического участка. На тепловом начальном участке в ядре потока сохраняется начальная разность температур $\vartheta_0 = t_0 - t_c$, где температура стенки не изменяется вдоль трубы,

т. е. t_c =const, в пограничном слое происходит уменьшение температурного напора от ϑ_0 до $\vartheta=0$ (рис. 12-16). На участке стабилизированного теплообмена профиль температуры становится плавным. Однако в отличие от профиля скорости, который после гидродинамического начального участка становится стабильным, профиль температуры продолжает меняться в силу происходящего теплообмена. Следовательно, поле температуры описывается функцией t=t(r, x), или $\vartheta=$ $=\vartheta(r, x)$, зависящей от двух координат, в то время как поле скорости описывается функцией одной координаты w=w(r).

Рис. 12-17. К определению профиля температуры жидкости.

Определим профиль температуры в поперечном сечении трубы на участке стабилизированного теплообмена. С этой целью найдем вначале закон изменения теплового потока по радиусу. Этот тепловой поток обусловлен теплопроводностью и связан также с конвективным тепловым потоком, который направлен вдоль оси трубы.

Рассмотрим баланс теплоты для элемента жидкости, который представляет собой кольцо шириной Δx и толщиной Δr (рис. 12-17).

Через выделенный элемент жидкости в направлении r теплота переносится теплопроводностью. Изнутри в кольцо входит тепловой поток Q_1 , а наружу в радиальном направлении выходит тепловой поток Q_2 , который больше Q_1 . За счет чего происходит увеличение теплового потока в радиальном направлении? За счет уменьшения теплового потока в осевом направлении: через левую поверхность кольца путем конвекции в него входит тепловой поток Q_3 , а через правую — уходит тепловой поток Q_4 , который меньше Q_3 . Следовательно, баланс теплоты выражается соотношением

 $Q_2 - Q_1 = Q_4 - Q_3$.

Здесь левая часть выражает перенос теплоты теплопроводностью в направлении r, а правая часть — перенос теплоты конвекцией в направлении x. При стационарном режиме оба переноса уравновешивают друг друга и этим равновесием определяется температура малого элемента жидкости [в пределе — температура в точке с координатами r и x - t(r, x)].

Каждый из четырех тепловых потоков может быть представлен в виде произведения плотности теплового потока q на соответствующую поверхность одной из сторон элемента жидкости:

$$q(r + \Delta r)f_2 - q(r)f_1 = \rho w(r)c_p(t - \Delta t)f_3 - \rho w(r)c_ptf_3.$$

Подставляя значения f_1 , f_2 и f_3 и производя соответствующие преобразования (см. § 11-3), получаем следующее уравнение:

$$\frac{dq}{dr} + \frac{q}{r} = \rho c_p w \frac{\Delta t}{\Delta x}.$$
 (12-42)

Левая часть этого уравнения характеризует изменение плотности теплового потока по радиусу, а правая изменение плотности теплового потока вдоль оси трубы.

Используем следующий приближенный прием: разобьем всю длину трубы (без начального теплового участка) на небольшие отрезки и на каждом из них будем полагать величину $\Delta t/\Delta x$ постоянной и имеющей определенное для данного отрезка значение. В этом случае уравнение (12-42) позволит определить закон изменения плотности теплового потока по радиусу q=q(r) для данного отрезка. При этом введем обозначение:

$$A_q = 2 \omega_0 \rho c_p \Delta t / \Delta x.$$

Используем полученное ранее выражение для профиля скорости жидкости при стабилизированном течении и ламинарном режиме (см. § 12-2). Уравнение (12-42) можно переписать следующим образом:

$$\frac{dq}{dr} + \frac{q}{r} = A_q \left(1 - \frac{r_2}{r_0^*} \right).$$
(12-43)

Решение однородного уравнения $\frac{dq}{dr} + \frac{q}{r} = 0$ имеет вид (см. § 11-3):

$$q = c/r.$$
 (12-44)

Заменим произвольную постоянную некоторой функцией c = z = z(r), которую подберем таким образом, чтобы полученное решение для q удовлетворяло неоднородному уравнению (12-43). Для нахождения функции z подставим производную dq/dr и величину q = z/rв уравнение (12-43); получим следующее выражение:

$$\frac{dz}{dr} = A_{q} r_{0} \left(\frac{r}{r_{0}} - \frac{r^{3}}{r_{0}^{3}} \right).$$
(12-45)

Интегрируя (12-45), получаем:

1

$$z = A_q r_o \left(\frac{r^2}{2r_o} - \frac{r^4}{4r^3_o} \right) + c_1.$$

Подставим найденное значение z в выражение (12-44) для плотности теплового потока q:

$$q = A_{q} r_{0} \left(\frac{r}{2r_{0}} - \frac{r^{3}}{4r^{3}_{0}} \right) + \frac{c_{1}}{r}.$$
 (12-46)

Постоянная интегрирования $c_1 == 0$. Если бы величина c_1 имела значение, не равное нулю, то при $r \rightarrow 0$ плотность теплового потока согласно (12-46) $q \rightarrow \infty$, что противоречит физическому смыслу: на оси трубы плотность радиального теплового потока, обусловленного теплопроводностью, равна нулю в силу симметрии. Следовательно, получаем следующий закон распределения плотности теплового потока по радиусу:

$$q = A_q r_0 \left(\frac{r}{2r_0} - \frac{r^3}{4r^{s_0}} \right).$$

Таким образом, при ламинарном течении жидкости в трубе радиальная составляющая плотности теплового потока меняется в зависимости от расстояния от оси по закону параболы третьей степени.

Тепловой поток в жидкости по радиусу передается теплопроводностью. В нашем случае по трубе с холодной стенкой течет нагретая жидкость; самая высокая температура имеет место на оси трубы, молекулы жидкости обладают здесь наибольшей энергией. Эта энергия переносится молекулами от слоя к слою по направлению к стенке. Если бы жидкость была неподвижной, то закон изменения теплового потока по радиусу соответствовал бы обратно пропорциональной зависимости $q \sim -1/r$, как это имеет место для твердой цилиндрической стенки. Однако в данном случае часть теплоты уносится конвекцией вдоль оси трубы в силу принудительного движения жидкости, причем поток жидкости обладает определенным профилем скорости, вот почему здесь имеет место более сложный закон изменения плотности теплового потока по радиусу. Этот тепловой поток определяется законом Фурье, постому имеем:

$$\frac{dt}{dr} = -\frac{q}{\lambda} = -\frac{A_{\mathbf{q}}r_{\mathbf{0}}}{r} \left(\frac{r}{2r_{\mathbf{0}}} - \frac{r^{\mathbf{3}}}{4r^{\mathbf{3}}_{\mathbf{0}}}\right).$$

Интегрирование дает следующее выражение для температуры жидкости:

$$t = -\frac{A_q r_0^2}{\lambda} \frac{r^2}{4r_0^2} - \frac{r^4}{16r_0^4} + c_2.$$
 (12-47)

Постоянная интегрирования c_2 определяется из граничного условия, которое имеет место на стенке: при $r=r_0$ температура жидкости $t=t_c$. Подставив эти значения в (12-47), получим следующее значение для постоянной интегрирования:

$$c_{\mathbf{z}} = t_{\mathbf{c}} + \frac{3}{16} \frac{A_q r_0^2}{\lambda}.$$

Используя это выражение, получаем следующий закон изменения температуры жидкости по радиусу трубы:

$$t = t_{\rm c} + \frac{A_q r_0^2}{16\lambda} \left(3 - 4 \frac{r^2}{r_0^2} + \frac{r^4}{r_0^4} \right).$$
(12-48)

Таким образом, при ламинарном течении жидкости в трубе температура потока меняется по радиусу по закону параболы четвертой степени.

На рис. 12-18 изображены профили характерных величин в процессе теплоотдачи при ламинарном течении жидкости в трубе. Давление в поперечном сеченин трубы распределяется равномерно, оно изменяется лишь вдоль трубы по закону прямой линии (см. пример 12-1). Напряжение трения изменяется прямо пропорционально радиусу, на оси оно равно нулю, а на стенке, где имеет место «прилипание» жидкости, напряжение максимально. Профиль скорости связан с профилем напряжения трения законом вязкого тречия Ньютона, скорость ме-270 няется по закону параболы второй степени. Характерной особенностью профиля скорости является то, что максимальное значение скорости, которое имеет место на оси трубы, больше среднего значения влвое скорости, которое определяется массовым расходом жидкости через Профиль теплового потока трубу. представляет собой параболу третьей степени, максимальное значение плотности радиального теплового потока имеет место на стенке; поскольку тепловой поток по радиусу трубы определяется теплопроводностью и подчиняется закону Фурье, то на стенке имеет место и максимальный градиент температуры жидкости по радиусу. Температура жидкости меняется вдоль радиуса трубы по закону параболы четвертой степени, на стенке температура имеет постоянное значение t_c , а на оси трубы она постепенно уменьшается по длине по мере охлаждения

Рис. 12-18. Изменение гидродинамических и тепловых характеристик в поперечном сечении трубы.

жидкости и стремится в пределе к температуре стенки. Каково основное практическое значение найденного профиля температуры (12-48)? Профиль температуры позволяет определить коэффициент теплоотдачи. Для этой цели достаточно воспользоваться выражением (12-5), которое связывает коэффициент теплоотдачи с температурным полем жидкости. Здесь удобнее использовать безразмерную запись этого выражения (12-25):

$$\mathrm{Nu} = -\frac{(d\Theta/dR)_{R=1}}{\overline{\Theta}} \, .$$

Напомним, что в числителе этого выражения стоит градиент температуры жидкости на стенке, а в знаменателе — средняя по сечению температура жидкости.

Используем введенные ранее безразмерные величины

$$R = \frac{r}{r_0}; X = \frac{x}{r_0}; \theta = \frac{t - t_c}{t_0 - t_c},$$

и запишем профиль температуры в безразмерном виде

$$\Theta = A_{\theta} \left(3 - 4R^2 + R^4 \right);$$

здесь

$$A_{\Theta} = \frac{1}{8} \operatorname{Pe} \frac{\Delta \Theta}{\Delta X}, \ \operatorname{Pe} = \frac{\rho c_{\rho} \omega_{o} r_{o}}{\lambda}.$$

Градиент безразмерной температуры на стенке

$$\left(\frac{d\Theta}{dR}\right)_{R=1} = \left[A_{\Theta}\left(4R^3 - 8R\right)\right]_{R=1} = -4A_{\Theta}.$$

Среднее значение безразмерной температуры в поперечном сечении трубы равно [см. § 12-1, формулу (12-9)]:

$$\overline{\Theta} = 2 \int_{0}^{1} \Theta W R dR.$$

Подставив сюда значение безразмерной температуры и безразмерной скорости $W = 2(1 - R^2)$ (см. пример 12-2) и вычислив интеграл, получим:

$$\overline{\Theta} = \frac{11}{6} A_{\Theta}.$$

Следовательно, число Нуссельта равно:

 $Nu = \frac{24}{11}$.

Этот результат получен без учета переменности величины $\Delta t / \Delta x$ вдоль трубы *. Более точные расчеты дают следующее значение:

 $Nu_d = 3,66.$

Таким образом, число Нуссельта не зависит от координаты и остается постоянным на участке стабилизированного теплообмена. Сохраняет свое постоянство и коэффициент теплоотдачи:

$$a = 3,66 \frac{\lambda}{d}$$
.

На рис. 12-19 приводится график изменения местного коэффициента теплоотдачи вдоль трубы при ламинарном режиме течения. На начальном участке проис-

* Результат Nu_d=2 $\frac{24}{11}$ = 4,36 справедлив для граничного условия

a стенке $q_c = const.$

ходит увеличение толщины пограничного слоя и в соответствии с положениями § 12-4, коэффициент теплоотдачи при этом уменьшается, поскольку $\alpha \sim \lambda/k$. На участке стабилизированного теплообмена толщина пограничного слоя становится равной радиусу трубы — по сути дела пограничный слой как таковой перестает существовать, коэффициент теплоотдачи сохраняется по-

стоянным. На участке стабилизированного теплообмена коэффициент теплоотдачи не зависит от продольной координаты и определяется только диаметром трубы и коэффициентом теплопроводности жидкости.

Характерной особенностью температурного поля жидкости при ламинарном стабилизированном течении звляется то, что градиент семпературы на стенке и температурный напор уменьшаются вдоль трубы с одина-

Рис 12-19. Изменение местного коэффициента теплоотдачи при

течении жидкости в трубе. 1 — тепловой начальный участок; 2 — участок стабилизированного теплообмена.

ковой интенсивностью. Градиент температуры на стенке входит в числитель выражения (12-25), а температурный напор — в знаменатель. Именно потому, что эти две величины убывают вдоль оси одинаково, число Нуссельта (и, следовательно, коэффициент теплоотдачи) сохраняет свое постоянное значение. Возникает следующий вопрос: каков же этот закон убывания, которому подчиняется как градиент температуры на стенке, так и средняя в поперечном сечении трубы температура жидкости? Для ответа на этот вопрос рассмотрим подробнее процесс изменения температурного профиля вдоль трубы.

На рис. 12-19 показано изменение температуры жидкости вдоль оси трубы при условии предварительной гидродинамической стабилизации потока. В начальном сечении, где начинается теплообмен, имеется однородный профиль температуры $\vartheta_0 = t_0 - t_c$. На начальном тепловом участке температуры различных слоев жидкости, расположенных на различном расстоянии от оси трубы (им соответствуют разные значения радиуса r_1 , r_2 , r_3), меняются по различным законам — чем ближе 18—702 273.

Рис. 12-20. Определение закона изменения средней температуры жидкости вдоль оси трубы.

слой жидкости к холодной стенке. тем сильнее vбывает температура вдоль оси. Однако после того, как тепловой пограничный слой заполняет все сечение трубы и начинается участок стабилизированного теплообмена, кривые изменения температуры различных слоев жидкости идут параллельно, температура для всех радиусов $(r_1, r_2 \, {\rm u} \, r_3)$ меняется по одному и тому закону. Темпераже турные профили меняются вдоль оси трубы,

становясь все более плоскими, причем если при переходе от одного профиля к другому температура на оси изменилась в 2 раза, то и температура на расстоянии $\frac{1}{2}$ r.

от оси (и на любом другом расстоянии) также изменится в 2 раза. Следовательно, и средняя температура $\overline{\vartheta} = \overline{t} - t_c$ изменится в этом случае в 2 раза.

Установим закон изменения средней по сечению температуры жидкости вдоль трубы. Составим условие теплового баланса для участка трубы длиной Δx (рис. 12-20). Через левую поверхность на участок входит тепловой поток, вносимый жидкостью с температурой ϑ , часть его уходит через боковую цилиндрическую поверхность за счет теплоотдачи, остальное — через правое поперечное сечение с жидкостью, имеющей температуру $\vartheta + \Delta \vartheta$:

$$\rho c_p w_0 \pi r^2_0 \vartheta = a \overline{\vartheta} 2 \pi r_0 \Delta x + \rho c_p w_0 \pi r^2_0 (\vartheta + \Delta \vartheta).$$

Переходя к производной, получаем следующую зависимость:

$$\frac{d\boldsymbol{\vartheta}}{\boldsymbol{\vartheta}} = -\frac{2\alpha}{\rho c_{\rho} \boldsymbol{w}_{0} \boldsymbol{r}_{0}} d\boldsymbol{x}.$$

Интегрируя последнее выражение, имеем:

$$\ln \vartheta = -\frac{2a}{\rho c_{p} w_{o} r_{o}} x + \ln \vartheta_{o}. \qquad (12-49)$$

Постоянная интегрирования определена из условия: при x=0 $\vartheta=\vartheta_0$; после подстановки с получим следующую зависимость для изменения средней температуры

$$\overline{\vartheta} = \vartheta_{0} \exp\left(\frac{2\alpha}{\rho c_{q} w_{0} r_{0}} x\right).$$
(12-50)

Таким образом, средняя температура (и любая другая температура для фиксированного значения радиуса) убывает вдоль оси трубы на участке стабилизированного теплообмена по закону экспоненты.

Для практики важно иметь возможность рассчитывать тепловой поток Q на внутренней поверхности трубы заданной длины, для чего необходимо знать средний (по длине) температурный напор. Найденная выше величина $\overline{\vartheta} = t - t_c$ представляет собой местный температурный напор для некоторого значения координаты х. Для нахождения среднего температурного напора умножим обе части соотношения (12-49), записанного для $\vartheta = \vartheta_l$ на разность средних температур жидкости в сечениях с x = l и x = 0, равную $\overline{\vartheta}_l - \overline{\vartheta}_0 = (\overline{t}_l - t_c) - (t_0 - t_c) = = \overline{t}_l - t_0$, и преобразуем полученное выражение так, чтобы левая часть его представляла собой разность энтальпий на входе и выходе трубы, а правая — тепловой поток через стенку трубы:

$$\overline{a} \frac{\overline{\vartheta_l} - \vartheta_0}{\ln \frac{\overline{\vartheta_l}}{\vartheta_0}} 2\pi r_0 l = c_p G (t_0 - \overline{t_l}) = Q;$$

здесь $G = \rho w_0 \pi r_0^2 - массовый расход жидкости через по$ перечное сечение трубы.

Величина

$$\Delta t_n = \frac{\overline{\mathfrak{\theta}_l} - \mathfrak{\theta}_o}{\ln \frac{\overline{\mathfrak{\theta}_l}}{\mathfrak{\theta}_o}} = \frac{\overline{\mathfrak{\theta}_l} - \mathfrak{\theta}_o}{2,303 \lg (\overline{\mathfrak{\theta}_l}/\mathfrak{\theta}_o)}$$
(12-51)

называется средним логарнфмическим температурным напором и ее введение связано с необходимостью использовать среднеинтегральное значение коэффициента теплоотдачи и при этом правильно рассчитать тепловой поток Q для трубы длиной l. 18* 275

Рис. 12-21. Средний логарифмический температурный напор и средний арифметический температурный напор.

На рис. 12-21 приведен график изменения средней температуры жидкости по длине трубы и показана величина Δt_{π} , которая равна высоте прямоугольника, равновеликого фигуре под температурной кривой (заштрихованные участки имеют равные площади). Если которая кривую, согласно (12-46)является экспонентой. приближенно заменить прямой, то приходим к среднем у арифметическому температурному напору

$$\Delta t_{\mathbf{a}} = \frac{\overline{\mathbf{\theta}}_{l} + \mathbf{\theta}_{\mathbf{o}}}{2}, \qquad (12-52)$$

который часто используют вместо Δt_{π} , так как при $\vartheta_0/\vartheta_l < 2$ различие между Δt_{π} и Δt_a составляет не более 4%.

Важно знать, к какому температурному напору был отнесен коэффициент теплоотдачи α в эксперименте при получении расчетной формулы, ибо расчет следует вести с использованием того же температурного напора. В противном случае при большой разнице между ϑ_0 и $\overline{\vartheta}_l$ возможны грубые ошибки.

Таким образом, проведенный расчет температурного поля жидкости при ламинарном стабилизированном течении в трубе дал возможность найти коэффициент теплоотдачи и средний логарифмический температурный напор. Следует обратить внимание на то, что даже в таком простом случае теоретический анализ связан с большой затратой времени и труда. Во многих важных для практики задачах конвективного теплообмена теоретический подход вообще не приводит к положительному результату.

Поэтому чаще всего формулу для расчета местного или среднего числа Нуссельта получают экспериментальным путем. При этом удается учесть те факторы, которые не принимались во внимание при теоретическом анализе задачи. Формулы (12-55) и (12-54) получены без учета влияния начального участка. Между тем для вязких жидкостей (например, топлив или массл) 276 с большим числом Прандтля $\Pr = \mu c_p / \lambda$ начальный тепловой участок может иметь большую длину. Например, для $\operatorname{Re} = 1500$ и $\Pr = 100$

 $l_{\rm H,T} \approx 0.05 \text{Re Pr} d = 0.05 \cdot 1500 \cdot 100 = 7500 d.$

Следовательно, при обработке экспериментальных данных в основу эмпирической формулы следует положить соотношение для числа Нуссельта, полученное при решении задачи о теплообмене на начальном участке, а не на участке стабилизированного теплообмена, где Nu=const. Такое решение может быть получено методами теории пограничного слоя с учетом стесненности потока жидкости в трубе.

Средний коэффициент теплоотдачи для трубы, у которой теплообмен начинается с самого начала, может быть рассчитан по формуле, полученной чл-корр. АН СССР Б. С. Петуховым:

$$\overline{\mathrm{N}}\mathfrak{u}_{d} = 1.55 \left(\mathrm{Pe}_{d} \frac{d}{l} \right)^{1/3} (\mathfrak{\mu}_{\mathrm{w}}/\mathfrak{\mu}_{\mathrm{c}})^{\mathfrak{o}_{.14}} \varepsilon, \qquad (12-53)$$

где $\overline{\mathrm{Nu}}_{d} = \overline{a}d/\lambda$; $\mathrm{Pe}_{d} = \frac{w_{\lambda}d\rho c_{\rho}}{\lambda}$; $\mu_{\mathfrak{K}}$ и μ_{c} — вязкость жидко-

сти при средней температуре жидкости и при температуре стенки; є — коэффициент, учитывающий тот факт, что гидродинамический пограничный слой развивается одновременно с тепловым.

В формуле (12-53) коэффициент теплоотдачи отнесен к среднему логарифмическому температурному напору, а определяющая температура дается соотношением

$$t_{\mathfrak{R}} = t_{c} \pm \Delta t_{\pi}/2; \qquad (12-54)$$

по этой температуре из таблиц выбираются все физические свойства, входящие в $\overline{N}u_d$, Pe_d , и вязкость $\mu_{\mathfrak{K}}$; значение $\mu_{\mathfrak{C}}$ берется по $t_{\mathfrak{C}}$. Поправка є определяется по величине $\frac{1}{\operatorname{Re}_d} \frac{l}{d}$ согласно графику на рис. 12-22.

Формула (12-53) справедлива в области $l/d < < < 0,05 Pe_d$, т. е. на начальном тепловом участке.

На участке стабилизированного теплообмена при $l/d > 0,05 Pe_d$ для расчета теплоотдачи можно пользоваться соотношением:

$$Nu_d \approx 4 (Pr_{\rm sc}/Pr_c)^{0,25}$$
. (12-55)

При больших значениях температурного напора и существенном изменении температуры по длине трубы плотность жидкости может меняться и может возникать свободное движение жидкости, приводящее к изменению коэффициента теплоотдачи. Такое изменение не учитывается формулой (12-53). Этот вопрос будет рассмотрен в параграфе, посвященном свободной конвекции.

Рис. 12-22. Поправка в в формуле (12-53).

Как следует из изложенного, между процессом движения жидкости и процессом конвективного теплообмена существует тесная физическая связь -- поле температуры в жидкости связано с полем скорости с одной стороны, а с другой определяет интенсивность теплоотдачи, отражаемую коэффициентом теплоотдачи α и являющуюся основным фактором, от которого зависит поверхность теплообмена и, следовательно, размеры теплообменных устройств. Из расчетных формул для теплоотдачи при теченни жидкости вдоль плоской поверхности и при течении в трубе видно, что чем больше скорость потока, тем теплоотдача выше. Однако здесь есть и отрицательный эффект: с увеличением скорости растет градиент скорости в поперечном направлении и связанная с этим сила вязкости трения. Возрастает, следовательно, и сила давления, которая должна преодолеть силу трения. Поэтому параллельно с расчетом теплоотдачи всегда ведут расчет падения давления в трубе --это необходимо для правильного проектирования теплообменных устройств.

Ранее (см. пример 12-1) была получена формула, определяющая падение давления при ламинарном ста-278 билизированном течении жидкости

$$\frac{\Delta p}{\Delta x} = \frac{p_1 - p_2}{l} = -\frac{2\mu}{r_0} \left(\frac{dw}{dr}\right)_{r=r_0}.$$
 (12-56)

Градиент скорости на стенке определяется по известному профилю скорости:

$$\left(\frac{dw}{dr}\right)_{r=r_0} = \frac{d}{dr} 2w_0 \left(1 - \frac{r^2}{r_0^2}\right) \Big|_{r=r_0} = -\frac{4w_0}{r_0} \,.$$

Подставив полученное выражение в (12-56), имеем:

$$\Delta p = \frac{8\mu w_0}{r_0} \frac{l}{r_0}.$$
 (12-57)

Безразмерное число, определяющее падение давления, есть число Эйлера: $Eu = \Delta p / \rho w^2_0$. С использованием его выражение (12-57) можно переписать следующим образом:

$$\mathrm{Eu} = \frac{32}{\mathrm{Re}_d} \frac{l}{d}.$$
 (12-58)

В технических расчетах для определения потери давления по длине трубы часто используют формулу Дарси:

$$\Delta p = \mathbf{\xi} \frac{\rho \omega^2}{2} \frac{l}{d}, \qquad (12-59)$$

где § — коэффициент сопротивления трения.

Из сопоставления формул (12-58) и (12-59) можно получить зависимость коэффициента сопротивления трения от числа Рейнольдса Re—*p*w₀d/µ:

$$\xi = \frac{64}{\operatorname{Re}_d}.$$
 (12-60)

В приведенном ниже примере показано, как учесть влияние теплообмена на изменение коэффициента сопротивления трения в связи

с тем обстоятельством, что вязкость зависит от температуры жидкости (уменьшается с ростом температуры).

Пример 12-6. Трансформаторное масло течет по трубе диаметром d=8 мм и длиной l=1 м (рис. 12-23). Средняя по длине

Рис. 12-23. К примеру 12-4. 279

трубы температура масла \tilde{t}_{m} =80°С, средняя температура стенки трубы t_{c} =20°С, температура стенки вдоль трубы меняется мало и может считаться постоянной. Расход масла через трубу равен G= =2,53 · 10⁻² кг/с. Рассчитать тепловой поток через стенку трубы и падение давления по длине трубы; определить температуру масла на входе и выходе трубы.

Решение. Определим режим течения масла в трубе. Для этого необходимо вычислить число $\text{Re}_d = w_0 d\rho/\mu$. По средней температуре масла $\bar{t}_{\text{M}} = 80^{\circ}\text{C}$ из справочных таблиц берем значения плотности $\bar{\rho}_{\text{M}} = 844$ кг/м³ и динамического коэффициента вязкости $\bar{\mu}_{\text{M}} = 30,8 \cdot 10^{-4}$ H·c/м². Средняя расходная скорость масла определяется по уравнению расхода:

$$w_0 = \frac{4G}{\rho \pi d^2} = \frac{4 \cdot 2,53 \cdot 10^{-3}}{844 \cdot 3,14 \cdot (8 \cdot 10^{-3})^2} = 0,6 \text{ M/c}.$$

Число Рейнольдса

$$\operatorname{Re}_{d} = \frac{[0, 6 \cdot (8 \cdot 10^{-3}) \cdot 844]}{30.8 \cdot 10^{-4}} = 1310 < 2000,$$

т. е. режим течения ламинарный.

Средний коэффициент теплоотдачи при ламинарном течении для совместного развития гидродинамического и теплового пограничного слоев (теплообмен начинается от передней кромки трубы) определяется по формуле (12-53). Физические свойства масла должны здесь выбираться по определяющей температуре t_{m} из (12-54), но Δt_{n} является величиной искомой. Будем полагать поэтому в первом приближении $\Delta t_{n} = \Delta t_{n}$ и преобразуем выражение (12-54):

$$t_{\mathbf{x}} = t_{\mathbf{c}} + \frac{1}{2} \Delta t_{\mathbf{a}} = t_{\mathbf{c}} + \frac{1}{2} \left(\frac{f(t'_{\mathbf{x}} - t_{\mathbf{c}}) + (t''_{\mathbf{x}} - t_{\mathbf{c}})}{2} \right) = \frac{1}{2} (t_{\mathbf{c}} + \overline{t_{\mathbf{x}}}).$$

Таким образом, определяющая температура $t_{\text{ж}} = \frac{1}{2} (20 + 80) = 50^{\circ}\text{C}$. Для этой температуры из таблицы имеем: $\rho_{\text{ж}} = 862,1 \text{ кг/м}^3$; $\mu_{\text{ж}} = 65,3 \cdot 10^{-4} \text{ H} \cdot \text{c/m}^3$, $c_{p\,\text{ж}} = 1,846 \cdot 10^3 \text{ Дж/(кг \cdot K)}$, $\lambda_{\text{ж}} = 0,108 \text{ BT/(M \cdot K)}$.

Определим число Пекле:

$$\operatorname{Pe}_{d} = \frac{w_{0}d\rho c_{p}}{\lambda} = \frac{0, 6 \cdot (8 \cdot 10^{-3}) \cdot 862, 1 \cdot 1, 846 \cdot 10^{3}}{0, 108} = 68\,800.$$

При температуре стенки $t_c = 20^{\circ}$ С вязкость масла равна $\mu_c = 198, 2 \cdot 10^{-4}$ H·c/м². Величина $\frac{l}{d} = \frac{1000}{8} < 0,05 \cdot 68\,800 = 3440$, следовательно, формула (12-53) применима.

Найдем число Нуссельта:

$$\overline{\mathrm{Nu}}_{d} = 1,55 \left(\mathrm{Pe}_{d} \frac{d}{l}\right)^{1/3} (\mu_{\mathrm{m}}/\mu_{\mathrm{c}})^{0,14} \varepsilon =$$
$$= 1,55 \left(\frac{68\,800\cdot 8}{1000}\right)^{1/3} \left(\frac{65,3}{198,2}\right)^{0,14} \cdot 1,05 = 10,3.$$

Средний коэффициент теплоотдачи равен:

$$\overline{a} = \overline{Nu}_d \frac{\lambda_{\infty}}{d} = 10,3 - \frac{0,108}{8 \cdot 10^{-3}} = 138 \text{ Bt}/(\text{M}^2 \cdot \text{K}).$$

Тепловой поток через стенку трубы определяется с использованием выражения (12-11) и (12-50) в предположении $\Delta t_n = \Delta t_a = t_m - t_c$:

$$Q = \alpha \Delta t_a \pi dl = 138(80 - 20)3.14 \cdot 8 \cdot 10^{-3} \cdot 1 = 207$$
 Bt.

Изменение температуры масла вдоль трубы [см. (12-50)] равно:

$$t'_{\mathbf{x}} - t''_{\mathbf{x}} = \frac{Q}{Gc_p} = \frac{207}{2,53 \cdot 10^{-2} \cdot 2,03 \cdot 10^3} = 4^{\circ}\mathrm{C};$$

здесь $\bar{c}_p = 2,03 \cdot 10^3$ Дж/(кг·К) при $\bar{t}_{\rm H} = 80^{\circ}$ С.

Поскольку изменение температуры масла мало, то предположение $\Delta t_n = \Delta t_a$ было справедливым: отношение $\vartheta_0/\vartheta_i = 1,07$, а выше было указано, что при $\vartheta_0/\vartheta_i = 2$ различие между Δt_n и Δt_a менее 4%. Таким образом, $t''_m = 78^{\circ}$ С, $t'_m = 82^{\circ}$ С, что соответствует $\bar{t}_m = = 80^{\circ}$ С.

Определим падение давления по длине трубы. Коэффициент сопротивления трения при неизотермическом течении (при наличии теплообмена) для капельных жидкостей определяется по формуле

$$\xi_{\rm ro} = \xi k_{\mu},$$

где §— коэффициент сопротивления трення при изотермическом течении; k_{μ} — поправочный коэффициент, учитывающий влияние изменения вязкости с температурой и определяемый по графику, приведенному на рис. 12-24. Согласно (12-60) и графику

$$\xi = \frac{64}{\text{Re}_d} = \frac{64}{1310} = 0,049; \ k_{\mu} = 1,77.$$

Тогда

$$\xi_{\tau 0} = 0.049 \cdot 1.77 = 0.0865$$

Падение давления определяется по формуле Дарси (12-59)

$$\Delta p = \xi_{\text{TO}} \frac{\rho_{\text{K}} \omega^2_{0}}{2} \frac{l}{d} = 0,0865 \frac{844 \cdot 0,6^2}{2} \frac{1}{8 \cdot 10^{-3}} = 1640 \text{ fma.}$$

µ₀ — вязкость при температуре жидкости на входе в трубу.

Характерным свойством масел является их высокая вязкость, которая вдобавок отличается сильной температурной зависимостью. Если в залаче поменять местами значения температур стенки и жидкости, то это приведет к заметному изменению $\overline{\alpha}$ и Δp . Пусть $\bar{t}_{\rm W}=20^{\circ}$ C, a $t_{\rm c}=80^{\circ}$ C. Onpeделяющая температура сохранит свое значение, следовательно, изменится лишь поправка в формуле для определения α; оценки показывают, что это приве-

дет к увеличению $\overline{\alpha}$ примерно на 30%. Падение давления вдоль трубы изменится более существенно: оно уменьшится примерно в 3 раза. Сказанное здесь согласуется с результатами анализа, приведенного в § 12-5 для случая обтекания плоской поверхности капельной жидкостью.

Теплоотдача при турбулентном режиме. Развитый турбулентный режим течения жидкости в трубе существует, если

Re_d>10 000 *.

При турбулентном течении перенос теплоты в трубе, как и в турбулентном пограничном слое, осуществляется турбулентными молями — хаотически движущимися макрочастицами жидкости; при этом существует поперечное перемещение турбулентных молей к стенке и равное ему по интенсивности перемещение от стенки (перемешивание жидкости). Однако с точки зрения переноса теплоты эти потоки не эквивалентны. Если нагретая жидкость течет по трубе с холодной стенкой, то к стенке идет поперечный поток «горячих» молей, а от

^{*} При 2000 < Re_d <10 000 в трубе существует так называемый переходный режим течения, для которого надежные расчетные рекомендации еще не разработаны. Для оценки теплоотдачи в этом случае проводят расчет для ламинарного и турбулентного режимов и полагают, что коэффициент теплоотдачи в переходном режиме имеет промежуточное значение.

стенки — «холодных», отдавших свою теплоту стенке. Поток турбулентных молей переносит теплоту намного интенсивнее, чем поток молекул при ламинарном течении жидкости, поэтому турбулентное перемешивание жидкости приводит к выравниванию температуры в поперечном сечении трубы. Профиль температуры становится плоским, изменение температуры происходит лишь в тонком вязком подслое. Профиль скорости имеет аналогичный характер, так как турбулентные моли при своем поперечном движении переносят не только теплоту, но и импульс. Стабильный профиль скорости устанавливается при турбулентном течении довольно быстро, в этом случае длина начального участка гидродинамической стабилизации *l/d*≈15; тепловой начальный участок имеет примерно такую же величину.

Нахождение температурного поля в жидкости при турбулентном режиме течения — это очень сложная задача. Дело в том, что температура в определенной точке потока не остается постоянной во времени, она пульсирует беспорядочным образом вокруг некоторого среднего значения. Примерно то же самое происходит и со скоростью, которая меняет хаотически не только значение, но и направление, поскольку скорость — векторная величина. При расчете во внимание принимаются средние значения скорости и температуры, а также используются специальные приближенные приемы. На практике в большинстве случаев обращаются к эксперименту. Теория подобия позволяет установить, что экспериментальные результаты необходимо обрабатывать в виде:

$$\overline{Nu} = f(\operatorname{Re}, \operatorname{Pr}).$$

Обработка многочисленных экспериментальных данных, полученных в большом диапазоне изменения основных параметров, позволила академику М. А. Михееву получить следующую расчетную зависимость:

$$\overline{\mathrm{Nu}}_{d} = 0.021 \mathrm{Re}_{d}^{0.8} \mathrm{Pr}_{\pi}^{0.43} (\mathrm{Pr}_{\pi}/\mathrm{Pr}_{c})^{0.25} \varepsilon_{l}; \qquad (12-61)$$

здесь

$$\mathrm{Nu}_{d} = \overline{\alpha} d / \lambda_{\mathrm{w}}; \ \mathrm{Re}_{d} = w_{\mathrm{o}} d \rho_{\mathrm{w}} / \mu_{\mathrm{w}};$$

е_l — коэффициент, учитывающий влияние начального участка на значение среднего коэффициента теплоотдачи: значения этого коэффициента приведены в табл. 12-1.

Re _d	l/d								
	1	2	5	10	15	20	30	40	50
$1 \cdot 10^4$ $2 \cdot 10^4$ $5 \cdot 10^4$ $1 \cdot 10^5$ $1 \cdot 10^6$	1,65 1,51 1,34 1,28 1,14	1,50 1,40 1,27 1,22 1,11	1,34 1,27 1,18 1,15 1,08	1,23 1,18 1,13 1,10 1,05	1,17 1,13 1,10 1,08 1,04	1,13 1,10 1,08 1,06 1,03	1,07 1,05 1,04 1,03 1,02	1,03 1,02 1,02 1,02 1,02	1 1 1 1

Коэффициент е₁ для учета влияния начального участка трубы

При l/d > 50 коэффициент $\varepsilon_l = 1$.

В качестве определяющей температуры в формуле (12-58) принята средняя арифметическая температура жидкости $t_{\rm m} = \frac{1}{2} (t'_{\rm m} + t''_{\rm m})$. Формула (12-58) справедлива при при ${\rm Re}_d > 1 \cdot 10^4$ и 0,6 $< {\rm Pr}_{\rm m} < 2500$.

Особенностью формулы (12-58) является то, что она может применяться для расчета теплоотдачи в каналах с различной формой поперечного сечения — круглой, квадратной, прямоугольной, кольцевой, а также при продольном обтекании трубных пучков. При этом вместо обычного диаметра в формуле используется эквивалентный диаметр.

Для пояснения понятия эквивалентного диаметра перепишем соотношение из примера 12-1 в виде:

$$\frac{\Delta p}{\Delta x} = -\frac{2}{r_0} \tau = -\frac{4}{d} \tau. \qquad (12-62)$$

С другой стороны, для трубы с любой формой поперечного сечения при любом режиме течения имеет место равенство сил давления и сил трения

$$\Delta pf = -\tau u \Delta x$$
 или $\frac{\Delta p}{\Delta x} = -\frac{u}{f} \tau;$ (12-63)

здесь f— поперечное ссчение; u— смоченный периметр канала.

Именно это условие и использовано для получения выражения (12-62) применительно к трубе с круглой формой поперечного сечения. Написанному здесь соотношению (12-65) можно придать форму, аналогичную выражению для труб круглого сечения, если предположить, что для любого канала существует свой эквивалентный диаметр, зависящий от формы и размеров его поперечного сечения. В этом случае

$$\frac{\Delta p}{\Delta x} = -\frac{4}{d_9} \tau. \qquad (12-64)$$

Сравнивая (12-59) и (12-60), получаем формулу для определения эквивалентного диаметра

$$d_{\mathfrak{s}} = \frac{4\mathfrak{f}}{u} \,. \tag{12-65}$$

Нетрудно видеть, что для круглого сечения эквивалентный и обычный диаметры совпадают.

Коэффициент сопротивления трения при турбулентном течении в канале определяется выражением здесь

$$\xi_{\mathbf{r}0} = \xi_{\mathbf{R}3} k_{\mu};$$

здесь

$$\xi_{H3} = \frac{1}{(1,82 \log Re_{K} - 1,64)^2}$$

--коэффициент сопротивления трения при изотермическом течении (без теплообмена); $k_{\mu} == (\Pr_{c}/\Pr_{x})^{1/3}$ — поправка, учитывающая изменение вязкости с температурой и применяемая только для капельных жидкостей.

Потеря давления при турбулентном режиме определяется, как и в случае ламинарного режима, по формуле Дарси (12-59).

Пример 12-7. Средняя по длине температура стенки трубки конденсатора паротурбинной установки $t_c=28^{\circ}$ С, внутренний диаметр трубки d=16 мм, температура воды на входе $t'_{m}=10^{\circ}$ С, а на выходе 18°С; средняя скорость воды $w_0=2$ м/с.

Определить длину трубки *l*, необходимую для обеспечения заданного нагрева воды.

Решение. Средняя температура жидкости

$$\tilde{t}_{\mathbf{x}} = \frac{1}{2} (t'_{\mathbf{x}} + t''_{\mathbf{x}}) = \frac{1}{2} (10 + 18) = 14^{\circ} \text{C}.$$

При этой температуре имеем: ρ_{m} =999 кг/м³; μ_{m} =1180 × $\times 10^{-6}$ H·c/м²; λ_{m} =0,584 Вт/(м·K); c_{Pm} =4,187·10³ Дж/(кг·K).

Число Рейнольдса

$$\operatorname{Re}_{d} = w_{0} d\rho_{w} / \mu_{w} = 2 \cdot 16 \cdot 10^{-3} \cdot 999 / 1180 \cdot 10^{-6} = 2,71 \cdot 10^{4}$$

следовательно, режим движения — турбулентный.

Коэффициент теплоотдачи при турбулентном режиме движения определим по формуле М. А. Михеева (12-61). Длина трубки является неизвестной величиной, поэтому в первом приближении полагаем поправку ε_l равной 1. Тогда число Нуссельта

$$\overline{\mathrm{N}}\mathfrak{u}_{d} = 0,021 \operatorname{Re}_{d}^{0,8} \operatorname{Pr}_{\mathbf{w}}^{0,43} \left(\frac{\mathrm{Pr}_{\mathbf{w}}}{\mathrm{Pr}_{c}}\right)^{\mathfrak{o},25} \mathfrak{e}_{l} = 0,021 \ (2,71\cdot10^{4})^{\mathfrak{o},8} \ (8,5)^{\mathfrak{o},43} \left(\frac{8,5}{5,7}\right)^{\mathfrak{o},25} = 201.$$

Значения Pr_ж и Pr_с взяты из табл. П9.

Коэффициент теплоотдачи

$$\overline{a} = \overline{N}u_d \frac{\lambda_{\mathcal{H}}}{d} = 201 - \frac{0.584}{16 \cdot 10^{-3}} = 7320 \text{ Br}/(\text{M}^2 \cdot \text{K}).$$

Расход воды через трубку

$$G = \omega_{0} \rho_{\mathcal{H}} \frac{\pi d^{2}}{4} = 2.999 \frac{3.14 \cdot (16 \cdot 10^{-3})^{2}}{4} = 0,403 \text{ Kr/c}.$$

Количество передаваемой теплоты

$$Q = Gc_{pm}(t''_m - t'_m) = 0,403 \cdot 4,187 \cdot 10^3(18 - 10) = 13500 \text{ Br}$$

С другой стороны, количество передаваемой теплоты (тепловой поток) можно выразить так:

$$Q = \overline{a} \Delta t_{\pi} \pi dl.$$

Средний логарифмический температурный напор по (12-50)

$$\Delta t_{\pi} = \frac{\overline{\vartheta_{l}} - \vartheta_{0}}{2,303 \, \lg \, (\overline{\vartheta}_{l}/\vartheta_{0})} = \frac{(t''_{\pi} - t_{c}) - (t'_{\pi} - \overline{t_{c}})}{2,303 \, \lg \, \frac{t''_{\pi} - t_{c}}{t'_{\pi} - t_{c}}} = \frac{(18 - 28) - (10 - 28)}{2,303 \, \lg \, \frac{18 - 28}{10 - 28}} = 13,7^{\circ}\text{C}.$$

Средний арифметический температурный напор Δt_{a} = 14°C отличается от Δt_{π} менее чем на 3%.

Определим длину трубы:

$$l = Q/a\Delta t_n \pi d = 13500/7320 \cdot 13,7 \cdot 3,14 \cdot 16 \cdot 10^{-3} = 2,68$$
 M.

Необходимо провести проверку принятого в расчете предположения о том, что $e_l = 1$. Относительная длина трубы l/d = 2680/16 = 167 > 50, следовательно, предположение выполняется. Пример 12-8. Пучок труб омывается продольным потоком воздуха. Трубы пучка с внешним диаметром d==20 мм и длиной l=2 м расположены в коридорном порядке (рис. 12-25) с шагом s_1 =50 мм и s_2 =50 мм. Средняя температура воздуха t_{m} =200°С, средняя скорость движения воздуха w_0 =6 м/с. Определить коэффициент теплоотдачи от воздуха к поверхности труб пучка.

Решение. Определим эквивалентный диаметр канала, образованного заштриховашным на рис. 12-24 элементом пучка; смоченный периметр складывается из четырех частей внешней окружности четырех труб, расположенных в вер-

Рис. 12-25. К примеру 12-8.

шинах элемента, и равен длине окружности одной трубы:

$$d_{9} = \frac{4f}{u} = \frac{4(s_{1}s_{2} - \pi d^{2}/4)}{\pi d} = 4\frac{s_{1}s_{2}}{\pi d} = d =$$

$$=4\frac{\frac{150\cdot50\cdot10^{-6}}{3\cdot14\cdot20\cdot10^{-4}}-20\cdot10^{-3}=0,139 \text{ M}.$$

Для $\tilde{t}_{\text{ж}} = 200^{\circ}$ С имеем: $\rho_{\text{ж}} = 0,746 \text{ кг/м}^3$; $\mu_{\text{ж}} = 26 \cdot 10^{-6} \text{ H} \cdot \text{с/m}^2$; $\lambda_{\text{ж}} = 3,93 \cdot 10^{-2} \text{ Br/(M} \cdot \text{K})$; $\text{Pr}_{\text{ж}} = 0,680$.

Число Рейнольдса

$$\operatorname{Re}_{d} = \frac{w_{0}d_{9}o_{3K}}{\mu_{3K}} = \frac{6\cdot0,139\cdot0,746}{26\cdot10^{-6}} = 2,40\cdot10^{4} > 10^{4},$$

т. е. режим течения турбулентный.

Для определения коэффициента теплоотдачи в этом случае можно использовать формулу (12-61) без поправки (\Pr_{π}/\Pr_{c})^{0,25}, которая справедлива только для капельных жидкостей; при $l/d_{3} = = 2/0,139 = 14,4$ по табл. 12-1 $e_{l} \approx 1,13$:

$$\widetilde{\mathsf{Nu}}_d = 0,021 \operatorname{Re}_d^{0.8} \mathsf{Pr}_{\mathsf{w}}^{0.43} \varepsilon_l = 0,021 [(2,4\cdot 10^4)^{0.8} (0,68)^{0.43}],13] = 63,6.$$

Коэффициент теплоотдачи

$$\overline{\alpha} = \overline{Nu}_d \frac{\lambda_{m}}{d_a} = 63, 6 \frac{3,93 \cdot 10^{-2}}{0,139} = 18 \text{ Br/(M}^2 \cdot \text{K}).$$

12-6. Теплоотдача при поперечном обтекании трубы и пучка труб

При обтекании трубы поперечным потоком на ее поверхности образуется пограничный слой. Принципиально развитие пограничного слоя на цилиндрической поверхности трубы происходит аналогично формированию пограничного слоя на плоской поверхности, однако то обстоятельство, что поток огибает искривленную поверх-

Рис. 12-26. Безотрывное поперечное обтекание трубы (а) и отрыв пограничного слоя (б).

ность, вносит свои особенности. При малых числах Рейнольдса (Red= $= w_0 d\rho_{\rm H} / \mu_{\rm H} < 5$, где w_0 скорость набегающего потока, d — наружный диаметр трубы) происходит безотрывное обтекание цилиндрической поверхности трубы (рис. 12-26, а). При этом в местах сгущения струек жилкости скорость потока увеличивается в связи с невозможностью нарушения неразрывности потока жидкости: массовый расход в любом поперечном потока сечении имеет одно и то же значение.

Изменение скорости влечет за собой изменение давления: согласно уравнению Бернулли величина $p + \rho_{\rm H} w^{2} {}_{0}/2$ должна сохранять постоянное значение вдоль струйки жидкости.

Если увеличить число Рейнольдса, то описанные процессы изменения давления и скорости будут происходить более интенсивно. В этом случае после перехода потока через верхнюю точку цилиндрического профиля ($\varphi ==$ =90°) начинается быстрое уменьшение скорости и увеличение давления, поток тормозится. У стенки, где скорость мала из-за вязкости, возникает обратное течение, что приводит к оттеснению потока от стенки, происходит отрыв пограничного слоя (рис. 12-26,6).

При $\text{Re}_d < \text{Re}_{d_{KP}} = 2 \cdot 10^5$ происходит отрыв ламинарного пограничного слоя, причем угол отрыва $\varphi_{\text{от}} = 80 - 85^\circ$ (рис. 12-27). Если число Рейнольдса больше критического, происходит не отрыв пограничного слоя, а переход от ламинарного пограничного слоя к турбулентному. Турбулентный пограничный слой более устойчив по отношению к процессу торможения из-за нарастания давления во внешнем потоке, чем ламинарный, ибо он обладает большей кинетической энергией. Поэтому отрыв турбулентного пограничного слоя происходит при большем значении угла $\varphi_{or} = 140^\circ$ (рис. 12-28).

Рис. 12-27. Изменение теплоотдачи по окружности трубы при отрыве ламинарного пограничного слоя.

Рис. 12-28. Изменение теплоотдачи по окружности грубы при отрыве турбулентного пограничного слоя.

В соответствии с гидродинамической картиной обтекания цилиндра меняется и местный коэффициент теплоотдачи вдоль контура поперечного сечения. Наименьшую толщину ламинарный пограничный слой имеет в лобовой точке (ф=0), это соответствует максимальному значению коэффициента теплоотдачи. По мере нарастания толщины ламинарного пограничного слоя коэффициент теплоотдачи уменьшается (рис. 12-26). После отрыва ламинарного пограничного слоя происходит рост теплоотдачи в связи с интенсивным вихреобразованием. Кривая местного коэффициента теплоотдачи при Re_d> >Redкр имеет два минимума: один из них соответствует переходу ламинарного пограничного слоя в турбулентный, а второй — отрыву турбулентного пограничного слоя (рис. 12-28).

Применение метода подобия к задаче о теплоотдаче при поперечном обтекании цилиндрической трубы позволяет установить, что число Нуссельта зависит от числа Рейнольдса и числа Прандтля. В результате обобщения 19—702 289

Рис. 12-29. Шахматный (а) и коридорный (б) трубные пучки.

многочисленных опытных данных была получена следующая расчетная формула:

$$\overline{\mathrm{Nu}}_{d} = C \operatorname{Re}_{d}^{m} \operatorname{Pr}_{\mathfrak{K}}^{n} (\operatorname{Pr}_{\mathfrak{K}}/\operatorname{Pr}_{c})^{\mathfrak{o},\mathfrak{s}}; \qquad (12-66)$$

здесь $\overline{Nu}_d = \frac{\overline{ad}}{\lambda_{\pi}}; \ \overline{a}$ — средний по окружности трубы коэф-

фициент теплоотдачи; d — наружный диаметр трубы.

Значения коэффициента С и показателей степени *m* и *n* меняются в зависимости от числа Рейнольдса:

Re _d	С	m]	n
5-103	0,5	0,5	0,38
10 ³ -2.10 ⁵	0,25	0,6	0.38
3·10 ⁵ -2·10 ⁶	0,023	0,8	0,37

В качестве определяющей температуры берется средняя температура жидкости, скорость потока отнесена к самому узкому поперечному сечению канала, стесненному цилиндрической трубой.

На практике часто приходится иметь дело с поперечным обтеканием пучков труб. При этом некоторые основные закономерности теплообмена, наблюдаемые для одиночных труб, сохраняются, однако появляются особенности, связанные с взаимным влиянием труб, которое осуществляется через поток.

Наиболее распространенными типами пучков являются шахматный и коридорный (рис. 12-29). Обтекание первого ряда в пучках обоих типов аналогично обтеканию одиночной трубы. Характер обтекания труб в следующих рядах шахматного пучка примерно такой же, 290 поскольку трубы в соседних рядах сдвинуты поперек потока и не попадают в вихревой след расположенной впереди трубы: теплоотдача по контуру трубы в шахматном пучке меняется примерно так же, как и теплоотдача трубы одиночной (рис. 12-30). При обтекании коридорного пучка на трубы второго ряда воздействуют вихри, образующиеся в результате обтекания труб первого ряда, соответственно меняется и теплоотдача (рис. 12-31).

Наименьший средний коэффициент теплоотдачи имеет первый ряд, затем

0 30 60 90 120 150 0 30 60 90 120 rpað

Рис. 12-30. Теплоотдача первого и второго рядов шахматного пучка.

теплоотдача увеличивается и после третьего ряда происходи: стабилизация теплоотдачи, коэффициент теплоотдачи третьего и следующих рядов сохраняет постоянное значение. Относительное значение а меняется по рядам следующим образом:

		1 ряд	II ряд	ІІІ ряд	IV ряд	V ряд и т.д.
Шахматный	пу∙	0,6	0,7	1,0	1,0	1,0
Коридорный чок	пу-	0,6	0,9	1,0	1,0	1,0

Наиболее характерным при обтекании пучков труб является с мешанный режим течения, при котором в пространстве между трубами имеется турбулентный поток, а на передней половине трубы формируется слой ламинарно текущей жидкости. Смешанный режим течения характеризуется следующим диапазоном изменения числа Рейнольдса: $10^3 < \text{Re}_d = w_0 d\rho/\mu < 10^5$; здесь d - наружный диаметр трубы; $w_0 -$ скорость в узком сечении пучка (f''' -для коридорного пучка, f' или f'' -для шахматного, рис. 12-29), значения ρ , μ берутся при средней температуре жидкости.

19*

Средний коэффициент теплоотдачи третьего и последующих рядов можно рассчитать по формуле:

$$\overline{\mathrm{N}} \mathrm{u}_{d} = C \operatorname{Re}_{d}^{m} \operatorname{Pr}_{\mathrm{st}}^{0,33} (\operatorname{Pr}_{\mathrm{st}}/\operatorname{Pr}_{c})^{0,25} \varepsilon_{s}, \qquad (12-67)$$

где $\overline{\mathrm{Nu}}_{d} = \overline{ad}/\lambda$; \overline{a} — средний коэффициент топлоотдачи третьего и последующих рядов; для шахматного пучка C = 0.41; m = 0.60; при $s_1/s_2 < 2$ имеем: $\varepsilon_s = (s_1/s_2)^{1/6}$, при

 $\varepsilon_{s} = (s_1/s_2)^{1/3}$, при $s_1/s_2 \ge 2$ имеем: $\varepsilon_s = 1, 12$; для коридорного пучка $C = 0, 26; m = 0, 65; \varepsilon_s = (s_2/d)^{-0, 15}$.

Определяющей температурой является средняя температура жидкости. Коэффициент тепло-

циента е.

Рис. 12-31. Теплоотдача первого и второго рядов коридорного пучка.

отдачи для первого и второго рядов определяется в соответствии с приведенной выше таблицей. Средний коэффициент теплоотдачи для всего пучка определяется по формуле:

$$\overline{\alpha}_{n} = \frac{\overline{\alpha}_{1}F_{1} + \overline{\alpha}_{2}F_{2} + \overline{\alpha}_{3}F_{3} + \ldots + \overline{\alpha}_{n}F_{n}}{F_{1} + F_{2} + F_{3} + \ldots + F_{n}},$$

где $F_1, F_2, F_3, \ldots, F_n$ — поверхности всех трубок в данном ряду.

Угол между направлением набегающего потока и осью трубы называется углом атаки ψ.

Формула (12-67) справедлива, если направление набегающего потока перпендикулярно оси труб (ψ =90°). При ψ <90° теплоотдача уменьшается и определяется 292

$$\bar{\alpha}_{\psi} = \alpha \varepsilon_{\psi},$$

где є, берется по графику на рис. 12-32.

При малых углах ф теплоотдача рассчитывается по формуле для течения внутри трубы с использованием понятия эквивалентного диаметра (§ 12-5).

Следует отметить, что для наиболее распространенного на практике смешанного режима обтекания пучков теплоотдача шахматных

пучков выше, чем коридорных, причем это различие уменьшается с увеличением числа Рейнольдса. Поэтому в ряде случаев шахматным пучкам отдается предпочтение.

Пример 12-9. Шахматный пучок труб с наружным диаметром d=50 мм обтекается потоком воздуха со средней температурой $t_{ss}=100^{\circ}$ С. Поперечный шаг $s_1=4d$, продольный шаг $s_2=2d$, количество

Рис. 12-33. К примеру 12-9.

труб вдоль потока z=20, поперек потока n=10, длина трубы l=1 м. Массовый расход воздуха G=15 кг/с, температура стенки трубы $t_c=300^{\circ}$ С. На сколько градусов нагреется воздух, проходя через пучок труб?

Решение. Определим скорость воздуха в узком сечении пучка. В зависимости от соотношения между s_1 и s_2 узким может оказаться сечение f' или f'' (рис. 12-29 и 12-33). Полагая, что стенки газохода, параллельные осям труб, расположены на расстоянии, примерно равном поперечному шагу, от крайних труб пучка, получаем следующие формулы для проходного сечения одной ячейки пучка в обоих случаях:

$$f' = (s_1 - d) l; f'' = 2\left(\sqrt{s_2^2 + \left(\frac{s_1}{2}\right)^2 - d}\right) l.$$

Для данной задачи

 $f' = (4d - d) \ l = 3dl; \ f'' = 2 (\sqrt{4d^2 + 4d^2} - d) \ l = 3,66dl.$

Наиболее узкое проходное значение для воздуха в пучке равно: $f_{\rm B} = f'_{n} = 3ndl.$

Для температуры $t_{m} = 100^{\circ}$ С из таблицы для воздуха имеем: $\rho = 0.946 \text{ кг/м}^3$; $\mu = 21.9 \cdot 10^{-6} \text{ H} \cdot c/\text{m}^2$; $\lambda = 3.21 \cdot 10^{-2} \text{ Br/(M} \cdot \text{K})$; $c_p = 1.01 \cdot 10^3 \text{ Дж/(кг} \cdot \text{K})$; $Pr_m = 0.688$.

Скорость воздуха в узком сечении пучка

$$w_0 = G/\rho f_B = G/\rho 3ndl = 15/0.946 \cdot 3 \cdot 10 \cdot 50 \cdot 10^{-3} \cdot 1 = 10.6$$
 M/c.

Число Рейнольдса

 $\operatorname{Re}_{d} = w_{0}d\rho/\mu = 10.6 \cdot 50 \cdot 10^{-3} \cdot 0.946/21.9 \cdot 10^{-6} = 2.29 \cdot 10^{4}.$

Следовательно, имеем смешанный режим течения. Теплоотдача третьего и последующих рядов определяется по формуле (12-59):

$$\overline{\mathrm{Nu}}_{d} = 0,41 \operatorname{Re}_{d}^{0,60} \operatorname{Pr}_{\mathbf{x}}^{0,33} e_{s} = 0,41 \ (2,29 \cdot 10^{4})^{0,60} \times (0,688)^{0,33} \cdot 1,12 = 169.$$

Коэффициент теплоотдачи

 $\overline{\alpha} = Nu_d \lambda/d = 169 \cdot 3,21 \cdot 10^{-2}/50 \cdot 10^{-3} = 108,5 \text{ Br}/(\text{M}^2 \cdot \text{K}).$

Так как число рядов в пучке велико, то влияние двух первых рядов несущественно и может не учитываться.

Тепловой поток от поверхности труб пучка к воздуху

 $Q = \alpha \Delta t_a F = \alpha (t_c - t_m) \pi dlnz =$

=108,5 · (300-100) 3,14 · 50 · 10⁻³ · 1 · 10 · 20=680 кВт.

Повышение температуры воздуха, проходящего через пучок,

 $t''_{\text{m}} - t'_{\text{m}} = Q/Gc_p = 680 \cdot 10^{-3}/15 \cdot 1,01 \cdot 10^3 = 45^{\circ}\text{C}.$

12-7. Теплоотдача при свободном движении жидкости

Одним из наиболее распространенных случаев свободного движения жидкости является ее движение в гравитационном поле из-за неравномерного нагрева. Частица жидкости, имеющая более высокую температуру, чем окружающая жидкость, становится легче и всплывает в ней. Если жидкость с температурой $t_{\rm ж}$ находится в контакте с вертикальной поверхностью, имеющей более высокую температуру $t_{\rm c}$, то вдоль поверхности возникает течение нагретых частиц жидкости. Это течение направлено вверх и осуществляется в пограничном слое, вне которого жидкость неподвижна. На рис. 12-34 показаны профили скорости и температуры в таком пограничном слое.

Структура пограничного слоя при свободном движении жидкости вдоль вертикальной поверхности аналогична структуре пограничного слоя при вынужденном обтекании плоской поверхности: имеются ламинарный, переходный и турбулентный участки. Изменение местного коэффициента теплоотдачи вдоль поверхности показано на рис. 12-35; на первом снизу участке, занятом ламинарным пограничным слоем, коэффициент теплоотдачи уменьшается вдоль поверхности, так как толщина слоя растет; на участке, занятом турбулентным пограничным слоем, коэффициент теплоотдачи не меняется — здесь местный и средний коэффициенты теплоотдачи равны между собой.

Анализ процесса теплоотдачи при свободном движении жидкости методом подобия проводится с использованием тех же принципов, что и конвективного теплообмена при вынужденном движении, однако в данном случае имеются некоторые особенности. Если в случае

Рис. 12-34. Профили скорости и температуры в пограничном слое при свободном движенин жидкости вдоль вертикальной поверхности.

Рис. 12-35. Изменение коэффициента теплоотдачи при свободном движении жидкости вдоль вертикальной поверхности.

вынужденного движения в качестве критерия подобия использовалось число Рейнольдса, отражающее соотношение между силами инерции и силами вязкого трения, то для свободного движения число Re не имеет значения, поскольку силы инерции в большинстве случаев весьма малы. Свободное движение жидкости осуществляется под действием подъемной силы и силы вязкого трения, поэтому необходимо число подобия, отражающее соотношение между этими силами. Подъемная сила представляет собой разность между силой тяжести, действующей на частицу, и выталкивающей силой, действующей на нее же со стороны окружающей жидкости. Эти силы в расчете на единицу объема имеют следую-

Рис. 12-36. Свободное движение около горизонтальных труб. шие значения: сила тяжести равна дос, выталкивающая сила равна силе тяжести, действующей на жидкость, вытесненную нагретой частицей, т.е. подъемная сила равна g_{0*} $g(\rho_{\#}-\rho_{c})$. Так как $t_{\#} < t_{c}$, то $\rho_{\mathfrak{H}} > \rho_{c}$, причем $\rho_{\mathfrak{H}} = \rho_{c} (1 + \beta \Delta t)$, где $\Delta t = t_c - t_{H}$, а $\beta - \kappa o = \phi \phi H$ циент объемного расширения жидкости (для газов β=1/T); тогда $\rho_{\mathrm{H}} - \rho_{\mathrm{c}} = \rho_{\mathrm{c}} \beta \Delta t$ и подъемная сила равна goc $\beta \Delta t$. Сила вязкости пропорциональна ди-

намическому коэффициенту вязкости µ. Подробный анализ гидродинамического процесса применительно к случаю свободного движения жидкости, показывает, что соотношение между подъемной силой и силой вязкого трения отражается числом Грасгофа

$$\mathrm{Gr}=\frac{g\beta\Delta t\rho^2l^3}{\mu^2},$$

где *l* — определяющий размер.

Анализ процесса методом подобия приводит к следующей расчетной зависимости для среднего коэффициента теплоотдачи при свободном движении жидкости:

$$\overline{\mathrm{Nu}} = C \, (\mathrm{Gr} \cdot \mathrm{Pr})^m \, (\mathrm{Pr}_{\mathbf{x}} / \mathrm{Pr}_{\mathbf{c}})^{\mathfrak{o}, \mathfrak{s}}. \tag{12-68}$$

Коэффициент C и показатель степени m зависят от величины Gr. Pr и конфигурации поверхности тела (свободное движение у горизонтальной наружной поверхности трубы изображено на рис. 12-35):

		с	m	Определяю- щий размер
Вертикальная поверхность,	$10^{3} < Gr \cdot Pr <$	0,75	0,25	l
Вертикальная поверхность, Горизонтальная труба, 10 ³ <	$Gr \cdot Pr > 6 \cdot 10^{10}$ $Gr \cdot Pr < 10^{9}$	0,15 0,50	1/3 0,25	l d

В качестве определяющей температуры берется температура жидкости вдали от поверхности тела. Вертикальная поверхность может быть плоской, а может быть поверхностью вертикально расположенной трубы; 296

Рис. 12-37. Совместное действие вынужденной и свободной конвекции при движении жидкости в трубе. a — жидкость движется вверх, нагревание: б — жидкость звижется вверх, охлаждение; d — труба расположена горизонтально.

определяющий размер отсчитывается от начала участка теплообмена.

При ламинарном течении жидкости в трубах (§ 12-5) свободное движение жидкости накладывается на вынужденное и приводит к искажению профиля скорости (рис. 12-37) и, следовательно, к изменению теплоотдачи. Если Gr·Pr>8.10⁵, то имеет место вязкостногравитационный ламинарный режим течения и средний коэффициент теплоотдачи на внутренней поверхности горизонтальной трубы определяется выражением

$$\overline{\mathrm{N}}\mathrm{u}_{d} = 0.8 \left(\mathrm{Pe}_{d} \frac{d}{l}\right)^{\bullet,\bullet} (\mathrm{Gr} \cdot \mathrm{Pr})^{\bullet,\bullet} (\mu_{\mathcal{H}}/\mu_{c})^{\bullet,\bullet\bullet}$$

где все обозначения аналогичны тем, которые приняты в формуле (12-53). Для числа Грасгофа здесь, как и для других чисел подобия в этой формуле, в качестве определяющего размера берется внутренний диаметр трубы, в качестве определяющей температуры $t = \frac{!1}{2} (t_{ik} + t_c)$, а в качестве температурного напора $\Delta t = t_c - t_{ik}$.

Пример 12-10. Определить тепловой поток от вертикальной плиты высотой *l=2* м и шириной *b=5* м, если плита соприкасается плиты высотои t=2 м и ширинои t=5 м, если плита соприкасается со спокойным воздухом, имеющим температуру $t_{m}=20^{\circ}$ С вдали от плиты. Температура поверхности плиты $t_{o}=100^{\circ}$ С. Решение. При $t_{m}=20^{\circ}$ С для воздуха имеем p=1,205 кг/м³; $\mu=18,1\cdot10^{-6}$ H·c/м²; $\lambda=2,59\cdot10^{-2}$ Вт/(м·K); Pr_m=0,703. Вычислим комплекс (Gr·Pr):

$$(Gr \cdot Pr) = \frac{g^{\beta} \Delta t \rho^2 l^3}{\mu^2} Pr_{\pi} = \frac{9,81 \ (100 - 20) \ (1,205)^2 \cdot 2^3}{293 \ (18,1 \cdot 10^{-6})^2} \ 0,703 = 6,64 \cdot 10^{10}$$

Значение комплекса (Gr.Pr) > 6.1010, следовательно.

$$\overline{\mathrm{Nu}} = 0,15 \, (\mathrm{Gr} \cdot \mathrm{Pr})^{1/3} = 0,15 \, (6,64 \cdot 10^{10})^{1/3} = 610.$$

Коэффициент теплоотдачи

$$\overline{\mathbf{a}} = \overline{\mathrm{Nu}} \frac{\lambda}{l} = 610 \frac{2,59 \cdot 10^{-2}}{2} = 7,92 \text{ Br/(m^2 \cdot \text{K})}.$$

Тепловой поток

$$Q = \overline{a} \Delta t F = 7,92 \cdot 80 \cdot 10 = 6340$$
 Br.

12-8. Теплообмен при конденсации и килении

Теплообмен при конденсации пара. Наиболее распространенным процессом конденсации является конденсация на охлаждаемой поверхности тела, если температура последней ниже температуры насыщения при данном давлении пара, т. е. $t_c < t_{\rm H}$. Для поддержания процесса конденсации необходимо отводить выделяющуюся теплоту фазового перехода г в стенку. В определенных условиях (например, при конденсации водяного пара на обезжиренной металлической поверхности) образуется пленка конденсата, которая стекает под действием силы тяжести. Такая конденсация называется пленочной. Более интенсивным является теплообмен при капельной конденсации, когда конденсат скатывается в виде (например, конденсация отдельных капель водяного пара на загрязненной маслом поверхности); разрабатываются специальные меры для длительного поддержания капельной конденсации, так как коэффициент теплоотдачи при капельной конденсации может быть во много раз больше, чем при пленочной.

Рассмотрим пленочную конденсацию неподвижного пара на вертикальной поверхности (рис. 12-38). На ^x поверхности образуется стекающая вниз ламинарная пленка конденсата. Предположим для простоты, что внешней ਡੋ выделившаяся на поверхности пленки теплота фазового перехода не переносится конденсатом вниз, а уходит в стенку поперек пленки за счет ее лейтеплопроводности И ствия температурного на $t_{\rm H}$ — $t_{\rm c}$. В этом пора слупрофиль температуры чае в поперечном сечении пленки будет представлять собой прямую линию *, пленку

Рис. 12-38. Пленочная конденсация пара на вертикальной поверхности.

можно трактовать как твердую стенку, «изготовленную» из конденсата и имеющую толщину δ_x , которая возрастает сверху вниз. Тогда плотность теплового потока в данном сечении с координатой x равна:

$$q_{x} = \frac{\lambda_{\mathrm{m}}}{\delta_{x}} (t_{\mathrm{H}} - t_{\mathrm{c}}),$$

или с другой стороны

$$q_{x} = \alpha_{x}(t_{H} - t_{c});$$

из двух написанных соотношений имеем:

$$\alpha_x = \frac{\lambda_{\text{\tiny K}}}{\delta_x}.$$
 (12-69)

Таким образом, местный коэффициент теплоотдачи может быть определен, если известна толщина пленки конденсата в данном сечении. Из (12-69) видно также, что чем меньше толщина пленки конденсата, тем α_x больше; вот почему стремятся получить капельную конденсацию, при которой стенка покрыта не сплошной

^{*} При ламинарном течении жидкости в трубе (см. § 12-6) теплота поперек потока также передается теплопроводностью, но наличие конвективного переноса теплоты вдоль трубы приводит к параболическому профилю температуры [см. формулу (12-48)].

пленкой, а отдельными каплями, суммарное термическое сопротивление которых меньше, чем у пленки.

Толщина пленки увеличивается в направлении x за счет добавления в пленку конденсата. Условие баланса массы для сечения с координатой x может быть записано следующим образом:

$$G_{x} = \rho_{x} w_{ox} \delta_{x} \Delta z = \frac{\overline{q}}{r} x \Delta z = \frac{\overline{\alpha} \Delta t}{r} x \Delta z = \frac{\lambda_{x} \Delta t}{\tau} x \Delta z = \frac{\lambda_{x} \Delta t}{\tau} x \Delta z; \quad (12-70)$$

здесь G_x — массовый расход конденсата в данном сечении пленки; w_{0x} — средняя скорость в том же сечении; Δz — ширина пленки по оси z, направленной перпендикулярно плоскости рисунка; δ_x — средняя толщина пленки на участке длиной x.

Средняя скорость в поперечном сечении пленки может быть определена, если известен профиль скорости $w_x = w_x(y)$. Последний можно рассчитать, использовав основной закон динамики для пленки, подобно́ тому, как это было сделано для трубы в § 12-5. Здесь также получается параболический профиль скорости (рис. 12-38); на стенке скорость равна нулю («прилипание»), при y > 0 профиль скорости определяется двумя силами: сцлой тяжести и силой вязкого трения, т. е. величинами g, $\rho_{\rm ж}$, $\mu_{\rm ж}$, а также δ_x . С учетом (12-70) можно заключить, что δ_x определяется следующей функциональной зависимостью

 $\delta_x = f(x, g, \rho_{\mathbb{H}}, \mu_{\mathbb{H}}, \lambda_{\mathbb{H}}, r, \Delta t).$

Получение конкретного вида этой функции связано с громоздкими выкладками, поэтому приведем результат без вывода:

$$\delta_{x} = \sqrt[4]{\frac{4}{4\lambda_{\text{m}}\omega_{\text{m}}(t_{\text{H}}-t_{\text{c}})x}}{r\rho^{2}_{\text{m}}g}}$$

Подставляя это выражение в (12-69), получаем формулу для местного коэффициента теплоотдачи при пленочной конденсации на вертикальной поверхности:

$$\alpha_{x} = \sqrt[4]{\frac{r\rho^{2}_{m}g\lambda^{3}_{m}}{4\mu_{m}(t_{m}-t_{c})!x_{s}}}.$$

Средний коэффициент теплоотдачи на участке от x = 0 до x = h предлагаем определить учащимся по формуле $\bar{\alpha} = \frac{1}{h} \int_{0}^{h} \alpha_{x} dx$, что дает:

$$a = \frac{4}{3} a_{x=h},$$

или

$$\bar{a} = 0.943 \sqrt[4]{\frac{r\rho^2_{\text{K}}g\lambda^3_{\text{K}}}{\mu_{\text{K}}}} \sqrt[4]{\frac{1}{\Delta th}}.$$
 (12-71)

При расчете по формуле (12-71), впервые полученной Нуссельтом, все физические параметры конденсата следует брать по температуре насыщения t_н (табл. П9).

Согласно формуле (12-71) $\alpha \sim h^{-0,25}$ (рис. 12-38) и $\alpha \sim \Delta t^{-0,25}$. Формула (12-71) справедлива при ламинарном течении пленки, которое существует в том случае, если число Рейнольдса $\text{Re=}_{w_0h}\delta_h\rho_{\text{ж}}/\mu^*_{\text{ж}}=\alpha\Delta th/r\mu_{\text{ж}}$ меньше критического значения, равного $\text{Re}_{\text{кр}}=400$. Поэтому после расчета по формуле (12-71) необходимо проверить условие ламинарности течения.

Формула (12-71) получена теоретическим путем; опыт дает более высокие значения коэффициента теплоотдачи $\bar{\alpha}$. Это происходит по двум причинам: из-за изменения физических свойств конденсата с температурой, что может быть приближенно учтено поправкой ($\Pr_{\rm H}/\Pr_{\rm c}$)^{0,25}, а также из-за волнового характера движения пленки. Последнее обстоятельство приводит к увеличению среднего коэффициента теплоотдачи, что можно учесть умножением его на поправку $\varepsilon_v = {\rm Re}^{0,04}$. При небольших давлениях пара и температурных напорах величина ($\Pr_{\rm H}/\Pr_{\rm c}$)^{0,25} немного меньше единицы. Величина ε_v может принимать следующие значения:

Re	25	100	40 0
e	1,14	1,20	1,27

При Re>400 течение конденсата в пленке становится турбулентным и расчет теплоотдачи производится по специальным формулам, приводимым в учебниках по теплопередаче.

Конденсация пара на наружной поверхности горизонтальной трубы происходит принципиально так же, как и на вертикальной поверхности, но имеет свои особенности, связанные с тем, что направление силы тяжести не совпадает с направлением движения пленки. Вообще для наклонной поверхности следует ввести проекцию вектора ускорения силы тяжести $g_x = g \cos \varphi$, где

Иногда в литературе встречается число Рейнольдса, в котором в качестве характерного размера используется величина 46, равная эквивалентному диаметру пленки конденсата.

ф — угол между направлением течения пленки и направлением силы тяжести. Тогда для наклонной плоскости коэффициент теплоотдачи определяется выражением

 $a_{\text{hakm}} = a_{\text{Bept}} \sqrt[4]{\cos \varphi}.$

Для наружного контура цилиндрической горизонтальной трубы величина ф меняется по мере стекания пленки. Средний коэффициент теплоотдачи определяется выражением

$$\overline{\alpha}_{\rm r} = 0,728 \, \sqrt[4]{\frac{r\rho^2_{\rm H}g\lambda^3_{\rm H}}{\mu_{\rm H}}} \, \sqrt[4]{\frac{1}{\Delta t d}}. \tag{12-72}$$

На интенсивность теплоотдачи при конденсации оказывают влияние такие факторы, как примесь неконденсирующегося газа в паре (например, воздуха), движе-

Рис. 12-39. К примеру 12-9.

пара, ние компоновка пучка горизонтальных труб, на внешней поверхности которых конденсируется пар. Примесь воздуха в паре приводит резкому уменьшению Κ коэффициента теплоотдачи: накапливающийся v поверхности конденсации воздух затрудняет доступ пара к ней. Пар при движении может оказывать силовое воздействие на пленку конденсата, ускоряя или затормаживая ее; в первом случае толщина пленки уменьшается, что

приводит к росту теплоотдачи, во втором случае теплоотдача уменьшается. При компоновке пучков горизонтальных труб необходимо следить за тем, чтобы конденсат верхних трубок в возможно меньшей степени заливал трубы, расположенные внизу, так как это приводит к снижению теплоотдачи на последних.

Пример 12-11. На наружной поверхности трубы диаметром d=20 мм и длиной l=2 м конденсируется сухой насыщенный водяной пар при давлении $p_{\rm H}=0.101$ МПа. Температура поверхности трубы $t_c=94,5^{\circ}$ С. Определить количество пара, которое конденсируется на поверхности трубы для вертикального и горизонтального ее расположения.

Решение. Температура насыщения для данного давления пара равна $t_n = 100^{\circ}$ С. Для этой температуры свойства конденсата имеют значения: $\rho_{\rm M} = 958$ кг/м³, $\mu_{\rm M} = 283 \cdot 10^{-6}$ H·c/M²; $\lambda_{\rm M} = 68,3 \times 10^{-2}$ Вт/(м·K); теплота фазового перехода $r = 2257 \cdot 10^3$ Дж/кг (из табл. П9).

Вычислим величину

$$\sqrt[4]{\frac{r\rho_{\text{*}\text{K}}^{2}g\lambda_{\text{*}\text{K}}^{3}}{\mu_{\text{*}\text{K}}}} = \sqrt[4]{\frac{2257 \cdot 10^{3} \cdot 958^{2} \cdot 9,81}{283 \cdot 10^{-6}}} = 1,23 \cdot 10^{4} \text{ m}^{1/4} \cdot \text{C}^{1/4} \text{ Br}/(\text{m}^{2} \cdot \text{K}).$$

Средний коэффициент теплоотдачи при вертикальном расположении трубы (рис. 12-39) равен:

$$\overline{\alpha} = 0,943 \cdot 1,23 \cdot 10^4 \sqrt[4]{\frac{1}{\Delta th}} =$$

= 0,943 \cdot 1,23 \cdot 10^4 $\sqrt[4]{\frac{1}{5,5 \cdot 2}} = 6910 \text{ BT}/(\text{M}^2 \cdot \text{K}).$

Определим число Рейнольдса стекающей пленки конденсата

 $\operatorname{Re} = \overline{a\Delta th}/r\mu_{\mathrm{m}} = 6910 \cdot 5, 5 \cdot 2/2257 \cdot 10^3 \cdot 283 \cdot 10^{-6} = 119.$

Следовательно, режим течения пленки по всей высоте вертикальной трубы ламинарный. Поправка на волновой характер движения пленки $\varepsilon_v = 1,20$. Поправку на изменение физических свойств конденсата с температурой можно не учитывать из-за малости температурного напора $t_n - t_c$. С учетом поправки ε_v коэффициент теплоотдачи равен:

$$\alpha = 6910 \cdot 1,20 = 8300 \text{ Br}/(\text{m}^2 \cdot \text{K}).$$

Количество конденсирующегося пара

$$G = Q/r = \alpha \Delta t \pi dh/r = 8300 \cdot 5.5 \cdot 3.14 \cdot 20 \cdot 10^{-3} \times 2/2257 \cdot 10^{3} = 2.54 \cdot 10^{-3} \text{ Kr/c.}$$

Коэффициент теплоотдачи при горизонтальном расположении трубы равен:

$$\overline{\alpha_{r}} = 0,728 \cdot 1,23 \cdot 10^{4} \sqrt{\frac{1}{\Delta t d}} =$$

= 0,728 \cdot 1,23 \cdot 10^{4} \sqrt{\frac{1}{5,5 \cdot 20 \cdot 10^{-3}}} = 15\ 600\ \text{Br}/(\text{M}^{2} \cdot \text{K}).

Количество конденсирующегося пара при горизонтальном расположении трубы

$$G_{\rm r} = Q_{\rm r}/r = \overline{a_{\rm r}} \Delta t \pi dh/r = 15\ 600 \cdot 5, 5 \cdot 3, 14 \cdot 20 \cdot 10^{-3} \times 2/2257 \cdot 10^{3} = 4,78 \cdot 10^{-3} \ {\rm Kr/c}.$$

Видно, что при горизонтальном расположении трубы и прочих равных условиях количество конденсирующегося пара на ней увеличивается в 4,78/2,54==1,88 раза. Это объясняется более высоким значением среднего коэффициента теплоотдачи горизонтальной трубы по сравнению с вертикальной. Последнее обстоятельство является следствием того, что при горизонтальном расположении трубы стекающая пленка не успевает существенно увеличить свою толщи-

ĦV Há коротком отрезке, равном полуокружности трубы (рис. 12-39, 1). В то же время толщина пленки в нижней части вертикальной трубы значительно больше (рис. 12-39, 11), что ведет к снижению среднего коэффициента теплоотдачи.

Теплоотдача при кипении жидкости. Знание теплоотдачи при кипении жидкости имеет большое практическое значение для энергетики, поскольку этот процесс является одним из основных в цикле тепловой электростанции. Кипение осуществляется в парогенераторах и атомных реакторах, образующийся в результате кипения пар используется затем в качестве рабочего тела в турбине.

Для поддержания процесса кипения необходимо подводить теплоту к кипящей жидкости. Следовательно. температура поверхности нагрева должна быть несколько выше, чем температура кипения (насыщения) t_н при

Рись 12-40. Изменение теплоотдачи в зависимости от режима кипения жидкости.

объеме, например B сосуде, к которому снизу подводится теплота. Проследим за тем, как меняется интенсивность теплоотдачи по мере роста теплового потока. При небольших значениях теплового потока, когда $t_{\rm H} < t_{\rm H}$ в жидкости происходит теплоотдача при свободном движении (рис. 12-40). После достижения значения температуры насыщения на поверхности нагрева начинают образовываться паровые пузырьки, которые растут, отрываются от поверхности нагрева и всплывают. Так как термическое сопротивление теплоотдачи (величина, обратная коэффициенту теплоотдачи) при свободном движении сосредоточено в тонком пристенном слое жидкости, а с возникновением кипения этот пристенный слой разрушается возникающими на стенке паровыми пузырьками, то теплоотдача при кипении резко возрастает. С увеличением теплового потока (что может быть достигнуто, например, увеличением мощности электриче-

давлении, под которым находится жидкость. Коэффициент теплоотдачи при кипении определяется следующим образом:

$$a = \frac{q}{t_{\rm c} - t_{\rm H}}.$$

Рассмотрим процесс кибольшом пения жидкости в

ского нагревателя) интенсивность процесса образования пузырьков возрастает, что ведет к еще большему росту теплоотдачи. Пузырьков пара становится все больше, и они сливаются между собой, образуя паровую иленку, которая отделяет жидкость от поверхности: временами вверх всплывают крупные пузыри пара. Теплота к жидкости поступает теперь через слой пара, теплопроводность которого намного меньше, чем теплопроводность жидкости (например, при 100°С теплопроводность водяного пара примерно в 29 раз меньше теплопроводности воды). Возникновение низкотеплопроводной паровой прослойки между поверхностью нагреи жидкостью равносильно резкому уменьшению ва коэффициента теплоотдачи, из-за чего возрастает температура стенки, так как для уменьшения $q = \alpha (t_c - t_H)$ нет причины: тепловой поток соответствует заданному значению мощности электронагревателя. Описанное явление носит название кризиса теплоотдачи при кипении (первый кризис) и может привести к разрушению поверхности нагрева из-за высокой температуры. Если поверхность нагрева не разрушилась, то устанавливается новый режим кипения с низким значением коэффициента теплоотдачи.

Участок AB кривой на рис. 12-40 соответствует свободному движению жидкости. Участок BB соответствует пузырьковому кипению, линия $E\mathcal{I}$ — пленочному, а пунктирная линия $B\Gamma$ отражает резкое снижение коэффициента теплоотдачи в момент кризиса —. перехода от пузырькового режима кипения к пленочному. Обратный переход (второй кризис) происходит по линии $E\mathcal{K}$, т. е. при более низком значении q, чем прямой переход.

С практической точки зрения важно организовать кипение в области пузырькового режима с высоким коэффициентом теплоотдачи, причем так, чтобы не допустить возникновения кризиса. В связи с этим необходима формула для расчета коэффициента теплоотдачи при пузырьковом кипении.

Теоретический анализ и опыт показывают, что пузырьки пара образуются на поверхности нагрева в местах микроскопических неровностей, чаще всего в углублениях на поверхности. Очевидно, на обработанной металлической поверхности число крупных углублений мало, количество средних углублений больше, 20—702 305 а мелких — еще больше. Наибольшее количество действующих центров парообразования имеется тогда, когда созданы условия для зарождения пузырьков в самых мелких углублениях. Для этого необходимо, чтобы жидкость в области такого малого углубления была перегрета, т. е. имела более высокую температуру, чем $t_{\rm H}$ при данном давлении.

Анализ физической картины процесса пузырькового кипения показывает, что основными факторами, от которых зависит интенсивность теплоотдачи при кипении являются: минимальный радиус пузырька $R_{\rm мин}$ и частота отрыва пузырьков от поверхности нагрева. Минимальный (критический) радиус пузырька — это один из параметров пузырькового кипения; его роль состоит в следующем: он разделяет все возникающие пузырьки на «жизнеспособные» и «нежизнеспособные». Если радиус возникшего пузырька удовлетворяет условию $R > R_{\rm мин}$, то пузырек продолжает расти, если $R < R_{\rm мин}$, то пузырек оказывается «нежизнеспособным» и конденсируется.

Рис. 12-41. Тепловое и механическое равновесие парового пузырька с окружающей жидкостью.

Для объяснения этого факта рассмотрим условия механического и теплового равновесия парового пузырька (рис. 12-41). Для механического равновесия давление пара в пузырьке p_{π} должно компенсировать внешнее давление в жидкости $p_{\pi} = p_{\mu}$ и действие поверхностного натяжения σ , которое стремится сжать пузырек. Дополнительное давление Δp , обусловленное действием поверхностного натяжения, определяется уравмением Лапласа *, поэтому $p_{\pi} = p_{\mu} + \frac{2\sigma}{R_{\text{укрн}}}$.

Пар в пузырьке насыщен, поэтому его температура также несколько выше температуры насыщения кипя-

^{*} Уравнение Лапласа получается из условия равновесия полусферического мениска жидкости в цилиндрическом калилляре радиуса $R: \sigma 2\pi R = \Delta \rho \pi R^2$, отсюда $\Delta p = 2\sigma/R$.

щей жидкости. Тепловое равновесие между пузырьком и окружающей жидкостью имеет место в том случае, когда равны их температуры $t_{\rm m} = t_{\rm II} > t_{\rm H}$. В системе «пузырек --- жидкость» заданными являются: давление жидкости р_ж (оно может равняться, например, атмосферному, если сосуд открыт и имеет небольшую глубину) и температура жидкости t_ж, которая определяется тепловым потоком q. Если теперь в рассматриваемой точке поверхности нагрева возникнет паровой пузырек, радиус которого $R > R_{\text{мин}}$, то давление в нем будет меньше, чем при радиусе R_{мин} (ибо величина 2 σ/ Ř в этом случае меньше); в силу насыщенности пара в пузырьке температура его станет меньше. Жидкость вокруг пузырька имеет более высокую температуру, поэтому она начнет испаряться, вызывая еще больший рост пузырька и уводя систему еще дальше от состояния равновесия. Пузырек будет расти, достигнет отрывного размера и всплывет. Пусть теперь в данной точке на поверхности нагрева возникнет паровой пузырек с $R < R_{\text{мин}}$. Давление в нем будет больше, чем при радиусе R_{мин}, температура пара t_{π} будет больше t_{π} , пар начнет конденсироваться на относительно холодной жидкости, радиус пузырьков будет уменьшаться, что приведет к еще большей интенсивности конденсации; в конце концов пузырек сконденсируется полностью.

Таким образом «жизнеспособными» оказываются лишь пузырьки, у которых начальный радиус $R > R_{\text{мин}}$; начальный радиус пузырька определяется размером углубления, в котором зарождается пузырек. Поэтому чем меньше параметр $R_{\text{мин}}$, тем большее количество центров парообразования на поверхности оказывается вовлеченным в процесс. Величина $R_{\text{мин}}$ определяется выражением

$$R_{\rm MHH} = \frac{2\sigma}{p_{\rm H} - p_{\rm H}};$$

она тем меньше, чем больше разность $p_{\rm ff}$ — $p_{\rm ff}$, т. е. чем больше давление $p_{\rm ff}$, соответствующее температуре $t_{\rm ff}$ = = $t_{\rm ff}$; последняя характеризует перегрев жидкости, который тем больше, чем больше q.

Если кипение происходит при более высоком давлении, чем атмосферное, то поверхностное натяжение о уменьшается (при критических параметрах состояния, которые для воды составляют: $p_{\rm K}=221,2\cdot10^5$ Па, $t_{\rm K}==374,1^{\circ}$ С, поверхностное натяжение обращается в нуль) 20* 307 и это приводит к уменьшению минимально допустимого радиуса зарождения пузырьков.

Таким образом, увеличение теплового потока q, а также давления насыщения, при котором осуществляется кипение, приводит к уменьшению параметра $R_{\rm мин}$, а следовательно, — к увеличению количества действующих центров парообразования, облегчению процесса вскипания и в конечном счете — к увеличению интенсивности теплоотдачи при кипении.

Перейдем к рассмотрению второго основного фактора, от которого зависит теплоотдача при пузырьковом кипении -- частоте отрыва пузырьков. Очевидно, что для обеспечения интенсивного пузырькового кипения важно знать не только количество действующих центров парообразования, но и их «производительность», характеризуемую частотой отрыва пузырьков. Очевидно, чем больше частота отрыва, тем интенсивнее динамическое воздействие пузырьков на пристенный слой жидкости, тем больше теплоотдача. Частота отрыва растет с уменьшением отрывного размера пузырька, который является так же, как и R_{мин}, параметром процесса. Отрыв пузырька происходит за счет подъемной силы, пропорциональной величине g (р_ж-р_п) l³, где l - примерный размер пузырька, имеющего сложную форму; удерживает пузырек поверхностное натяжение, действующее по контуру основания, т. е. сила, равная примерно ol. Отрыв возможен, когда подъемная сила достигла значения силы поверхностного натяжения

 $g(\rho_{\mathrm{H}}-\rho_{\mathrm{H}})l^{3}\approx\sigma l$,

отсюда $l = \sqrt{\sigma/g(\rho_m - \rho_n)}$ — так называемая капиллярная постоянная. Отрывной размер пузырька пропорционален капиллярной постоянной. С увеличением давления, при котором происходит кипение, уменьшается σ , а с ним и l, что приводит к росту частоты образования пузырьков и увеличению коэффициента теплоотдачи.

Наряду с указанными выше основными факторами, определяющими теплоотдачу при пузырьковом кипении жидкости — тепловым потоком и давлением — существует целый ряд других причин изменения теплоотдачи при кипении. Например, на коэффициент теплоотдачи оказывают влияние материал поверхности нагрева и степень ее обработки. Важно, в частности, хорошо ли кипя-308 щая жидкость смачивает поверхность нагрева; при плохом смачивании теплоотдача хуже, так как большая доля поверхности теплообмена занята паром, плохо проводящим теплоту. При кипении одной и той же жидкости на полированной поверхности коэффициент теплоотдачи меньше, чем при кипении на необработанной (технической) поверхности. С повышением степени обработки поверхности количество центров парообразования на ней уменьшается. При кипении жидкости на поверхности, которая недавно подвергалась механической обработке (например, на поверхности новых, только что вступивших в эксплуатацию теплообменных устройств), устанавливается высокий коэффициент теплоотдачи. В процессе эксплуатации часть центров парообразования перестает функционировать, теплоотдача снижается, и лишь после многих часов (а иногда и суток) работы поверхности нагрева, на которой осуществляется кипе-ние, устанавливается стабильный коэффициент теплоотдачи. Увеличению теплоотдачи при пузырьковом кипе-нии на только что вступивших в эксплуатацию поверх-ностях нагрева способствует также адсорбированный этой поверхностью газ (например, воздух), обеспечивающий наличие дополнительных центров парообразования; примерно такое же влияние оказывают и мелкие твердые частицы, находящиеся на поверхности нагрева.

При кипении жидкости на твердой поверхности образуются часто пленки окислов. Влияние этих пленок на теплообмен проявляется различным образом. Шероховатость поверхности теплообмена увеличивается, и это ведет к увеличению количества действующих центров парообразования и, следовательно, интенсивности теплоотдачи. Однако чаще всего кипение происходит на одной стороне металлической стенки, отделяющей кипящую жидкость от теплоносителя (например, кипящая вода в трубе парогенератора отделена от продуктов сгорания стенкой этой трубы). Пленка окислов увеличивает термическое сопротивление теплопроводности стенки—в этом сказывается отрицательное влияние окислов.

ки—в этом сказывается отрицательное влияние окислов. На теплоотдаче при кипении почти не сказываются условия отвода пара от поверхности нагрева в том смысле, что ориентация поверхности теплообмена не оказывает влияния на интенсивность отвода теплоты. Коэффициент теплоотдачи при пузырьковом кипении на наружной поверхности горизонтальной и вертикальной трубы один и тот же, однако на горизонтальной плоской поверхности, обращенной к жидкости вниз, коэффициент теплоотдачи ниже, чем на горизонтальной поверхности, обращенной к жидкости вверх; причина здесь состоит в ухудшенных условиях отвода пара. При кипении в невесомости необходимо специально организовать принудительный отвод пара от поверхности теплообмена, в противном случае стационарный процесс кипения невозможен.

Таким образом установлено, что с увеличением теплового потока q и давления $p_{\rm H}$ коэффициент теплоотдачи при пузырьковом кипении растет. В результате обработки опытных данных для воды получена следующая формула, которую можно использовать для расчета при давлениях от 1 до 200 бар:

$$\alpha = \frac{3,4p_{\rm H}^{0,18}}{1-0,0045p_{\rm H}}q^{2/3}; \qquad (12-73)$$

здесь $p_{\rm H}$ — в барах; q — в Вт/м² (Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1973).

Параметры, соответствующие кризису кипения для воды, равны: плотность теплового потока $q_{\rm kp}$ == =1200 кВт/м², температурный напор $\Delta t_{\rm kp}$ ==25—30°С (при атмосферном давлении). С повышением давления примерно до 70 бар $q_{\rm kp}$ возрастает.

Кипение жидкости в трубах. При кипении жидкости в трубах на растущий пузырь дополнительно к силе выталкивания (силе Архимеда) действует сила, связанная с движущимся вокруг пузыря продольным потоком жидкости. Действие этой дополнительной силы приводит к тому, что пузырь отрывается при меньшем значении отрывного диаметра, чем в спокойной жидкости. Поскольку в действующем центре парообразования зарождение нового пузыря происходит после отрыва предыдущего, то уменьшение отрывного диаметра ведет к возрастанию частоты отрыва пузырей и к увеличению коэффициента теплоотдачи.

Однако коэффициент теплоотдачи при течении жидкости в трубе зависит и от процесса конвективного теплообмена. Таким образом, мы имеем дело здесь с двумя процессами: процессом пузырькового кипения, интенсивность которого характеризуется коэффициентом теплоотдачи α_q и процессом конвективного теплообмена, 310 интенсивность которого характеризуется коэффициентом теплоотдачи а_w.

Допустим, что по трубе течет жидкость с некоторой скоростью wo; будем увеличивать постепенно плотность теплового потока q на стенке. При относительно малых значениях q имеет место пузырьковое кипение, но оно не оказывает существенного влияния на теплообмен. Коэффициент теплоотдачи определяется при этом конвекцией и равен α_w . По мере роста q картина меняется, начинает проявляться влияние пузырьков, разрушающих вязкий подслой у стенки. Наступает такой режим, когда влияние конвективного переноса теплоты и влияние кипения становятся соизмеримыми; при этом коэффициент теплоотдачи зависит и от α_w , и от α_a . При дальнейшем увеличении теплового потока q влияние кипения становится более существенным, чем влияние конвективного переноса, теплообмен полностью определяется процессом парообразования, и коэффициент теплоотдачи равен а.

В общем случае для определения коэффициента теплоотдачи необходимо рассчитать два частных коэффициента теплоотдачи: α_q , который обусловлен кипением и определяется по формуле (12-73), и α_w , который обусловлен движением жидкости и определяется в соответствии с рекомендациями § 12-5. Затем составляется отношение α_q/α_w и определяется истинный коэффициент теплоотдачи α в соответствии с указаниями:

при
$$a_q/a_w < 0.5$$
 $a = a_w;$
при $a_q/a_w > 2$ $a = a_q;$
при $0.5 < a_q/a_w < 2$ $a = \frac{4a_w + a_q}{5a_w - a_q}a_w.$ (12-74)

Рекомендации (12-74) справедливы для воды при $p_{\rm H}$ =0,1-8,6 МПа, w_0 =0,2-6,7 м/с.

С возникновением кипения в потоке жидкости по трубе движется смесь пара и жидкости — двухфазная смесь. Важной характеристикой двухфазной смеси является ее паросодержание. В частности, формулы (12-74) справедливы, если объемное расходное паросодержание в не превышает значения, равного 70%. Объемное расходное паросодержание определяется выражением

$$\beta = \frac{G_{\pi}/\rho_{\pi}}{G_{\pi}/\rho_{\pi}+G_{\pi}/\rho_{\pi}},$$

где G_ж, G_п — массовые расходы жидкой и паровой фаз в трубе соответственно.

В указанной области изменение β не оказывает влияния на теплоотдачу. Однако с возрастанием в выше 80-90% теплоотдача начинает увеличиваться. Дело в том, что массовый расход двухфазной смеси в трубе, равный сумме массовых расходов жидкости и пара $(G_{m} + G_{n})$, остается вдоль трубы постоянным согласно закону сохранения массы. Возрастание паросодержания вдоль потока приводит к уменьшению средней плотности двухфазной смеси, а следовательно - к увеличению ее скорости. При увеличении объемного расходного паросодержания выше 80-90% скорость жидкой фазы, текущей у стенки и определяющей интенсивность конвективной теплоотдачи, увеличивается, и это приводит к некоторому росту коэффициента теплоотдачи. Дальнейшее увеличение паросодержания потока приводит к резкому уменьшению коэффициента теплоотдачи, что связано с высыханием жидкой пленки на стенке трубы.

Пример 12-12. Определить необходимую поверхность нагрева парогенератора производительностью G=4 т/ч пара при давлении $p_{\rm H}=1,0$ МПа, если предполагаемый температурный напор составит $\Delta t=t_{\rm c}-t_{\rm H}=10^{\circ}$ С.

Решение. Предполагается, что кипение происходит в большом объеме, причем расположение поверхности нагрева относительно поля сил тяжести не имеет значения. Коэффициент теплоотдачи определяется по формуле (12-73). Поскольку задан температурный напор, а не плотность теплового потока, то формулу (12-73) необходимо преобразовать подстановкой соотношения $q = -\alpha \Delta t$. Вычислим предварительно следующую величину [см. (12-73)]:

$$3,4 \frac{p_{\rm H}^{0,18}}{1-0,0045p_{\rm H}} = 3,4 \frac{10^{0,18}}{1-0,0045\cdot 10} = 5,37.$$

Преобразуем формулу (12-73):

$$\alpha = 5,37q^{2/3} = 5,37\alpha^{2/3}\Delta t^{2/3}$$
.

Умножим обе части выражения на α:

$$\alpha^{1/3} = 5,37 \Delta t^{2/3}$$
.

Возведем обе части выражения в куб:

$$a = 5,37^{3}\Delta t^{2} = 155\Delta t^{2}$$
.

Коэффициент теплоотдачи а= $155\Delta t^2$ = $155 \cdot 10^2$ =15500 Вт/(м²·K). Поверхность нагрева котла (r= $2015 \cdot 10^3$ Дж/кг при $t_{\rm H}$ = 180° C)

$$F = \frac{Gr}{3,6\alpha\Delta t} = \frac{4\cdot2015\cdot10^3}{3,6\cdot15\,500\cdot10} = 14,4 \text{ m}^2.$$

ГЛАВА ТРИНАДЦАТАЯ

ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ

13-1. Основные понятия и законы

Теплообмен излучением представляет собой такой вид теплообмена, при котором энергия переносится при помощи электромагнитных волн (или фотонов). Тепловое излучение - это излучение, определяемое только температурой тела и его оптическими свойствами. Перенос энергии в этом случае осуществляется световыми и главным образом инфракрасными лучами; диапазон длин волн λ световых лучей 0,4-0,8 мкм, инфракрасных — 0.8—800 мкм. Излучение может быть монохроматическим, соответствующим узкому диапазону длин волн вблизи некоторого значения длины волны, которым оно и характеризуется, и интегральным, соответствующим всему спектру длин волн. При излучении с поверхности тел рассматривается обычно полусферическое излучение, которое распространяется по различным направлениям в пределах полусферического телесного угла, равного 2л (телесный угол измеряется отношением площади участка поверхности некоторой сферы, на которой участок вырезан этим углом, к квадрату радиуса сферы).

Поток излучения — это количество лучистой энергии, переносимой в единицу времени через произвольную поверхность. Обозначение потока излучения такое же, как и теплового потока, переносимого другими способами, — Q, Вт. Плотностью потока излучения называется поток излучения, проходящий через единицу поверхности по всевозможным направлениям в пределах полусферического телесного угла:

$$E = \frac{Q}{F}$$
.

При попадании потока излучения на тело в общем случае он делится на три части: поглощаемую, отражаемую и пропускаемую телом.

Если плотность потока падающего на тело излучения равна *E*, то можно записать

$$E = E_{\text{погл}} + E_{\text{отр}} + E_{\text{проп}}.$$

Разделим написанное выражение на величину Е

$$\frac{E_{\text{norn}}}{E} + \frac{E_{\text{orp}}}{E} + \frac{E_{\text{npon}}}{E} = A + R + D = 1.$$

Величина $A = E_{\text{погл}}/E$ называется поглощательной способностью тела, $R = E_{\text{отр}}/E$ — отражательной способностью тела, $D = E_{\text{проп}}/E$ — пропускательной способностью. Если A = 1, R = D = 0, то тело называется абсолютно черным. При R = 1, A = D = 0 тело отражает всю падающую на него энергию; если отражение происходит по законам геометрической оптики, тело называют зеркальным, если отражение диффузное — абсолютно белым. При D = 1, A = R = 0 тело является прозрачным (диатермичным).

При изучении лучистого теплообмена между телами вводится специальная классификация лучистых потоков, облегчающая понимание процесса (рис. 13-1). Собственным излучение поцесса (рис. 13-1). Собстверхности тела, зависящее только от температуры и свойств данного тела. Выделяют также потоки: падающего излучения, поглощенного излучения. Сумма потоков собственного и отраженного излучения называется потоком эффективного излучения. Разность потоков собственного и поглощенного излучения называется потоком результирующего излучения. Лучистый теплообмен между телами количественно характеризуется потоком результирующего излучения.

Для непрозрачных тел

$$E_{\text{nag}} = E_{\text{norg}} + E_{\text{org}} = AE_{\text{nag}} + RE_{\text{nag}}.$$

Согласно определению эффективного излучения

$$E_{3\Phi} = E_{co6} + E_{orp} = E_{co6} + RE_{nag}.$$
(13-1)

Для абсолютно черного тела R=0 и $E_{2\phi}=E_{cob}$. Результирующее излучение

$$q_{\rm pes} = E_{\rm co6} - E_{\rm norn} = E_{\rm co6} - AE_{\rm nag} = E_{\rm co6} - (1 - R)E_{\rm nag} = E_{\rm sop} - E_{\rm nag}; \quad (13-1a)$$

здесь для результирующего потока использовано обозначение «q», чтобы подчеркнуть его смысл — количество теплоты, которое в единицу времени передается от одного тела к другому в расчете на единицу поверхности.

Можно установить связь между результирующим излучением и эффективным через собственное излучение 314 и поглощательную способность. Запишем два равенства из (13-1а):

$$E_{2\phi} = q_{pe3} + E_{uag};$$

 $q_{pe3} = E_{co5} - AE_{uag}.$

Исключим из них Епад и получим:

$$E_{\mathsf{9}\phi} = q_{\mathsf{pes}} \left(1 - \frac{1}{A} \right) + \frac{E_{\mathsf{coo}}}{A}. \tag{13-2}$$

Связи между различными видами лучистых потоков иллюстрируются рис. 13-1. Собственное излучение E_{cof} далее обозначается просто E.

Законы излучения. Закон Планка устанавливает связь энергии собственного излучения абсолютно черного тела с длиной

волны и температурой

 $E_{0\lambda} = f(\lambda, T);$

Рис. 13-1. Виды лучистых потоков.

Рис. 13-2. Графическое представление закона Планка.

здесь $E_{0\lambda}$ — плотность потока собственного излучения абсолютно черного тела (индекс 0) для длин волн в интервале λ , $\lambda + \Delta \lambda$, отнесенная к этому интервалу длин волн: $E_{0\lambda} = \Delta E_{0} / \Delta \lambda$.

На рис. 13-2 представлено графическое изображение зависимости $E_{0\lambda} = f_1(\lambda)$ для различных значений температуры *T*. Из рисунка видно, что существует некоторая длина волны для данной температуры, при которой $E_{0\lambda}$ имеет максимум. Эта длина волны определяется вырази

жением $\lambda_{\text{макс}}T = 2,9 \text{ мм} \cdot \text{K}$, носящим название з а к о н а В и н а. Зная распределение плотности лучистого потока по длинам волн, можно подсчитать плотность потока интегрального излучения, произведя суммирование ко спектру от $\lambda = 0$ до $\lambda \longrightarrow \infty$. Для некоторой длины волны λ в малой ее окрестности $\Delta\lambda$ лучистый поток определяется выражением

$$\Delta E_{0\lambda} == E_{0\lambda} (\lambda, T) \Delta \lambda.$$

Для интегрального излучения имеем соотношение

$$E_{o} \approx \sum_{\lambda} E_{0\lambda}(\lambda, T) \Delta \lambda$$
 или $E_{o} = \int_{0}^{\infty} E_{0\lambda}(\lambda, T) d\lambda.$ (13-3)

Если произвести вычисление интеграла, то получим связь собственного интегрального излучения абсолютно черного тела с его температурой:

$$E_{o} = c_{o} \left(\frac{T}{100}\right)^{4}.$$
 (13-4)

Формула (13-4) выражает закон Стефана – Больцмана. Постоянная c_0 = 5,67 Вт/($M^2 \cdot K^4$). Таким образом, плотность потска излучения абсолютно черного тела пропорциональна четвертой степени его температуры. Величина c_0 называется коэффициентом излучения абсолютно черного тела.

Выражение закона (13-4) было экспериментально установлено Стефаном и затем теоретически — Больцманом, который получил его из термодинамических соображений. Однако конкретный вид функции $E_{0} =$ $=f(\lambda, T)$ в то время установлен не был. Трудность заключалась в том, что тогда еще господствовала волновая теория излучения, которая позволяла установить конкретный вид функции $E_{0\lambda} = f(\lambda, T)$ только для двух предельных случаев — для очень малых длин волн и для очень больших длин волн. На основании волновой теории излучения невозможно было получить универсальную функцию, которая описывала бы величину Е. во всем спектре изменения длин волн от 0 до ∞. Лишь в 1900 г. Планк получил решение проблемы. Он ввел фундаментальное понятие, согласно которому энергия излучения выделяется не непрерывно, а отдельными порциями (квантами), причем квант энергии связан с ча-316

стотой электромагнитного колебания (или с длиной волны) определенным соотношением. Согласно квантовой теории носителями энергии излучения являются фотоны. Формула закона Планка имеет вид:

$$E_{0\lambda} = \frac{2\pi h c_0^2}{\lambda^5 (e^{h c_0/k\lambda T} - 1)};$$

здесь $h=6,626\cdot10^{-34}$ Дж.с. — постоянная Планка; k==1,380·10⁻²³ Дж.К. — постоянная Больцмана; $c_0=$ =3·10⁸ м/с. — скорость распространения излучения в вакууме.

Закон Кирхгофа устанавливает связь между способностью тела излучать и поглощать энергию. Пусть имеется плоскость с температурой T, поглощательной способностью A и собственным излучением E. Параллельно ей на небольшом расстоянии расположена плоская поверхность абсолютно черного тела с параметрами T_0 , A_0 и E_0 . Найдем результирующий лучистый поток для тела с температурой T(рис. 13-3):

$$\begin{array}{c}
E\\
A\\
A\\
E_{0}\\
E_{0}\\$$

$$q_{\text{pes}} = E - AE_0$$

Рис. 13-3. К закону Кирхгофа.

Для переноса лучистой энергии в рассматриваемой системе нужна разность температур; если $T=T_0$, то $q_{\text{pes}}=0$ и

$$E - AE_{o} = 0$$
, откуда $\frac{E}{A} = E_{o}$.

Таким образом, отношение потока собственного излучения любого тела к его поглощательной способности равно собственному излучению абсолютно черного тела при данной температуре. Например, если собственное излучение некоторого тела E=100 Вт/м², а поглощательная способность A=0,4, то собственное излучение абсолютно черного тела при данной температуре $E_0==100/0,4=250$ Вт/м². Так как температуры обоих тел равны, они находятся в тепловом равновесии: из 250 Вт/м², излучаемых абсолютно черным телом, $0,4 \times 250=100$ Вт/м² поглощаются вторым телом, а 150 Вт

отражаются в направлении абсолютно черного тела, которое поглощает (по определению) все падающее на него излучение (отраженные 150 Вт/м² и излучаемые вторым телом 100 Вт/м²).

Из закона Кирхгофа следует важный вывод: если тело поглощает некоторую долю А падающего на него излучения, оно и излучает такую же долю А от излучения абсолютно черного тела при данной температуре. Очевидно, что абсолютно черное тело обладает максимально возможным собственным излучением при данной температуре, превосходящим собственный поток излучения любого реального тела.

Рассмотренные законы излучения справедливы для абсолютно черных тел. Каким образом использовать эти законы при изучении излучения реальных тел? С этой целью используется понятие серого тела. Спектр излучения серого тела $E_{\lambda} = f(\lambda, T)$ изображается линиями, ординаты которых в є раз меньше ординат на графике рис. 13-2, построенном для абсолютно черного тела. Следовательно, $E_{\lambda} = \varepsilon E_{0\lambda}$; здесь величина-є меняется для различных тел от 0 до 1 (абсолютно черное тело) и называется степенью черноты. Степень черноты представляет собой отношение собственного излучения тела к потоку абсолютно черного тела при той же температуре. Закон Стефана — Больцмана для серого тела записывается в виде

$$E = \varepsilon c_{o} \left(\frac{T}{100} \right)^{4}; \qquad (13-5)$$

здесь є со-коэффициент излучения серого тела.

Согласно закону Кирхгофа степень черноты тела равна его поглощательной способности:

$$\epsilon = A$$
.

Большинство реальных тел можно считать серыми телами. Степень черноты зависит от природы тела, обработки его поверхности, а также от температуры. Степень черноты материалов приводится в справочниках.

В большинстве простейших задач лучистого теплообмена достаточно использовать понятие полусферического собственного излучения, значение которого определяется законом Стефана — Больцмана. Распределение энергии по различным направлениям в полусферическом пространстве устанавливается законом Ламберта. Согласно этому закону количество энергии, излучаемое в некотором направлении, составляющем угол φ с нормалью к излучающей поверхности, пропорционально энергии, излучаемой по нормали и равной E/π , и косинусу угла φ . Таким образом, по нормали излучается максимальное количество энергии, а в направлениях, близких к излучающей поверхности, количество этой энергии минимально. Закон Ламберта используется при решении сложных задач лучистого теплообмена, которые здесь не рассматриваются.

13-2. Некоторые задачи теплообмена излучением

Рассмотрим лучистый теплообмен между двумя параллельными плоскостями (рис. 13-4). По такой схеме можно рассматривать тепло-

обмен излучением между двумя неплоскими поверхностями, если зазор между ними много меньше протяженности самих поверхностей. Заданными считаются температуры тел T_1 и T_2 , а также их степени черноты ε_1 и ε_2 . Процесс лучистого теплообмена проходит стационарно.

Ранее было показано, что результирующее излучение

 $q_{\text{pesl}} = E_{\partial \Phi 1} - E_{\pi \alpha \pi 1}$.

В данном случае падающее на первое тело излучение $E_{\text{пад1}}$ представляет собой эффективное излучение второго тела. Тогда

$$q_{\text{pes1}} = q_{\text{pes2}} = q = E_{\partial \Phi 1} - E_{\partial \Phi 2}.$$

Ранее было получено выражение (13-2) для $E_{3\phi}$, которое с учетом соотношения $q_{pe31} = q_{pe32}$ может быть применительно к данному случаю записано следующим образом:

$$E_{s\phi_1} = q\left(1 - \frac{1}{A_1}\right) + \frac{E_1}{A_1};$$

$$E_{s\phi_2} = q\left(1 - \frac{1}{A_2}\right) + \frac{E_2}{A_2}.$$
(13-7)

13-4.

ными прозрачной средой.

плоскостями.

Рис.

между

Теплообмен

разделен-

(13-6)

параллельными

Подставляя (13-7) в (13-6) и производя необходимые преобразования, а также учитывая, что согласно закону Кирхгофа $A_1 = \varepsilon_1$ и $A_2 = \varepsilon_2$, получаем выражение для лучистого потока между поверхностями:

$$q = \frac{E_{1}/\epsilon_{1} - E_{2}/\epsilon_{2}}{1/\epsilon_{1} + 1/\epsilon_{2} - 1} = \frac{c_{0}}{\frac{1}{\epsilon_{1}} - \frac{1}{\epsilon_{2}} - 1} \left[\left(\frac{T_{1}}{100} \right)^{4} - \left(\frac{T_{2}}{100} \right)^{4} \right].$$
(13-8)

Величина

$$c_{\rm np} = \frac{c_0}{1/\varepsilon_1 + 1/\varepsilon_2 - 1}$$

называется приведенным коэффициентом излучения и измеряется в Вт/(м²·K⁴); этот коэффициент характеризует лучистый теплообмен в рассматриваемой системе параллельных поверхностей.

Тепловой поток определяется зависимостью

$$Q = qF = c_{\rm np} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] F.$$
 (13-9)

Таким образом, тепловой поток пропорционален разности четвертых степеней абсолютных температур тел, участвующих в лучистом теплообмене. То, что температуры возводятся в четвертую степень, существенно сказывается при высоких значениях температур, когда лучистый теплообмен становится значительным. При низ-

Рис. 13-5. Теплообмен между телами, одно из которых находится в полости другого.

ких температурах обычно более существенны конвекция и теплопроводность.

Рассмотрим теплообмен между двумя телами, одно из которых находится в полости другого (рис. 13-5). Внутреннее тело 1 имеет выпуклую поверхность. Заданы поверхности тел, степени черноты ε_1 и ε_2 , а также температуры T_1 и T_2 , причем $T_1 > T_2$.

Угловым коэффициентом $\varphi_{2,1}$ называется отношение доли эффективного потока излучения тела 2,

попадающей на тело 1, к полному эффективному потоку тела 2. Излучение внутреннего тела 1 полностью попадает на тело 2, поэтому $\varphi_{1,2}=1$; $\varphi_{1,1}=0$, так как тело 1 имеет выпуклую поверхность. Коэффициент $\varphi_{2,2}=1-\varphi_{2,1}$ по закону сохранения энергии для рассматриваемой замкнутой системы, этот коэффициент характеризует самооблучение тела 2.

С учетом понятия углового коэффициента равенство (13-6) можно переписать следующим образом:

$$Q = Q_{\mathfrak{g}\phi 1} - \phi_{2,1} Q_{\mathfrak{g}\phi 2}. \tag{13-10}$$

Согласно (13-2) имеем:

$$Q_{\mathfrak{s}\phi_1} = Q\left(1 - \frac{1}{\epsilon_1}\right) + \frac{Q_1}{\epsilon_1}; .$$

$$Q_{\mathfrak{s}\phi_2} = Q\left(1 - \frac{1}{\epsilon_2}\right) + \frac{Q_2}{\epsilon_2}.$$
(13-11)

Подставляя (13-11) в (13-10), получаем:

$$Q = \left[\frac{Q_1}{\epsilon_1} - \frac{Q_2}{\epsilon_2} \varphi_{2,1}\right] / \left[\frac{1}{\epsilon_1} + \left(\frac{1}{\epsilon_2} - 1\right) \varphi_{2,1}\right]. \quad (13-12)$$

По закону Стефана — Больцмана

$$Q_1 = \varepsilon_1 c_0 \left(\frac{T_1}{100}\right)^4 F_1; \quad Q_2 = \varepsilon_2 c_0 \left(\frac{T_2}{100}\right)^4 F_2.$$

Подставив эти выражения в (13-12), получим:

$$Q = c_{0} \frac{\left[\left(\frac{T_{1}}{100} \right)^{4} F_{1} - \left(\frac{T_{2}}{100} \right)^{4} F_{2} \varphi_{2,1} \right]}{\frac{1}{\varepsilon_{1}} + \left(\frac{1}{\varepsilon_{2}} - 1 \right) \varphi_{2,1}}.$$
 (13-13)

Если температуры тел одинаковы, результирующий поток равен нулю: при $T_1 = T_2$ имеем Q = 0, что возможно, если числитель правой части (13-13) равен нулю:

$$F_1 - F_2 \varphi_{2,1} = 0,$$

отсюда $\varphi_{2,1} = F_1 / F_2$ и окончательно имеем:

$$Q = c'_{\rm np} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right] F_1, \qquad (13-14)$$

где приведенный коэффициент излучения равен:

$$c'_{\rm np} = \frac{c_0}{\frac{1}{\epsilon_1} + \left(\frac{1}{\epsilon_2} - 1\right) \frac{F_1}{F_2}} \,. \tag{13-15}$$

В предельном случае $F_1 \approx F_2$ приходим к результату задачи о лучистом теплообмене между параллельными поверхностями, а случай $F_1 \ll F_2$ равносилен тому, что тело 2 — абсолютно черное.

Для уменьшения потока излучения при высоких температурах используются экраны, изготовляемые из тонких полированных металлических листов с большой отражательной способностью. Рассмотрим теплообмен при наличии экрана между двумя плоскими параллельными поверхностями (см. рис. 13-4).

Согласно выражению для плотности теплового потока (13-8) применительно к системам «тело 1 — экран» и «экран — тело 2» имеем:

$$q = q_{1,3} = c_{\pi p_{1,3}} \left[{\binom{T_1}{100}}^4 - {\binom{T_2}{100}}^4 \right];$$

$$q = q_{3,2} = c_{\pi p_{1,3,2}} \left[{\binom{T_3}{100}}^4 - {\binom{T_2}{100}}^4 \right].$$

Разделим обе части написанных выражений на $c_{\rm пр}$ и сложим их, тогда величина $(T_{\rm P}/100)^4$ исчезает. Получим выражение:

$$q = c_{\mathrm{np}}^{9} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right],$$

в котором приведенный коэффициент излучения системы с экраном равен:

$$c_{np}^{9} = \left[\left(\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1 \right) + \frac{2}{\epsilon_9} - 1 \right]^{-1}. \quad (13-16)$$

Из (13-16) видно, что чем меньше степень черноты экрана ε_{ϑ} (и, следовательно, тем больше его отражательная способность), тем плотность теплового потока между телом 1 и телом 2 меньше. Аналогичным образом рассчитывается лучистый теплообмен в системах с несколькими экранами.

ວ22

До сих пор рассматривался теплообмен излучением между телами, разделенными прозрачной средой, например чистым воздухом. Однако при прохождении электромагнитных волн теплового излучения в других средах (например, водяной пар, двуокись углерода) происходит энергетическое взаимодействие их с веществом, в результате которого происходит поглощение и излучение тепловой энергии. Поглощение и излучение тепловой энергии происходит в газах с полярными молекулами, на различных взвешенных в газе частицах (пыль, дым, капли, продукты сгорания в топках парогенераторов и т. д.).

В продуктах сгорания, как правило, присутствуют трехатомные газы H₂O и CO₂, которые обладают заметной поглощательной способностью и собственным излучением. Особенностью излучения этих газов является селективность излучения — излучение в определенных интервалах длин волн. Поскольку излучение газов в теоретическом плане рассматривается равновесным (как и процессы излучения тел, разделенных прозрачной средой), то и в этом случае справедлив закон Кирхгофа. Следовательно, селективность излучения газов влечет за собой и селективность их поглощения.

Излучение газов носит объемный характер и зависит от плотности и толщины газового слоя. Эквивалентная толщина газового слоя (длина пути луча) определяется по выражению

$$l = 3.6 \frac{V}{F}$$
, (13-17)

где V — объем газа; F — поверхность излучающего объема (поверхность оболочки, с которой происходит теплообмен). Так, длина пути луча равна 0,6d для сферы диаметром d, 0,9d для бесконечного цилиндра диаметром d, 1,8 δ для плоского слоя толщиной δ .

В задачах лучистого теплообмена между телами, разделенными прозрачной средой, использовалась плотность потока полусферического излучения *E*, которая характеризовала тепловое взаимодействие излучения с поверхностью тела. При изучении взаимодействия излучения с поглощающей и излучающей средой рассматривают поток излучения в заданном направлении (как бы отдельный луч). Плотность потока такого излу-

чения в расчете на единицу пространственного угла называется интенсивностью излучения: в связи с селективностью излучения газов используется спектральная интенсивность излучения $I_{\lambda, x}$, где индекс λ означает определенную длину волны, а индекс x — определенное направление, задаваемое осью x.

Уменьшение интенсивности излучения в поглощающей среде происходит в соответствии с законом Бугера:

$$\frac{dI_{\lambda x}}{dx} = -\dot{\alpha_{\lambda}}I_{\lambda x}; \qquad (13-18)$$

здесь а, - коэффициент поглощения среды.

Если толщина газового слоя, через который проходит луч, равна l, то можно дать следующие граничные условия для уравнения (13-18): при x = 0 имеем $I_{\lambda x} = I_{\lambda 0}$; при x = l имеем $I_{\lambda x} = I_{\lambda 0}$. Интегрирование уравнения (13-18) с учетом граничных условий приводит к следующей зависимости:

$$I_{\lambda l} = I_{\lambda 0} \exp\left(-\alpha_{x}l\right). \qquad (13-19)$$

В соответствии со смыслом поглощательной способности эта величина может быть следующим образом определена для слоя газа:

$$A_{\lambda} = \frac{I_{\lambda 0} - I_{\lambda l}}{I_{\lambda 0}}.$$

Если учесть, что ослабление интенсивности излучения происходит по закону экспоненты [см. (13-19)], то можно записать:

$$A_{\lambda} = 1 - \exp\left(-\alpha_{\lambda}l\right).$$

Закон Кирхгофа справедлив и для излучения газов, поэтому

$$A_{\lambda} = \varepsilon_{\lambda} = 1 - \frac{1}{e^{\alpha \lambda l}}.$$

Анализ последнего соотношения показывает, что степень черноты газа ε_{λ} зависит от коэффициента поглощения среды и толщины газового слоя. Увеличение плотности газа, что может явиться следствием увеличения парциального давления газа в смеси или уменьшения 324
температуры, приводит к росту коэффициента поглощения и, следовательно, степени черноты. К таким же последствиям приводит и увеличение толщины слоя газа.

Интегральная степень черноты газа (во всем интервале изменения длин волн) определяется, как правило.

Рис. 13-6. Степень черноты двуокиси углерода.

экспериментально. Измеренные значения степени черноты двуокиси углерода и водяного пара представлены в виде графиков $\varepsilon = f(pl, t)$ на рис. 13-6 и 13-7. Найденное по графику значение ε необходимо умножить на поправочный множитель β (рис. 13-8). Степень черноты 325 газообразных продуктов сгорания, содержащих водяной пар и двуокись углерода, определяется по формуле

$$\varepsilon_{r} = \varepsilon_{C_{O2}} + \varepsilon_{H_{2}O}\beta.$$

Лучистый теплообмен между газом и стенкой носит очень сложный характер. При этом, как правило, имеет место также и конвективный теплообмен. Плотности потока конвективного и лучистого теплообмена в приближенных расчетах можно определять независимо друг от

Рис. 13-7. Степень черноты водяного пара.

326

друга. Общий поток находится как сумма конвективной и лучистой составляющей:

$$Q = Q_{\kappa} + Q_{\pi}.$$

В большинстве случаев можно считать, что изменение температуры газа происходит в тонком пристенном слое потока; при турбулентном движении излучающего газа это предположение хорошо выполняется. В этом

Рис. 13-8. Поправочный коэффициент

в на парциальное давление водяного пара.

случае теплообмен излучением можно приближенно рассчитывать как теплообмен между поверхностью оболочки и «поверхностью» газового объема, представляющей собой внешнюю границу пограничного слоя газа. При этом может быть использована формула (13-8) для плотности лучистого потока между параллельными плоскостями. В рассматриваемом случае она имеет вид:

$$q = c_{\pi p}^{rc} \left[\left(\frac{T_{r}}{100} \right)^{4} - \left(\frac{T_{c}}{100} \right)^{4} \right];$$

приведенный коэффициент излучения определяется по формуле

$$c_{np}^{rc} = \frac{c_0}{1/\epsilon_r + 1/\epsilon_c - 1}.$$

Значение $\varepsilon_{\rm r}$ следует выбирать по температуре газа в объеме, если поток тепла направлен из газа в стенку $(T_{\rm r}>T_{\rm c})$, и по температуре стенки в противоположном случае $(T_{\rm r}< T_{\rm c})$. Величина $\varepsilon_{\rm c}$ представляет собой степень черноты стенки. Пример 13-1. Определить тепловой поток от вертикальной плиты высотой l=2 м и шириной b=5 м, с температурой $t_{c1}=100^{\circ}$ С в окружающую среду, заполненную спокойным воздухом с температурой $t_{m}=20^{\circ}$ С. На расстоянии 0,3 м от плиты находится вертикальная стенка с температурой $t_{c2}=20^{\circ}$ С, степень черноты плиты и стенки одинакова и равна: $\varepsilon_{1}=\varepsilon_{2}=0,9$.

Решение. Теплота от плиты отводится за счет свободного движения воздуха, на которое стенка, находящаяся на расстоянии 0,3 м от плиты, не оказывает влияния, а также за счет теплообмена излучением между плитой и параллельной ей стенкой.

Тепловой поток за счет свободного движения был рассчитан для данных условий выше (см. пример 12-10) и составляет $Q_{\rm R}$ = =6340 Вт.

Тепловой поток излучением определяется по выражению (13-9), так как плита и стенка разделены прозрачной средой:

$$Q_{n} = c_{np} \left[\left(\frac{T_{1c}}{100} \right)^{4} - \left(\frac{T_{2c}}{100} \right)^{4} \right] F = \frac{c_{0}}{\frac{1}{\epsilon_{1}} + \frac{1}{\epsilon_{2}} - 1} \times \left[\left(\frac{T_{c1}}{100} \right)^{4} - \left(\frac{T_{c2}}{100} \right)^{4} \right] F = \frac{5,67}{\frac{1}{1/0,9 + 1/0,9 - 1}} \left[3,73^{4} - 2,93^{4} \right] \times 5 \cdot 2 = 5670 \text{ Br.}$$

Суммарный тепловой поток равен:

 $Q = Q_{\kappa} + Q_{\pi} = 6340 + 5670 = 12010$ Bt.

ГЛАВА ЧЕТЫРНАДЦАТАЯ

ОСНОВЫ РАСЧЕТА ТЕПЛООБМЕННЫХ АППАРАТОВ

14-1. Основные понятия

Теплообменник — это аппарат, в котором осуществляется теплообмен между теплоносителями или между теплоносителем и твердыми телами (насадкой).

Теплоноситель представляет собой движущуюся среду, используемую для переноса теплоты.

В соответствии с принципом передачи теплоты теплообменники можно разделить на контактные и поверхностные. В контактных теплообменниках перенос теплоты происходит в процессе непосредственного контакта теплоносителей, в качестве которых в этом случае чаще всего используются газ и капельная жидкость. Примерами контактных теплообменников могут служить градирни, скрубберы, струйные конденсаторы.

Поверхностные теплообменники в свою очередь де-328 лятся на регенеративные и рекуперативные. Регенеративные теплообменники — это теплообменники периодического действия. Характерным примером использования таких теплообменников является нагревание воздуха за счет теплоты продуктов сгорания. Газообразные продукты сгорания отдают свою теплоту твердой насадке (кирпичам, металлическим листам, шарам), в результате чего температура последней повышается. Через горячую насадку затем пропускает воздух, отнимающий от нее теплоту и повышающий свою температуру. Для обеспечения непрерывной подачи горячего воздуха необходимо иметь два блока насадки или вращающуюся насадку, через которую непрерывно идут оба потока теплоносителей.

Наиболее распространены так называемые рекуперативные теплообменные аппараты; в них два жидких теплоносителя текут, разделенные твердой стенкой. Между теплоносителями, в качестве которых могут использоваться газы, капельные жидкости, в также вещества, испытывающие в процессе теплообмена фазовые превращения (кипение, конденсация), происходит процесс теплопередачи.

На тепловых электрических станциях устанавливаются различные теплообменники. Сам парогенератор, по сути дела, представляет собой сложную теплообменную установку, изучению которой посвящена специальная учебная дисциплина. Однако в состав парогенератора входят отдельные теплообменники, к которым успешно могут быть применены принципы расчета, излагаемые в настоящей главе. К таким теплообменникам можно отнести пароперегреватель, по трубкам которого течет пар, перегреваемый топочными газами, обтекающими змеевики пароперегревателя снаружи. Экономайзер, устанавливаемый в газоходе парогенератора, служит для предварительного нагрева питательной воды, которая затем поступает на испарение. Экономайзер состоит из стальных или чугунных труб, внутри которых протекает вода; стальные трубы образуют змеевики, обтекаемые продуктами сгорания топлива.

Выходя из экономайзера, топочные газы все еще имеют ют высокую температуру и их невыгодно выбрасывать в атмосферу, так как это снижает экономичность парогенераторной установки. Теплоту отходящих газов используют в воздухоподогревателях — теплообменниках, 22—702 329 которые служат для подогрева воздуха, поступающего в топку; предварительный подогрев воздуха улучшает процесс сжигания топлива, кроме того, нагретого воздуха в топку можно подавать меньше, чем холодного. Воздухоподогреватели выполняются как рекуперативными, так и регенеративными. Рекуперативные воздухоподогреватели — это трубчатые теплообменные аппараты, выполняемые из тонкостенных труб; воздухоподогреватели выполняются также пластинчатыми, каналы для протекания теплоносителей в таких теплообменниках образуются специальными гофрированными пластинами. Вращающиеся регенеративные подогреватели компактнее и легче рекуперативных, такой подогреватель выполняется в виде цилиндра, вращающегося вокруг вертикальной оси. Сквозь набивку цилиндра из тонких гофрированных стальных листов протекают теплоноси-тели — воздух и продукты сгорания, предусмотрены спе-циальные уплотнения, предотвращающие смешение теплоносителей.

Среди вспомогательного оборудования тепловых электрических станций также имеется ряд теплообменников. К ним относятся регенеративные подогреватели питательной воды низкого и высокого давления. Это — кожухотрубные теплообменники; у них внутри трубок протекает вода, которая нагревается за счет теплоты, выделяемой при конденсации пара, поступающего в межтрубное пространство. Для предварительной обработки питательной воды используются также деаэраторы, которые представляют собой контактные (смешивающие) подогреватели. Вода в деаэраторах нагревается паром до температуры, близкой к температуре насыщения, при этом растворенные в воде газы выделяются из нее и уходят из деаэратора (это необходимо для предотвращения коррозии). Крупным и сложным теплообменником на тепловой электростанции является конденсатор паровой турбины; конденсация пара происходит на трубках, внутри которых протекает охлаждающая вода. На ТЭЦ находят применение также сетевые подогреватели — пароводяные трубчатые теплообменники, служа-щие для подогрева воды, подаваемой в тепловую сеть.

Перечень примеров различных теплообменников можно было бы продолжить. Конструкция этих теплообменников и подробный расчет, связанный с их проектированием, рассматривается в специальных дисциплинах. В настоящей главе даны лишь основные принципы теплового расчета рекуперативных теплообменников.

Можно провести также классификацию теплообменных аппаратов в зависимости от принципиальной схемы течения теплоносителей.

Если теплоносители, разделенные стенкой, текут параллельно друг другу в одном направлении, то такая схема течения теплоносителей называется прямотоком. Если теплоносители текут параллельно, но навстречу друг другу, то схема течения носит название противотока. Прямоток и противоток могут осуществляться, например, при течении одного из теплоносителей внутри трубок пучка, а второго — вдоль тех же трубок в межтрубном пространстве. Если второй теплоноситель течет поперек трубного пучка, схема носит на-

Рис. 14-1. Изменение температуры теплоносителей при прямотоке и противотоке.

звание перекрестного тока. На практике существуют и более сложные схемы течения теплоносителей, основанные на трех указанных простых схемах. На рис. 14-1 приведены графики изменения температуры теплоносителей при движении их вдоль поверхности теплообмена.

14-2. Расчет теплообменников

Тепловые расчеты теплообменных аппаратов могут быть проектными (определение поверхности теплообмена) и поверочными (определение теплового потока и температур теплоносителей). Основными расчетными уравнениями являются уравнение теплового баланса и уравнение теплопередачи.

баланса и уравнение теплопередачи. Уравнение теплового баланса сводится к утверждению, что при отсутствии тепловых потерь количество теп-22* 331 лоты, отбираемое в единицу времени от горячего теплоносителя (индекс 1), равно количеству теплоты, которое поступает к холодному теплоносителю (индекс 2):

$$G_{1}c_{p1}(t'_{\pm 1}-t''_{\pm 1})=G_{2}c_{p2}(t''_{\pm 2}-t'_{\pm 2})=Q. \quad (14-1)$$

Уравнение теплопередачи утверждает, что это количество теплоты передается через разделяющую теплоносители стенку в процессе теплопередачи и определяется произведением коэффициента теплопередачи на некоторый средний температурный напор и на поверхность теплообмена:

$$Q = k\overline{\Delta t}F; \ \overline{\Delta t} = (\overline{t_{**} - t_{**}}).$$
(14-2)

Уравнение теплопередачи позволяет определить поверхность теплообмена при проведении проектного рас-

Рис. 14-2. К выводу формулы для среднего температурного напора.

чета.

Разность температур теплоносителей, как это видно из рис. 14-1, меняется в процессе течения теплоносителя вдоль потеплообмена: верхности изменение особенно это существенно для прямотока. Необходимо правильно осреднить температурный напор, чтобы при подстановке его значения в уравнение теплопередачи (14-2) полу-

чался правильный результат. Такое осреднение можно провести, если проанализировать изменение Δt на небольшом участке dF поверхности нагрева и связь этого изменения с процессом теплопередачи.

Пусть имеется прямоточная схема движения теплоносителей (рис. 14-2), для которой необходимо найти среднюю разность температур. Запишем уравнение теплового баланса и теплопередачи для небольшого участка поверхности нагрева. Имеются два соотношения:

$$G_{1}c_{p_{1}}dt_{\#1} = -k(t_{\#1} - t_{\#2})dF;$$

$$G_{2}c_{p_{2}}dt_{\#2} = k(t_{\#1} - t_{\#2})dF.$$

Разделим первое соотношение на G_1c_{p1} , второе — на G_2c_{p2} и вычтем затем второе из первого:

$$dt_{\mathbf{x}_{1}} - dt_{\mathbf{x}_{2}} = -\left(\frac{1}{G_{1}c_{\rho_{1}}} + \frac{1}{G_{2}c_{\rho_{2}}}\right)k(t_{\mathbf{x}_{1}} - t_{\mathbf{x}_{2}})dF.$$
(14-3)

Для сокращения записи обозначим:

$$m = \left(\frac{1}{G_1 c_{\rho_1}} + \frac{1}{G_2 c_{\rho_2}}\right).$$

Кроме того, примем во внимание очевидное равенство (дифференциал разности функций равен разности дифференциалов):

$$dt_{\mathfrak{H}1} - dt_{\mathfrak{H}2} = d(t_{\mathfrak{H}1} - t_{\mathfrak{H}2}) = d(\Delta t).$$

Тогда (14-3) можно переписать следующим образом: $\frac{d(\Delta t)}{\Delta t} = -kmF.$

Возьмем интеграл от обеих частей последнего равенства

$$\ln \Delta t = -mkF + c.$$

Постоянную с определим из граничного условия: при F=0 имеем: $\Delta t=t'_{m1}-t'_{m2}=\Delta t'$. Тогда получим $c==\ln \Delta t'$ и

$$\ln \frac{\Delta t}{\Delta t'} = -mkF; \quad \frac{\Delta t}{\Delta t'} = \exp\left(-mkF\right). \quad (14-4)$$

Таким образом, температурный напор Δt меняется вдоль поверхности теплообмена F по закону экспоненты. По известному закону изменения Δt можно найти среднеинтегральное значение $\overline{\Delta t}$:

$$\overline{\Delta t} = \frac{1}{F} \int_{0}^{F} \Delta t \, dF = \frac{1}{F} \int_{0}^{F} \Delta t' \exp\left(-mkF\right) dF =$$
$$= \frac{\Delta t'}{-mkF} (e^{-mkF} - 1).$$

Подставляя сюда значения логарифма и экспоненты из (14-4), получаем:

$$\overline{\Delta t} = \frac{\Delta t - \Delta t'}{\ln \frac{\Delta t}{\Delta t'}}$$

333

Если под F понимать всю поверхность теплообмена, вместо Δt нужно взять конечное значение температурного напора $\Lambda t''$:

$$\overline{\Delta t} = \overline{\Delta t}_n = \frac{\Delta t'' - \Delta t'}{\ln \frac{\Delta t''}{\Delta t'}}.$$
(14-5)

Выражением (14-5) определяется средний логариф-мический температурный напор, причем оно справедливо и при противотоке. Напомним, что при получении (14-5) предполагалось, что коэффициент теплопередачи сохра-ияет вдоль F постоянное значение. Если $\Delta t''$ н $\Delta t'$ различаются менсе чем в 2 раза, что может быть, например, при противотоке, можно с по-грешностью не более 4% использовать средний арифме-тический температурный напор:

$$\Delta t_{\mathbf{a}} = \frac{1}{2} \left(\Delta t' + \Delta t'' \right). \tag{14-6}$$

Специальный анализ показывает, что противоточная схема движения теплоносителей в большинстве случаев оказывается более эффективной и ей нужно по возможности отдавать предпочтение.

14-3. Определение конечных температур теплоносителей

Изложенная в предыдущем параграфе методика рас-чета используется при проектировании рекуперативных теплообменников. При поверочном расчете поверхность теплообмена задана, известны также начальные температуры теплоносителей, их массовые расходы и теплоемкости. Искомые всличины — тепловой поток и конечные температуры теплоносителей.

Как и ранее, основными уравнениями являются уравнение теплового баланса и уравнение теплопередачи. По-скольку параметры движения теплоносителей и конструкция теплообменника заданы, то коэффициент тепло-передачи может быть определен. Температура каждого теплоносителя меняется по кривой линии и учет этого обстоятельства усложняет расчет конечной температуры. Поэтому будем приближенно считать, что температуры теплоносителей меняются по прямой линии и можно ис-пользовать средний арифметический температурный напор.

Из уравнения теплового баланса выразим конечные температуры теплоносителей t''_{m1} и t''_{m2} :

$$t''_{\mathbf{x}1} = t'_{\mathbf{x}1} - \frac{Q}{G_1 c_{p_1}};$$
 (14-7)

$$t''_{\text{m2}} = t'_{\text{m2}} + \frac{Q}{G_2 c_{p2}}.$$
 (14-8)

Средний арифметический температурный напор

$$\Delta t_{a} = \frac{t'_{m1} + t''_{m1}}{2} - \frac{t'_{m2} + t''_{m}}{2}.$$

Подставим выражения конечных температур теплоносителей (14-7) и (14-8) в формулу (14-6), а полученное таким образом выражение для Δt_a — в уравнение теплопередачи (14-2). После необходимых преобразований имеем:

$$Q = \frac{t'_{*1} - t'_{*2}}{\frac{1}{kF} + \frac{1}{2G_1c_{p_1}} + \frac{1}{2G_2c_{p_2}}} \,.$$

Найденное значение теплового потока позволяет рассчитать конечные температуры теплоносителей по формулам (14-7) и (14-8).

Приведенная методика годится лишь для ориентировочных расчетов и дает результат тем точнее, чем меньше разница между $\Delta t'$ и $\Delta t''$.

Расчет температуры поверхностей теплообмена (температуры стенки) ведется по формулам теплопередачи, приведенным в гл. 11.

Следует отметить, что изложенная здесь методика расчета теплообменных аппаратов имеет принципиальный характер и не учитывает целый ряд особенностей, связанных, например с теплообменом или с процессом эксплуатации аппарата.

Так, при высокой температуре газового теплоносителя, имеющего в своем составе излучающие и поглощающие газы, коэффициент теплоотдачи к степке со стороны такого теплоносителя должен учитывать не только конвсктивный теплообмен, но и теплообмен излучением:

$$\alpha = \alpha_{\kappa} + \alpha_{\pi}$$
.

Коэффициент теплоотдачи α_л, связанный с излучением, определяется следующим выражением:

$$\alpha_n = \frac{q_n}{t_{\mathcal{K}} - t_{\mathcal{C}}},$$

335

где q_{π} находят по рекомендациям, приведенным в гл. 13.

Конвективный коэффициент теплоотдачи α_к рассчитывают по формулам, приводимым в гл. 12. В процессе эксплуатации теплообменного аппарата

В процессе эксплуатации теплообменного аппарата поверхность теплообмена может омываться теплоносителем не в полной степени (например, могут образовываться застойные зоны при сложном поперечном обтекании пучков). Кроме того, поверхность нагрева может иметь неплотности, приводящие к смешиванию теплоносителей (например, в водоводяных теплообменниках). Подобные отступления от расчетных режимов работы теплообменных аппаратов должны учитываться специальными дополнительными коэффициентами, которые устанавливаются опытным путем и корректируют расчетную илощадь поверхности теплообмена.

14-4. Тепловая защита теплообменных аппаратов.

Интенсификация теплообмена. Корпус теплообменного аппарата покрыт тепловой изоляцией для тепловой защиты теплообменника. Назначение тепловой изоляции двояко: она уменьшает тепловые потери в окружающую среду и снижает температуру внешней поверхности теплообменного аппарата в соответствии с требованиями техники безопасности.

Часто корпус теплообменника выполняется в виде цилиндра, который необходимо покрыть цилиндрическим слоем изоляции. Тепловой изоляцией покрываются также трубопроводы, по которым протекают горячие теплоносители, например вода или пар. Выбор необходимого материала тепловой изоляции и расчет ее толщины относится не только к сфере процессов теплообмена — это технико-экономическая проблема, которая в масштабе народного хозяйства приобретает важное значение. Между тем формальное применение положений расчета теплопередачи через цилиндрическую стенку при проектировании тепловой защиты теплообменника или трубопровода может привести к грубым ошнбкам.

тировании тепловои защиты тепловоменника или трубопровода может привести к грубым ошибкам. Дело в том, что не всякий теплоизоляционный материал выполняет свое прямое назначение (снизить тепловые потери) даже при значительной толщине слоя изоляции. Например, пусть имеется стальной трубопровод с наружным диаметром примерно d_2 =50 мм, по которо-336

му протекает масло с температурой 120°C; коэффициент от масла к трубы равен теплоотдачи стенке 100 Вт/(м²·К); окружающая среда — воздух с температурой 20°С, коэффициент теплоотдачи от внешней поверхности трубопровода к воздуху равен 10 Вт/ (м²·К). Расчет, проведенный в соответствии с рекомендациями § 11-3, показывает, что тепловые потери с одного метра длины трубопровода составляют примерно 143 Вт/м. С целью уменьшения потерь трубопровод необходимо изолировать. Применим для изоляции бетон с коэффициентом теплопроводности $\lambda_{\mu_3}=1,28$ Вт/(м·К), толщина изоляции пусть будет биз=80 мм, ее наружный диаметр d_н при этом равен 210 мм. Расчет показывает, что после наложения изоляции тепловые потери составляют около 250 Вт/м. Таким образом, вместо снижения тепловых потерь наложение изоляции повлекло за собой увеличение потерь на (250-143)/143=75%.

Этот парадоксальный, на первый взгляд, результат является следствием неправильного теплового расчета тепловой изоляции. В чем состоит ошибка?

Проследим, как будет изменяться термическое сопротивление цилиндрической стенки при увеличении ее наружного диаметра. Линейное термическое сопротивление теплопередачи для двухслойной цилиндрической стенки (изолированный трубопровод) определяется:

$$R_{I} = \frac{1}{\alpha_{1}d_{1}} + \frac{1}{2\lambda_{TD}} \ln \frac{d_{2}}{d_{1}} + \frac{1}{2\lambda_{H3}} \ln \frac{d_{H}}{d_{2}} + \frac{1}{\alpha_{H}d_{H}}.$$

Будем изменять толщину слоя изоляции, для чего сделаем наружный диаметр ее $d_{\rm H}$ переменной величиной, и следить за тем, как будет меняться линейное термическое сопротивление теплопередачи. Два первых сла

гаемых не зависят от величины $d_{\rm H}$ и остаются постоянными. Третье слагаемое при увеличении диаметра $d_{\rm H}$ растет. Физическая сущность увеличения этого слагаемого состоит в том, что термическое сопротивление т е плопроводности цилиндрической стенки увеличивается с увеличением ее толщины (эта закономерность

Рис. 14-3. К понятию критического диаметра.

справедлива как для плоской, так и для криволинейной степки). Четвертое слагаемое падает с увеличением диаметра $d_{\rm H}$. Это объясняется тем, что термическое сопротивление теплоотдачи цилиндрической стенки зависит не только от коэффициента теплоотдачи, но и от площади наружной поверхности, которая возрастает с увеличением диаметра $d_{\rm H}$. Сказанное иллюстрируется графиком, представленным на рис. 14-3. Верхняя кривая соответствует сумме двух переменных составляющих термического сопротивления теплопередачи (двух последних слагаемых в приведенном выше выражении). Эта сумма проходит через минимум. Известно, что если функция имеет минимум, то ее производная в этой точке равна нулю.

Найдем выражение для производной функции R_l по аргументу $d_{\rm u}$. При этом отбросим два первых слагаемых, которые не зависят от $d_{\rm H}$:

$$\left(\frac{1}{2\lambda_{\mathbf{H}3}}\ln\frac{d_{\mathbf{H}}}{d_2}+\frac{1}{\alpha_{\mathbf{H}}d_{\mathbf{H}}}\right)'=\frac{1}{2\lambda_{\mathbf{H}3}}\frac{1}{d_{\mathbf{H}}}-\frac{1}{\alpha_{\mathbf{H}}d_{\mathbf{H}}^2}.$$

Значение d_н, при котором имеет место минимум, можно найти, приравняв производную нулю. Это значение наружного диаметра называется критическим. Имеем:

$$\frac{1}{2\lambda_{\mathbf{H3}}} - \frac{1}{\alpha_{\mathbf{H}}d_{\mathbf{H}}} = 0;$$

отсюда

$$d_{\rm H} = d_{\rm Kp} = \frac{2\lambda_{\rm H3}}{\alpha_{\rm H}}.$$
 (14-9)

Каков физический смысл критического диаметра изоляции? Это — комплексный параметр процесса теплопередачи через цилиндрическую стенку, указывающий путь к правильному выбору материала для тепловой изоляции.

Пайдем критический диамстр для приведенного выше примера тепловой изоляции трубопровода:

$$d_{\rm HD} = 2 \cdot 1,28/10 = 256$$
 MM.

Следовательно, если применять для тепловой изоляции при данных условиях бетон, то при $d_{\rm H} < d_{\rm kp} = 256$ мм потери будут больше, чем для оголенного трубопровода; при $d_{\rm n} = 256$ мм потери для оголешного и изолированного 338 трубопровода равны между собой. И только в случае $d_{\rm H} > d_{\rm Kp} = 256$ мм часть изоляции толщиной $\delta = 0.5 (d_{\rm H} - 256)$ мм начинает выполнять свое назначение — уменьшать тепловые потери.

На практике следует выбирать теплоизоляцию таким образом, чтобы критический диаметр был не более на-ружного диаметра трубопровода:

 $d_{\mathrm{Kp}} \leq d_2$.

При этом любой сколь угодно тонкий слой тепловой изоляции будет приводить к уменьшению тепловых потерь.

Так, например, для рассмотренного случая в качестве изоляции можно брать материал, для которого призаданном коэффициенте теплоотдачи $\alpha_{\rm H}$ =10 BT/(M²·K) критический диамстр $d_{\rm wp}$ \leq 50 мм, т. е. [см. (14-9)] $2\lambda_{\rm H3}/\alpha_{\rm H} \leq 0,05$ м.

Коэффициент теплопроводности этого материала должен удовлетворять условию

 $\lambda \leq 0.05 \cdot 10/2 = 0.25 \text{ BT}/(\text{M} \cdot \text{K}).$

Интенсификация теплопередачи. Интенсификация теплопередачи представляет собой одну из важнейших технических задач, так как увеличение коэффициента теплопередачи позволяет при заданной тепловой производительности и температурах теплоносителей в соответствии с уравнением (14-2) уменьшить поверхность теплообмена, а значит, снизить массу, размеры и стоимость теплообменного аппарата; увеличение значения k в существующих аппаратах позволяет увеличить их тепловую производительность Q.

Коэффициент теплопередачи определяется суммой термических сопротивлений, следовательно, теоретически уменьшение любого из них должно привести к росту величины k. Уменьшение термического сопротивления теплопроводности δ/λ возможно за счет уменьшения толщины стенки δ и увеличения теплопроводности λ . Минимальная толщина стенки определяется часто из условия прочности аппарата, а высокая теплопроводность обеспечивается применением металлов, в частности цветных. Резко повышают термическое сопротивление теплопроводности различные отложения на стенке, появляющиеся в процессе работы аппарата.

Основным средством интенсификации теплопередачи является воздействие на термические сопротивления теплоотдачи $1/\alpha_1$ и $1/\alpha_2$. Основным правилом при этом является следующее: нужно увеличивать меньший коэффициент теплоотдачи. Сказанное иллюстрируется табл. 14-1.

Таблица 14-1

Зависимость коэффициента теплопередачи $k = \frac{1}{1/\alpha_1 + 1/\alpha_2}$, Вт/(м²·К) от коэффициентов теплоотдачи при $\delta/\lambda = 5$

		α,	
α,	10	20	50
1000 2000 5000	9,90 9,95 9,99	19,6 19,8 19,9	47,6 48,8 49,5

Методы увеличения коэффициентов теплоотдачи разразрабатываются на основе изучения физических закономерностей, характерных для данного вида теплоотда-

Рис. 14-4. Теплопередача через оребренную стенку.

чи. К более интенсивной теплоотдаче приводит замена газа капельной жидкостью, увеличение скорости течения, уменьшение длины и диаметра труб, создание искусственных неровностей на поверхности для турбулизации потока и разрушения вязкого подслоя, использование кипения жидкости и т. д.

Уменьшить термическое сопротивление теплоотдачи можно пе только за счет увеличения а. При рассмотрении понятия критического диаметра цилиндрической стенки было установлено, что при неизмеш-

ном значении α₂ термическое сопротивление теплоотдачи падает с увеличением внешней теплоотдающей поверхности. Этот принцип положен в основу интенсификации теплопередачи за счет оребрения поверхности с низкой теплоотдачей.

Рассмотрим теплопередачу через стенку, оребренную с одной стороны (рис. 14-4). Тепловой поток через стен-340 ку может быть определен тремя соотношениями:

$$Q = \alpha_{1}(t_{m_{1}} - t_{c_{1}})F_{1}; \ Q = \frac{\lambda}{\delta}(t_{c_{1}} - t_{c_{2}})F_{1};$$
$$Q = \alpha_{p}(t_{c_{2}} - t_{m_{2}})F_{p}.$$

Из этих выражений получаем формулу для теплового по-тока:

$$Q = \frac{t_{\text{K1}} - t_{\text{K2}}}{\frac{1}{\alpha_{1}F_{1}} + \frac{\delta}{\lambda F_{1}} + \frac{1}{\alpha_{p}F_{p}}}.$$
 (14-10)

Если увеличивать поверхность $F_{\rm p}$ за счет увеличения размеров ребер и их количества, тепловой поток Q согласно (14-10) будет возрастать при сохранении прочих значений величин неизменными. В реальных условиях температура ребра отличается от температуры стенки с оребренной стороны $t_{\rm c2}$, отклоняясь в сторону $t_{\rm H2}$, что снижает эффективность оребрения. Температура ребра будет тем ближе к температуре стенки, чем больше теплопроводность материала ребра и чем меньше термическое сопротивление контакта стенки с ребром в месте его крепления.

Пример 14-1. Воздухо-воздушный теплообменник представляет собой продольно омываемый коридорный пучок труб диаметром $d_1/d_2=20/18$ мм с шагом $s_1=s_2=50$ мм. Поперечное сечение пучка представляет собой квадрат, число труб 30 × 30=900. Расход охлаждаемого воздуха $G_1=8,80$ кг/с, его температура на входе $t'_{\pi_1}=250^{\circ}$ С, на выходе $t'_{\pi_1}=150^{\circ}$ С. Расход холодного воздуха $G_2==4$ кг/с, температура его на входе $t'_{\pi_2}=20^{\circ}$ С, холодный воздух нагревается, двигаясь внутри труб противотоком. Определить длину труб пучка.

Решение. Из уравнения теплового баланса определим температуру холодного воздуха на выходе. Так как теплоемкость с температурой меняется слабо (см. табл. П10), теплоемкости горячего и холодного воздуха примерно равны. Тогда

$$t''_{\mathfrak{K}2} = t'_{\mathfrak{K}2} + \frac{G_1}{G_2} (t'_{\mathfrak{K}1} - t''_{\mathfrak{K}1}) = 20 + \frac{8.8}{4} (250 - 150) = 240^{\circ} \text{C}.$$

Выпишем физические свойства для средних температур горячего и холодного воздуха:

 $\bar{t}_{3K1}=200^{\circ}\text{C}; \ \rho_{1}=0.746 \ \text{kg/m}^{3}; \ \mu_{1}=26\cdot10^{-6} \ \text{H}\cdot\text{c/m}^{2}; \ c_{p1}=1.026 \times 10^{3} \ \text{Jm}/(\text{kg/k}); \ \lambda_{1}=3.93\cdot10^{-2} \ \text{Bt/(m\cdot K)}; \ \text{Pr}_{1}=0.680;$

 $\bar{t}_{\text{H}2}$ =130°C; ρ_2 =0,876 Kг/M³; μ_2 =23·2·10⁻⁶ H·c/M²; c_{p2} =1,011 × × 10³ Дж/(кг·K); λ_2 =3,41·10⁻² Br/(м·K); Pr₂=0,685.

Коэффициент теплоотдачи для горячего воздуха был определен в примере 12-6 для скорости w_{01} =6 м/с, которая соответствует данному здесь расходу и длине труб l=2 м (поправка ε_l =1,13). Этот коэффициент α_1 =18 Br/(м².°C). Определим скорость холодного воздуха (п — число труб):

$$w_{02} = \frac{4G_2}{\rho_2 \pi d^2_2 n} = \frac{4 \cdot 4}{0.876 \cdot 3.14 \cdot 18^2 \cdot 10^{-6} \cdot 900} = 20 \text{ m/c.}$$

Число Рейнольдса

$$\operatorname{Re}_{d_2} = \frac{\omega_{02} \rho_2 d_2}{\mu_2} = \frac{20 \cdot 0,876 \cdot 18 \cdot 10^{-3}}{23,2 \cdot 10^{-6}} = 13\,600 > 10^4.$$

Следовательно, режим течения турбулентный. Коэффициент теплоотдачи определяется формулой Михеева, причем в связи с тем, что длина труб неизвестна, принимаем в первом приближении, что $\epsilon_l = 1$.

Число Нуссельта

$$\overline{\mathrm{Nu}}_{d_2} = 0,021 \operatorname{Re}_{d2}^{0,8} \operatorname{Pr}_2^{0,43} = 0,021 \ (13\ 600)^{\mathfrak{o},8} (0,685)^{\mathfrak{o},43} = 35,7.$$

Коэффициент теплоотдачи

$$\overline{\alpha} = \overline{Nu}_d \frac{\lambda_2}{d_2} = 35.7 \frac{3.41 \cdot 10^{-2}}{18 \cdot 10^{-3}} = 67.5 \text{ Br/(M}^2 \cdot \text{K}).$$

Определим коэффициент теплопередачи. В связи с малой относительной толщиной стенки трубы $(d_1/d_2 \approx 1)$ можно использовать формулу для плоской стенки. Кроме того, можно пренебречь термическим сопротивлением теплопроводности стенки ввиду его малости по сравнению с термическими сопротивлениями теплоотдачи $1/\alpha_1$ и $1/\alpha_2$.

Коэффициент теплопередачи (полагаем $\varepsilon_i = 1$ и $\alpha_1 = 15,9$ Br/м²)

$$k = \frac{1}{1/\alpha_1 + 1/\alpha_2} = \frac{1}{\frac{1}{15,9} + \frac{1}{67,5}} = 12,85 \text{ Br/(M}^2 \cdot \text{K}).$$

Ллину труб можно определить из уравнения теплопередачи:

$$Q = k \Delta \overline{t}_{\pi} \pi d_{\rm cp} ln = G_1 c_{\rho_1} \left(t'_{\mathfrak{K} 1} - t''_{\mathfrak{K} 1} \right).$$

Средний логарифмический температурный напор

$$\overline{\Delta t}_{\pi} = \frac{\Delta t^{\prime\prime} - \Delta t^{\prime}}{2,303 \, \lg \left(\Delta t^{\prime\prime} / \Delta t^{\prime}\right)} = \frac{130 - 10}{2,303 \, \lg \left(130 / 10\right)} = 46 \,^{\circ}\text{C}.$$

Длина труб

$$l = \frac{G_1 c_{p1}(t'_{m1} - t''_{m2})}{k \Delta t_n \pi d_{cp} n} = \frac{8,8 \cdot 1,026 \cdot 10^3 (250 - 150)}{12,85 \cdot 46 \cdot 3,14 \cdot 19 \cdot 10^{-3} \cdot 900} = 28,4 \text{ M}$$

Теплообменник можно изготовить из нескольких последовательно включенных секций, причем для выполнения предположения $\epsilon_i = 1$ в обоих случаях (для α_1 и α_2) длина секции должна составлять примерно 7 м.

Для уменьшения поверхности теплообмена целесообразно увеличить расход холодного воздуха или применить оребрение поверхности.

ПРИЛОЖЕНИЕ́

Таблица ПІ

······································			•	
<i>t</i> , °C O ₂ N ₂	со	CO2	H²O	Воздух
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,0396\\ 1,0417\\ 1,0463\\ 1,0538\\ 1,0634\\ 1,0748\\ 1,0861\\ 1,0978\\ 1,1091\\ 1,1200\\ 1,1304\\ 1,1401\\ 1,1493\\ 1,1577\\ 1,1656\\ 1,1731\\ 1,1798\\ 1,1865\\ 1,1924\\ 1,1983\\ 1,2033\\ 1,2033\\ 1,2129\\ 1,2175\\ 1,2217\\ 1,2259\end{array}$	0, 8148 0, 8658 0, 9102 0, 9487 0, 9877 1, 0128 1, 0396 1, 0639 1, 0852 1, 1045 1, 1225 1, 1384 1, 1530 1, 1660 1, 1782 1, 1995 1, 2091 1, 2179 1, 2259 1, 2259 1, 2234 1, 2468 1, 2536 1, 2536	1,8594 1,8728 1,8937 1,9192 1,9477 1,9778 2,0092 2,0419 2,0754 2,1097 2,1436 2,1771 2,2106 2,2429 2,2743 2,3048 2,3630 2,3907 2,4166 2,4422 2,4664 2,4895 2,5121 2,5334	1,0036 1,0061 1,0115 1,0191 1,0283 1,0387 1,0496 1,0605 1,0710 1,0815 1,0907 1,0999 1,1082 1,1166 1,1242 1,1313 1,1380 1,1443 1,1501 1,1560 1,1610 1,1664 1,1710 1,1757 1,1803

Средняя массовая теплоемкость газов при постоянном давлении от 0°С до t°С срт, кДж/(кг·К)

Таблица П2

Средняя	массовая теплоемкость газов при постоянном	объеме
	от 0°С до t°С c_{vm} , кДж/(кг К)	

<i>t</i> , °C	O ₂	N ₂	со	CO3	И∡О	Воздух
0 200 300 400 500 600 700	$\begin{array}{c} 0,6548\\ 0,6632\\ 0,6753\\ 0,6900\\ 0,7051\\ 0,7193\\ 0,7327\\ 0,7448\end{array}$	0,7423 0,7427 0,7465 0,7519 0,7599 0,7691 0,7792 0,7900	0,7437 0,7448 0,7494 0,7570 0,7666 0,7775 0,7892 0,8009	$\begin{array}{c} 0,6259\\ 0,6770\\ 0,7214\\ 0,7593\\ 0,7938\\ 0,8240\\ 0,8508\\ 0,8646 \end{array}$	1,3980 1,4114 1,4323 1,4574 1,4863 1,5160 1,5474 1,5805	0,7164 0,7193 0,7243 0,7319 0,7415 0,7519 0,7624 0,7733

Продолжение табл. П2

<i>t</i> , °C	O ₂	Na	со	COs	H₂O	Воздух
800 900 1000 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500	0,7557 0,7658 0,7750 0,7834 0,7913 0,7984 0,8051 0,8114 0,8231 0,8231 0,8231 0,8230 0,8340 0,8390 0,8441 0,8537 0,8583 0,8629	0,8005 0,8110 0,8210 0,8395 0,8478 0,8558 0,8633 0,8704 0,8771 0,8830 0,8889 0,8943 0,8997 0,9048 0,4094 0,9136 0,9177	0,8122 0,8231 0,8336 0,8432 0,8566 0,8608 0,8688 0,8763 0,8893 0,8893 0,8956 0,9014 0,9066 0,9115 0,9161 0,9207 0,9249 0,9291	$\begin{array}{c} 0,8964\\ 0,9157\\ 0,9332\\ 0,9496\\ 0,9638\\ 0,9772\\ 0,4893\\ 1,0006\\ 1,0107\\ 1,0203\\ 1,0203\\ 1,0291\\ 1,0371\\ 1,0446\\ 1,0517\\ 1,0580\\ 1,0639\\ 1,0697\\ 1,0749\\ \end{array}$	1,6140 1,6483 1,823 1,7158 1,7488 1,7488 1,7815 1,8129 1,8434 1,8728 1,9016 1,9293 1,9552 1,9804 2,0051 2,0281 2,0503 2,0720 2,0926	$\begin{array}{c} 0,7842\\ 0,7942\\ 0,8039\\ 0,8127\\ 0,8215\\ 0,8294\\ 0,8369\\ 0,8441\\ 0,8508\\ 0,8570\\ 0,8633\\ 0,8688\\ 0,8742\\ 0,8792\\ 0,8843\\ 0,8792\\ 0,8843\\ 0,8899\\ 0,8930\\ 0,8972\\ \end{array}$

Таблица ПЗ

Средняя объемная теплоемкость газов при постоянном давлении от 0°С до t°C c'pm, кДж/{м³.К}

t, °Ç	O _s	N ₂	со	COs	H'O	Воздух
$\begin{array}{c} 0\\ 100\\ 200\\ 300\\ 400\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1000\\ 1200\\ 1300\\ 1400\\ 1500\\ 1600\\ 1700\\ 1800\\ 1900 \end{array}$	$\left \begin{array}{c}1,3059\\1,3176\\1,3352\\1,3561\\1,3775\\1,3980\\1,4168\\1,4344\\1,4499\\1,4645\\1,4775\\1,4892\\1,5005\\1,5106\\1,5202\\1,5204\\1,5578\\1,5462\\1,5541\\1,5617\end{array}\right.$	1,2981 1,3004 1,3038 1,3109 1,3205 1,3322 1,3452 1,3586 1,3716 1,3845 1,3971 1,4086 1,4202 1,4306 1,4202 1,4306 1,4407 1,4499 1,4587 1,4671 1,4746 1,4821	$\begin{array}{c} 1,2992\\ 1,3017\\ 1,3071\\ 1,3167\\ 1,3289\\ 1,3427\\ 1,3574\\ 1,3720\\ 1,3862\\ 1,3996\\ 1,4126\\ 1,4248\\ 1,4361\\ 1,4465\\ 1,4566\\ 1,4658\\ 1,4746\\ 1,4825\\ 1,4901\\ 1,4972\\ \end{array}$	$\begin{array}{c} 1,5998\\ 1,7003\\ 1,7873\\ 1,8627\\ 1,9297\\ 1,9887\\ 2,0411\\ 2,0884\\ 2,1311\\ 2,1692\\ 2,2035\\ 2,2349\\ 2,2638\\ 2,2898\\ 2,3136\\ 2,3354\\ 2,3555\\ 2,3743\\ 2,3915\\ 2,4074\\ \end{array}$	1,493 $1,5052$ $1,5223$ $1,5424$ $1,5654$ $1,5897$ $1,6148$ $1,6412$ $1,6680$ $1,6957$ $1,7229$ $1,7501$ $1,7769$ $1,8028$ $1,8280$ $1,8527$ $1,8761$ $1,8996$ $1,9213$ $1,9423$	$\begin{array}{c} 1,2971\\ 1,3004\\ 1,3071\\ 1,3172\\ 1,3289\\ 1,3427\\ 1,3565\\ 1,3708\\ 1,3842\\ 1,3976\\ 1,4097\\ 1,4214\\ 1,4327\\ 1,4432\\ 1,4528\\ 1,4620\\ 1,4708\\ 1,4708\\ 1,4708\\ 1,4708\\ 1,4788\\ 1,4867\\ 1,4939\\ \end{array}$

Продолжение табл. 173

<i>t</i> , °C	O ₂	Na	со	CO3	H²O	Воздух
2000	1,5692	1,4888	1,5039	2,4221	1,9628	1,5010
2100	1,5759	1,4955	1,5102	2,4359	1,9824	1,5072
2200	1,5830	1,5018	1,5160	2,4489	2,0009	1,5135
2300	1,5897	1,5072	1,5215	2,4602	2,0189	1,5194
2400	1,5964	1,5127	1,5269	2,4710	2,0365	1,5253
2500	1,6027	1,5177	1,5320	2,4811	2,0528	1,5303

Таблица П4

Средняя объемная теплоемкость газов при постоянном объеме от 0°С до t°С c'vm, кДж/(м²·К)

				··		1
t, °C -	O ₂	N ₃	со	CO3	H₂O	Воздух
	0.9349	0.9278	0.9282	1,2288	1,1237	0.9261
100	0.9466	0.9295	0.9307	1.3293	1,1342	0,9295
52CO	0.9642	0.9328	0.9362	1,4164	1,1514	0,9362
300	0,9852	0,9399	0,9458	1,4918	1,1715	0,9462
400	1,0065	0,9496	0,9579	1,5587	1,1945	0,9579
500	1.0270	0,9613	0,9718	1,6278	1,2183	0,9718
600	1,0459	0,9743	0,9864	1,6701	1,2439	0,9856
700	1,0634	0,9877	1,0011	1,7174	1,2703	0,9993
800	1,0789	1,0006	1,0153	1,7601	1,2971	1,0312
900	1,0936	1,0136	1,0287	1,7982	1,3247	1,0262
1000	1,1066	1,0178	1,0417	1,8326	1,3519	1,0387
1100	1,1183	1,0379	1,0538	1,8640	1,3791	1,0505
1200	1,1296	1,0492	1,0651	1,8929	1,4059	1,0618
1300	1,1396	1,0597	1,0756	1,9188	1,4319	1,0722
1400	1,1493	1,0697	1,0856	1,9427	1,4570	1,0819
1500	1,1585	1,0789	1,0948	1,9644	1,4817	1,0911
1600	1,1669	1,0877	1,1036	1,9845	1,5052	1,0999
1700	1,1752	1,0961	1,1116	2,0034	1,5286	1,1078
1800	1,1832	1,1036	1,1191	2,0205	1,5504	1,1158
1900	1,1907	1,1112	1,1262	2,0356	1,5713	1,1229
2000	1,1978	1,1179	1,1329	2,0511	1,5918	1,1296
2100	1,2050	1,1246	1,1392	2,0649	1,6115	1,1363
2200	1,2121	1,1304	1,1451	2,0775	1,6299	1,1426
2300	1,2188	1,1363	1,1505	2,0892	1,6479	1,1484
2400	1,2255	1,1417	1,1560	2,1001	1,6655	1,1543
2500	1,2318	1,1468	1,1610	2,1101	1,6818	1,1593
23-702]				l	345

23-702

Таблица ПБ

Сухой насыщенный пар и вода на кривой насыщения [по температурам] {1 бар=0,1 МПа]

^{s'',} кДж/(кг ∙К)	9, 1565 9, 0258 8, 6674 8, 2576 8, 2576 6, 7565 7, 7565 7, 7565 6, 1335 6, 1337 7, 7565 6, 1337 7, 7565 6, 1337 7, 7565 6, 1337 7, 7565 6, 1337 5, 5838 5, 5838 5, 5336 5, 536 5, 5336 5, 5356 5, 5356 5, 5356 5, 5356 5, 5356 5, 5356 5, 5356 5, 5356 5, 5356
s', кДж/(кг.К)	
г, кДж/кг	2501.0 2489.2 2489.2 2489.2 2486.5 23582.5 2583.4 2586.5 2082.9 2084.9 2014.0 2016.5 2 2016.5 2 2016.5 2 2017.4 2 2016.5 2 2017.4 2 2016.5 2 2017.4 2 2017.4 2 2017.4 2 2017.4 2 2017.4 2 2017.7 2 2017.7 2 2 2017.7 2 2 2017.7 2 2 2017.7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<i>і''</i> , кДж/КГ	2501.0 2519.4 2519.4 25555.9 25555.9 25555.9 25555.9 25555.9 25555.9 2556.5 25795.9 2775.1 2775.1 2775.5 27
<i>і'</i> , кДж/кг	-0,04 21,00 125,66 83,86 83,1,00 157,45 157,45 157,15 158,1 135,0 11
v'', M³/kr	206, 321 147, 167 57, 833 57, 833 57, 833 57, 833 3929 19, 548 19, 548 19, 548 19, 6807 5, 6807 5, 6407 5, 6407 6, 0479 5, 55875 0, 19385 0, 19385 0, 19385 0, 19385 0, 19385 0, 10564 0, 005664 0, 0056664 0, 005664 0,
₽', M ⁸ /KF	0,0010002 0,0010003 0,0010003 0,0010043 0,0010043 0,0010228 0,0010228 0,0010228 0,0010361 0,0010565 0,0011565 0,0012291 0,0012291 0,0012395 0,001005 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001007 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,001005 0,00105 0,00105 0,00105 0,001005 0,001005 0,00105 0,00105 0,00105 0,00105 0,00105 0,00105 0,0000 0,00105 0,00000 0,000000 0,00000000 0,00000000
p, Gap	0,006108 0,008718 0,008718 0,008718 0,022338 0,022417 0,022417 0,022417 0,022417 0,19919 0,47355 0,19919 0,47355 1,0919 1,01225 1,0919 1,004 1,008 1,008 1,008 1,008 1,008 1,008 1,008 1,008 1,008 1,008 1,008 1,008 1,009 1,002 1,009 1,000 1,009 1,009 1,000 1,000 1,009 1,0000 1,00000000
t, °C	24 23 23 23 23 23 23 23 23 23 23 23 23 23

Параметры критического состояния: $t_{\rm kp} = 374, 12^{\circ}{\rm C}; p_{49} = 221, 15$ бар; $v_{\rm kp} = 0,003147$ м³/кт.

~
•
<u> </u>
L '
_
-
_
_
~
~
~
· •
~
E.
~

MПa)
6ap = 0,1
Ξ
давлениям)
5
насыщения (
кривой
ĥ
вдоя
X
пар
насыщенный
Сухой

s'', кДж/(кг.К)	6431 8,5524 8,5224 8,5224 8,5224 8,3952 8,3952 8,2760 8,2760 8,2760 8,2760 8,2760 7,9092 7,5951 7,79551 7,79551 7,79022 7,73601 7,73601 7,73205
s*, кДж/(кг.К)	$\begin{array}{c} 0,3119\\ 0,3313\\ 0,3307\\ 0,3307\\ 0,3209\\ 0,5291\\ 0,5291\\ 0,52926\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 0,5226\\ 1,1222$
<i>г</i> , кДж/кг	$\begin{array}{c} 2451.3\\ 2444.2\\ 2438.7\\ 2438.7\\ 2438.7\\ 2438.7\\ 2408.8\\ 2392.6\\ 2392.6\\ 23395.7\\ 23395.6\\ 23395.7\\ 22335.6\\ 22335.7\\ 22355.7\\ 22355$
<i>i''</i> , қДж/кг	$\begin{array}{c} 2539,7\\ 25545,9\\ 25545,9\\ 25545,9\\ 25561,2\\ 25561,2\\ 25561,2\\ 25584,4\\ 25584,4\\ 25584,4\\ 25584,6\\ 25584,6\\ 2553,6\\ 26650,2$
<i>і'</i> , кДж/кг	$\begin{array}{c} 88,44\\ 88,44\\ 111,80\\ 111,80\\ 137,77\\ 151,50\\ 151,50\\ 151,50\\ 153,33\\ 251,46\\ 255,98\\ 255,98\\ 255,98\\ 255,98\\ 376,77\\ 3376,57\\ 3376$
υ'', M ³ /KΓ	$\begin{array}{c} 54,256\\ 45,256\\ 39,4668\\ 39,480\\ 34,803\\ 34,803\\ 34,803\\ 28,196\\ 18,206\\ 16,206\\ 14,676\\ 10,025\\ 7,6515\\ 7,6515\\ 7,6515\\ 7,6515\\ 7,6515\\ 10,025\\ 3,9949\\ 3,2416\\ 5,2308\\ 3,949\\ 1,870\\ 1,2370\\ 1,2370\\ 1,2370\\ 1,2370\\ 1,2370\\ 1,2370\\ 1,2370\\ 1,0917\\ 1,0017\\ 1,0002\\ $
<i>0</i> ', M ³ /КГ	$\begin{array}{c} 0,0010020\\ 0,0010027\\ 0,0010033\\ 0,0010052\\ 0,0010054\\ 0,0010054\\ 0,0010084\\ 0,0010084\\ 0,0010172\\ 0,0010172\\ 0,0010172\\ 0,0010172\\ 0,0010172\\ 0,0010265\\ 0,0010267\\ 0,0010265\\ 0,001066\\ 0,0000\\ 0,0000\\ 0,0000\\ 0,00$
t, °C	21,094 28,692 28,692 33,18 33,18 33,18 43,79 66,099 66,199 66,199 66,199 66,199 66,199 881,35 881,35 881,35 96,71 104,81 100,810,8100,810000000000000
p, бар	$\begin{array}{c} 0.025\\ 0.033\\ 0.040\\ 0.060\\ 0.060\\ 0.060\\ 0.060\\ 0.060\\ 0.060\\ 0.050\\ 0.060\\ 0.050\\ 0.060\\ 0.050\\ 0.060\\ 0.050\\ 0.$

347

Продолжение табл. Пв

л,', м
0.88592
0.7188
0.60578
0,52425
0.46242
0.41392
0.37481
0.31556
0.27274
0,24030
0,21484
0,19430
0,16320
0,14072
0,12368
0,11031
0,09953
0,08319
0,07138
0,06243
0,05540
0,04974
0,04506
0.04114
0,03941
0,03561

dap t. °C v', xe/kr r', k_l]w/kr i'', k_l]w/kr r, w_l]wr i'', k_l]w/kr r, w_l]wr i'', k_l]w/(nr. K) k_{1} 60 275, 55 0,0013357 0,002401 1213, 9 2783, 2 1569, 4 3,9277 5,8878 77 286, 80 0,0013357 0,02560 1241, 4 2777, 6 3,9277 5,8048 77 286, 80 0,0013357 0,02560 1241, 4 2777, 6 3,9277 5,8126 77 286, 80 0,0013357 0,02530 1281, 4 2777, 6 1366, 2 3,0764 5,8126 77 286, 331 0,0014010 0,02349 1317, 5 2764, 9 5,6436 5,7733 95 303, 31 0,0014179 0,02340 1317, 5 2774, 9 1377, 6 3,2055 5,6743 5,6436 95 307, 31 0,0014179 0,02349 1346, 7 3,2055 5,6436 5,6446 95 307, 25 1440, 0 3,2016 3,2016 5,6436 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sap	<i>t</i> , °C	<i>υ</i> ', м³/кг	<i>0''</i> , M ³ /КГ	<i>і'</i> , кДж/кг	<i>i''</i> , кДж/кг	r, кДж/кг	s', кДж/(кг.К)	s'', кДж/(кг∙К)
250, 30 $0,0013514$ $0,02530$ $0,02189$ $1317,5$ $2777,5$ $1471,7$ $3,1255$ $5,7733$ 85 $2395, 33$ $0,0014379$ $0,022189$ $1317,5$ $27749, 9$ $1460,7$ $3,2083$ $5,7430$ 90 $310,96$ $0,0014379$ $0,022189$ $1341,2$ $27749, 9$ $1346,7$ $3,2083$ $5,7430$ 90 $310,96$ $0,0014379$ $0,0201637$ $1408,6$ $2774,4$ $1346,7$ $3,23751$ $5,6456$ 90 $310,96$ $0,0014379$ $0,001917$ $1386,7$ $2773,4$ $1346,7$ $3,23751$ $5,6456$ 90 $310,96$ $0,0014367$ $0,011297$ $1451,2$ $2774,4$ $1315,8$ $3,32616$ $5,6416$ 90 $330,811$ $0,0014257$ $0,011297$ $1451,2$ $2774,4$ $1316,7$ $3,23751$ $5,6456$ 90 $330,811$ $0,0015577$ $0,011297$ $1451,2$ $2774,4$ $1316,7$ $3,2363$ $5,4330$ 90 $330,811$ $0,0015577$ $0,011277$ $1533,2$ $2562,4$ $3,4316$ $5,6414$ 90 $335,226$ $0,0015606$ $0,0012216$ $0,001237$ 0	03	075 56	0 0019187	0 03941	1913 0	9783.9	1569.4	3.9277	5.8878
77 $285, 85$ $0, 0013514$ $0, 02734$ $1267, 7$ $2771, 4$ $1603, 7$ $3, 1663$ $5, 7773$ 77 $295, 98$ $0, 0013514$ $0, 02734$ $1267, 7$ $2764, 7$ $1471, 7$ $3, 1663$ $5, 7773$ 86 $299, 24$ $0, 0013678$ $0, 02334$ $1317, 5$ $2771, 4$ $1603, 7$ $3, 1663$ $5, 7773$ 85 $299, 24$ $0, 0014010$ $0, 02334$ $1317, 5$ $2774, 9$ $1440, 0$ $3, 2083$ $5, 7733$ 95 $299, 24$ $0, 0014371$ $0, 02189$ $1341, 2$ $2774, 18$ $1377, 6$ $3, 2083$ $5, 7430$ 95 $307, 22$ $0, 0014371$ $0, 02189$ $1341, 2$ $2774, 18$ $1377, 6$ $3, 2083$ $5, 7430$ 95 $307, 22$ $0, 0014371$ $0, 0019077$ $1364, 2$ $2774, 4$ $1317, 6$ $3, 2083$ $5, 7430$ $310, 96$ $0, 0014367$ $0, 0112077$ $1364, 2$ $2774, 4$ $1316, 7$ $3, 2351$ $5, 6473$ $307, 22$ $0, 0014877$ $0, 011207$ $1364, 2$ $2774, 4$ $1317, 6$ $3, 2083$ $5, 6473$ 300 $310, 96$ $0, 0014877$ $0, 011207$ $1451, 6$ $2773, 4$ $1316, 7$ $3, 2687$ $5, 6473$ 300 $310, 96$ $0, 001597$ $0, 011237$ $1432, 6$ $2705, 4$ $11122, 4$ $3, 5633$ $5, 6430$ 300 $330, 81$ $0, 001238$ $0, 011237$ $0, 01237$ $1432, 6$ $2705, 4$ $11122, 4$ $3, 5632$ $5, 6430$ <	35	210,00	101010000	0,00000	C '0171	210012	1536 9	3 0764	5 8494
70 $285,80$ 0,0013618 0,02349 $1256,77$ $2764,7$ $1471,7$ $3,1663$ $5,7773$ 85 $299,51$ 0,0013678 0,02349 $1317,5$ $2764,7$ $1471,7$ $3,1663$ $5,7733$ 95 $293,31$ 0,001479 0,02349 $1317,5$ $2764,7$ $1440,0$ $3,2885$ $5,7733$ 95 $230,31$ 0,0014756 0,001917 $1386,7$ $2774,6$ $3,2875$ $5,6773$ $5,7733$ 95 $307,22$ 0,0014556 0,01917 $1386,7$ $2733,4$ $1346,7$ $3,2875$ $5,6773$ $5,6773$ 96 $0,0014556$ $0,01297$ $1386,7$ $2733,4$ $1315,6$ $3,2875$ $5,6773$ 910 $310,96$ $0,0014557$ $0,01277$ $1386,7$ $2733,4$ $1315,6$ $3,2816$ $5,6473$ $300,324,64$ $0,0014387$ $0,01277$ $1533,0$ $2764,4$ $1236,7$ $3,2816$ $5,6473$ $300,016700$ $1492,6$	20	280,83	0,0013330	0,02909	1241,4	0,1112	7,0001	0,000	50106
75 $290,51$ $0,0013678$ $0,02530$ $1293,0$ $2764,7$ $1471,7$ $3,1053$ $5,7430$ 86 $295,98$ $0,0014179$ $0,02349$ $1317,5$ $2775,5$ $1440,0$ $3,2083$ $5,7430$ 95 $303,31$ $0,0014179$ $0,02046$ $1386,7$ $2775,5$ $1440,0$ $3,22875$ $5,7430$ 95 $307,22$ $0,0014351$ $0,001917$ $1386,7$ $2774,4$ $1377,6$ $3,22875$ $5,6773$ 95 $307,22$ $0,001487$ $0,001917$ $1386,7$ $2773,4$ $1377,6$ $3,22875$ $5,6773$ 96 30014256 $0,001917$ $1386,7$ $2773,4$ $1346,7$ $3,22875$ $5,6773$ 910 $318,04$ $0,0014257$ $0,011277$ $1386,7$ $2724,4$ $1312,5$ $3,4316$ $5,6143$ 930 $330,81$ $0,001570$ $0,01277$ $1498,6$ $5,4333$ 930 $330,81$ $0,0015206$ $0,01277$ $1533,63$	20	285,80	0,0013514	0,02734	1267, 7	2//1,4	1203,1	0,1220	0,0120
80 $295,98$ $0,0013843$ $0,02349$ $1317,5$ $2757,5$ $1440,0$ $3,2083$ $5,7430$ 85 $299,24$ $0,0014179$ $0,02189$ $1341,2$ $2749,9$ $1408,7$ $3,2487$ $5,773$ 95 $307,22$ $0,0014179$ $0,02046$ $1364,2$ $2744,9$ $1377,6$ $3,22875$ $5,6773$ 96 $307,22$ $0,001437$ $0,001917$ $1386,7$ $2733,4$ $1346,7$ $3,22875$ $5,6773$ 97 $310,96$ $0,001487$ $0,011597$ $1451,2$ $2773,4$ $1315,8$ $3,3251$ $5,6476$ 90 $310,96$ $0,001487$ $0,011597$ $1451,2$ $2773,4$ $1315,8$ $3,366,7$ $3,2487$ $5,6476$ 90 $310,96$ $0,001487$ $0,011297$ $1451,2$ $2773,4$ $1315,8$ $3,366,7$ $3,3251$ $5,6436$ 90 $330,81$ $0,0015267$ $0,011297$ $1451,2$ $27705,4$ $1129,2$ $3,4316$ $5,6436$ $30,0015670$ $0,010277$ $1533,0$ $2662,4$ $1129,2$ $3,4316$ $5,6436$ $5,4333$ $330,81$ $0,0015807$ $0,010357$ $1651,5$ $2765,4$ $3,5633$ $5,4333$ $5,4333$ $336,63$ $0,0015104$ $0,011277$ $1533,0$ $2662,4$ $1129,2$ $3,7486$ $5,6436$ $5,6434$ $0,0015207$ $0,001777$ $1573,8$ $2550,8$ $2550,8$ $3,5632$ $5,4333$ $5,1377$ $356,71$ $0,0017510$ $0,000330$ $1651,5$ $2550,8$ 2	75	290,51	0,0013678	0,02530	1293,0	2764,7	1471,7	3,1663	5,7773
55 $2295, 24$ $0,0014010$ $0,02189$ $1341, 2$ $2749, 9$ $1408, 7$ $3,2487$ $5,7098$ 95 $307, 22$ $0,0014179$ $0,0014179$ $0,001917$ $1386, 7$ $3,2361$ $5,6473$ 95 $307, 22$ $0,0014351$ $0,0014726$ $0,0014351$ $0,0014756$ $5,6456$ 95 $307, 22$ $0,0014526$ $0,0014526$ $0,0014887$ $0,0014526$ $5,6456$ 10 $310,96$ $0,0014526$ $0,0014526$ $1408, 6$ $2724, 4$ $1315, 8$ $3,33616$ $5,6456$ 20 $310,96$ $0,00145267$ $0,011297$ $1386, 7$ $3,3251$ $5,6473$ $5,6473$ 20 $310,96$ $0,0015267$ $0,011297$ $1451, 2$ $2773, 4$ $1129, 4$ $3,3316$ $5,6436$ 20 $324, 64$ $0,0015267$ $0,011277$ $1533, 0$ $2662, 4$ $1129, 2$ $3,4366$ $5,6433$ 30 $330, 81$ $0,0015670$ $0,01277$ $1533, 0$ $2662, 4$ $1129, 2$ $3,4366$ $5,4433$ 50 $332, 12$ $0,001570$ $0,01277$ $1533, 0$ $2662, 4$ $1129, 4$ $3,5637$ $5,4333$ 50 $332, 12$ $0,001570$ $0,001277$ $1572, 8$ $2638, 7$ $3,6262$ $5,4436$ $5,377, 85, 55, 256, 8$ $3,6262$ $3,00016104$ $0,0003330$ $1651, 5$ $2562, 7$ $3,6262$ $5,4436$ 70 $335, 768$ $0,00017690$ $0,0003330$ $1651, 6$ $2550, 8$ $3,6262$ $3,6377$ <	SO 08	905 08	0 0013843	0.09340	1317.5	2757.5	1440.0	3,2083	5,7430
00 $303,31$ $0,0014179$ $0,001917$ $1366,7$ $2774,8$ $1377,6$ $3,2875$ $5,6773$ 95 $307,22$ $0,0014351$ $0,001917$ $1386,7$ $2773,4$ $1137,6$ $3,2875$ $5,6456$ 96 $307,22$ $0,0014526$ $0,0014526$ $0,0014887$ $0,001917$ $1386,7$ $2773,4$ $11315,8$ $3,3316$ $5,6456$ 20 $310,96$ $0,00145267$ $0,011297$ $1451,2$ $2773,4$ $11315,8$ $3,3316$ $5,6456$ 20 $318,04$ $0,0015267$ $0,01277$ $1451,2$ $2773,4$ $1129,4$ $3,3316$ $5,6436$ $324,64$ $0,0015670$ $0,01277$ $1533,0$ $2662,4$ $1129,2$ $3,4386$ $5,5531$ 30 $324,64$ $0,0015670$ $0,01277$ $1533,0$ $2662,4$ $11294,4$ $3,5533$ $5,4333$ 50 $332,122$ $0,0016104$ $0,01149$ $1572,8$ $2638,3$ $11092,2$ $3,4386$ $5,4333$ 50 $347,32$ $0,0015670$ $0,010353$ $1651,5$ $2562,4$ $1129,4$ $3,5533$ $5,4333$ 50 $347,32$ $0,0016704$ $0,010353$ $1661,6$ $2550,8$ $3677,7$ $3,5622$ $5,3737$ 50 $356,96$ $0,0016580$ $0,000533$ $1661,6$ $2550,8$ $357,12$ $3,6262$ $5,1496$ 70 $355,26$ $1,00017690$ $0,000533$ $1661,6$ $2550,8$ $357,12$ $3,6262$ $5,1316$ 50 $367,79$ $0,0012231$ </td <td>38</td> <td>900,94</td> <td>0.0014010</td> <td>0.02020</td> <td>1341.2</td> <td>2749.9</td> <td>1408,7</td> <td>3.2487</td> <td>5,7098</td>	38	900,94	0.0014010	0.02020	1341.2	2749.9	1408,7	3.2487	5,7098
00 $307,22$ $0,0014351$ $0,0014351$ $0,0014351$ $0,0014526$ $0,0014351$ $5,6456$ 10 $310,96$ $0,0014526$ $0,001487$ $0,011425$ $1435,2$ $27724,4$ $1315,8$ $3,3616$ $5,6143$ 20 $318,04$ $0,001487$ $0,011425$ $14451,2$ $2776,4$ $1254,2$ $3,4316$ $5,5531$ 20 $324,64$ $0,0015267$ $0,011277$ $1533,0$ $2662,4$ $11292,2$ $3,4386$ $5,4333$ $30,81$ $0,0015670$ $0,01277$ $1533,0$ $2662,4$ $11292,2$ $3,4386$ $5,4333$ $5,4333$ $330,81$ $0,0015670$ $0,01277$ $1533,0$ $2662,4$ $11294,4$ $3,5533$ $5,4333$ 50 $332,122$ $0,0015670$ $0,010277$ $1572,8$ $2663,4$ $11294,4$ $3,5633$ $5,4333$ 50 $347,32$ $0,0015670$ $0,010357$ $1651,5$ $2562,4$ $11292,2$ $3,6262$ $5,7337$ 50 $347,32$ $0,0015680$ $0,010353$ $1651,5$ $2550,8$ $2638,7$ $3,6262$ $5,7377$ 50 $347,32$ $0,001570$ $0,000330$ $1651,5$ $2550,8$ $356,92$ $3,7486$ $5,13496$ 70 $355,266$ $1,0017690$ $0,0005734$ $1778,2$ $2514,4$ $781,0$ $3,7486$ $5,13496$ 70 $355,71$ $0,0012038$ $0,0005733$ $1639,6$ $0,0005873$ $1273,4$ $2514,4$ $781,0$ $3,9417$ $5,03281$ 50 $365,79$	88	303 31	0.0014179	0 09046	1364.2	2741,8	1377,6	3,2875	5,6773
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	95	307, 22	0.0014351	0,001917	1386,7	2733,4	1346,7	3,3251	5,6456
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	310.96	0.0014526	0.01800	1408.6	2724,4	1315,8	3,3616	5,6143
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	318,04	0.0014887	0.01597	1451.2	2705,4	1254,2	3,4316	5,5531
30330,810,00156700,012771533,0 $2662,4$ 1129,4 $3,5633$ $5,4333$ 50 $336,63$ 0,00161040,011491572,8 $2663,3$ $1065,5$ $3,6262$ $5,3737$ 50 $342,12$ 0,00165800,01035 $1572,8$ $2663,3$ $1065,5$ $3,6262$ $5,3327$ 50 $347,32$ 0,00165800,01035 $1572,8$ $2663,4$ $1129,4$ $3,6877$ $5,3127$ 50 $347,32$ 0,00165800,01035 $1651,5$ $2560,8$ 36877 $5,1341$ 70 $352,26$ $1,0017690$ 0,008401 $1691,6$ $2550,8$ $859,2$ $3,8103$ $5,1841$ 80 $356,96$ 0,00183800,006700 $1778,2$ $2550,8$ $8559,2$ $3,8103$ $5,1135$ 90 $365,71$ 0,00192310,006700 $1778,2$ $2514,4$ $781,0$ $3,9417$ $5,0321$ 90 $365,71$ 0,0020380,005703 $1829,2$ $2470,1$ $691,0$ $3,9417$ $5,0321$ 91 $365,71$ 0,0022180,005706 $1892,2$ $2340,2$ $4,1837$ $4,5748$ 92 $373,68$ 0,0026750,003757 $2007,7$ $2192,5$ $184,8$ $4,2891$ $4,5748$	00	394 64	0 0015967	0 01495	1492.6	2684,8	1192,2	3,4986	5,4930
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	330,81	0,0015670	0,01277	1533,0	2662, 4	1129,4	3,5633	5,4333
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	336 63	0.0016104	0.01149	1572.8	2638.3	1065.5	3,6262	5,3737
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	342.12	0.0016580	0,01035	1612,2	2611,6	999,4	3,6877	5,3122
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	347.32	0.0017101	0.009330	1651.5	2582,7	931,2	3,7486	5,2496
80 356,96 0,0018380 0.007534 1733,4 2514,4 781,0 3.8739 5,1135 90 361,44 0,0019231 0,006700 1778,2 2470,1 691,0 3,9417 5,0321 00 365,71 0,0019238 0,005873 1828,8 2413,8 586,0 4,0181 4,9338 10 369,79 0,002218 0,005873 1892,2 2340,2 448,0 4,1137 4,8106 20 373,68 0,002276 0,003757 2007,7 2192,5 184,8 4,2891 4,5748	70	352,26	1,0017690	0,008401	1691,6	2550,8	859,2	3,8103	5,1841
00 361,44 0,0019231 0,006700 1778,2 2470,1 691,0 3,9417 5,0321 00 365,71 0,0019231 0,005873 1828,8 2413,8 586,0 4,0181 4,9338 10 365,79 0,002218 0,005873 1892,2 2340,2 448,0 4,1137 4,8106 20 373,68 0,002675 0,003757 2007,7 2192,5 184,8 4,2891 4,5748	80	356 96	0.0018380	0.007534	1733.4	2514,4	781,0	3,8739	5,1135
00 365,71 0,002038 0,005873 1828,8 2413,8 586,0 4,0181 4,9338 10 365,79 0,002218 0,005066 1892,2 2340,2 448,0 4,1137 4,8106 20 373,68 0,002675 0,003757 2007,7 2192,5 184,8 4,2891 4,5748	88	361.44	0.0019231	0.006700	1778.2	2470,1	691,0	3,9417	5,0321
10 369,79 0,002218 0,00206 1895,2 2340,2 448,0 4,1137 4,8106 20 373,68 0,002675 0,003757 2007,7 2192,5 184,8 4,2891 4,5748	20	365 71	0 002038	0.005873	1828.8	2413,8	586,0	4,0181	4,9338
20 373,68 0,002675 0,003757 2007,7 2192,5 184,8 4,2891 4,5748	0	360.70	0.002018	0.005006	1892.2	2340,2	448,0	4,1137	4,8106
	20	373,68	0,002675	0,003757	2007,7	2192,5	184,8	4,2891	4,5748

Параметры критического состояния: $\underset{kp}{\clubsuit} t_{kp} = 374, 12^{\circ} \text{C}; p_{kp} = 221, 15 \text{ бар}; v_{kp} = 0,003147 \text{ M}^3/\text{кr}.$

Продолжение табл. Пв

Ταблица Π7

Вода и перегретый пар [v, м³/кг; i, кДж/кг; s, кДж/(кг·К); p, МПа]

8,2162 0,29630,0753 7,6143 7,8348 8,0337 8,2853 8,4179 8,5439 8,6046 8,7220 8,8346 8,9693 Ś 84,0 355,0 3195,7 3403,2 2875,2 2974,2 3074,1 3278,0 3319,5 3487,9 2776,4 3114,4 3545,4 •~• . . 334,9 | 1,0752 | 0,0010292 83,9 0,2963 0,0010017 a 3,565 1,937 2,172 2,4062,6342,732 2,917 3,103 3,195 3,380 3,797 3403,8 | 9,0425 |2877,5 8,15843115,5 8,6066 3196,6 8,7389 8,8646 9,1550 2780,0 7,9407 8,3560 8,9253 9,2896 8,5376 3704,9 9,482 s 3488, 52975,8 3075,3 3320,2 3595,8 3278,7 0,03 ••• 0,0010292 0,0010017 9 3,8905,4695,8397,595 8,9041 4,356 4,8205,2846,209 6,3946,764 7,134 8,057 8,6385 0,29638,3437 9,1006 9,2817 9,35049,4825 9,6081 9,6686 9,7858 9,8882 3596,2 10,033 3705,2 10,161 ŝ 3488,9 83,9 2782,8 2879,3 3197,4 3404, 32649,3 2977,1 3076,3 3116,4 3279,4 3320,7 •~• 0,01 0,0010017 a 25,4427,37 31,06 31,99 33,83 35,68 37,99 40,29 9,3274 21,82 9,9055 29,22 8,7685 16,27 9,5237 | 24,149,1122 19,51 9,7047 9,7735 0,2963 3705,3 10,584 3279,5 10,031 3320,8 10,092 3404,3 10,209 3596,3 10,455 3489,0 10,321 s 2783.2 3197,5 2879,6 2977,3 3116,6 83,9 2650,2 3076,5 •---0,004 0,0010017 40,72 54,58 60,35 66,12 68,43 73,05 77,66 84,59 89,20 100,74 48,81 79,97 94,97 G 600 150 8 80 320 400 420 460 500 550 200 250 300 360 d ů

Продолжение табл. ПТ

0.3	0,3				0,5			1,0		-	1,5	
a i s	i s v	a s	a		1	s	Ð	1	s	a	i	s
0,0010016 84,1 0,2962 0,00100	84,10,29620,000100	0,2962 0,00100	0,00100	15	84,3	0,2962	0,0010013	84,8	0,2961	0,0010010	85,3	0,2960
0,0010291 335,1 1,0751 0,001029	335,1 1,0751 0,001029	1,0751 0,001029	0,001029	0	335,3	1,0750	0,0010287	335,7	1,0746	0,0010285	336,1	1,0743
0,6340 2761,2 7,0791 0,001090	2761,2 7,0791 0,001090	7,0791 0,001090	0,001090	ø	632,2	1,8416	0,0010904	632,5	1,8410	0,0010901	632,8	1,08405
0,7164 2865,6 7,3124 0,4250	2865,6 7,3124 0,4250	7,3124 0,4250	0,4250		2855,5	7,0602	0,2059	2827,5	6,6940	0,1324	2795,3	6,4522
0,7964 2967,5 7,5172 0,4744	2967.5 7,5172 0,4744	7,5172 0,4744	0,4744		2960,7	7,2716	0,2327	2942,8	6,9256	0,1520	2923,4	6,7100 [.]
0,8753 3069,2 7,7028 0,5226	3069,2 7,7028 0,5226	7,7028 0,5226	0,5226		3064,2	7,4606	0,2580	3051,3	7,1239	0,1697	3037,9	6,9192
0,9067 3110,0 7,6628 0,5416	3110,0 7,6628 0,5416	7,6628 0,5416	0,5416		3105,5	7,5314	0,2678	3094,0	7,1971	0,1765	3082,1	6,9949
0,9692 3192,0 7,9066 0,5796	3192,0 7,9066 0,5796	7,9066 0,5796	0,5796		3188,3	7,6665	0,2873	3178,9	7,3356	0,1899	3169,3	7,1372
1,0315 3274,9 8,0335 0,6172	3274,9 8,0335 0,6172	8,0335 0,6172	0,6172		3271,8	7,7944	0,3066	3264,0	7,4606	0,2030	3256,1	7,2701
1,0626 3316,6 8,0946 0,6360	3316,6 8,0946 0,6360	8, 0946 0, 6360	0,6360		3313,8	7,8558	0,3161	3306,6	7,5283	0,2095	3299,3	7,3334
1,125 3400.7 8,2126 0,6735	3400.7 8,2126 0,6735	8,2126 0,6735	0,6735		3398,3	7,9743	0,3351	3392,1	7,6482	0,2223	3385,9	7,4548
1,187 3485,8 8,3255 0,7109	3485,8 8,3255 0,7109	8,3255 0,7109	0,7109		3483,7	8,0877	0,3540	3478,3	7,7627	0,2351	3472,9	7,5703
1,264 3593,6 8,4606 0,7575	3593,6 8,4606 0,7575	8,4606 0,7575	0,7575		3591,7	8,2232	0,3776	3587,2	7,8991	0,2509	3582,5	7,7078
1,341 3702,9 8,5896 0,8040	3702,9 8,5896 0,8040	8,5896 0,8040	0,8040		3701,4	8,3525	0,4010	3697,4	8,0292	0,2667	3693,5	7,8386
							_		_			

П7	
табл.	
<u>П родолжение</u>	

	2,0			2,5			3,0			3,5	
a	 ţ	s	a	!	s	a	1	s	a	1	* S
0,0010008	 85,7	0,2959	0,0010006	86,2	0,2958	0,0010004	86,7	0,2957	0,0010001	87,1	0,2956
0,0010282	336,5	1,0740	0,0010280	336,9	1,0736	0,0010278	337,3	1,0733	0,0010275	337,7	1,0730
0,0010897	633,1	1,8399	0,0016894	633, 1	1,8394	0,0010890	633,7	1,8388	0,0010887	634,0	1,8383
0,0011560	852,6	2,3300	0,0011555	852,8	2,3292	0,0011550	853,0	2,3284	0,0011545	853,2	2,3276
0,1115	2902.5	6,5460	0,08701	2879,9	6,4087	0,0758	2866,2	6,2867	0,05871	2828,1	6,1734
0,1255	3024,0	6,7679	0,09892	3009,4	6,6454	0,08116	2994,2	6,5408	0,06843	2978,2	6,4480
0,1308	3069,8	6,8466	0,10334	3057,1	6,7273	0,08500	3044,0	6,6262	0,07187	3030,3	6,5374
0,1411	3159,5	6,9929	0,1119	3149,6	6,8781	0,09232	3139,3	6,7818	0,07836	3128,9	6,6982
0,1512	3248,1	7,1285	0,1201	3239,9	7,0165	0,09933	3231,6	6,9231	0,08451	3223,1	6,8426
0,1561	3291,9	7,1927	0,1241	3284,5	7,0817	0,10276	3276,9	6,9894	0,08751	3269,2	6,9100
0,1659	3379,6	7,3156	0,1321	3373,2	7,2062	0,1095	3366,8	7,1115	0,09338	3360,3	7,0378
0,1756	3467,4	7,4323	0,1399	3461,9	7,3240	0,1161	3456,4	7,2345	0,09913	3450,8	7,1580
0,1876	3578,0	7,5708	0,1496	3573,3	7,4636	0,1243	3568,6	7,3752	0,1062	3563,9	7,2998
0,1995	 3689,5	7,7024	0,1592	3685,5	7,5960	0,1324	3681,5	7,5084	0,1132	3677,5	7,4337

Продолжение табл. П7

	s		,4 0,2948),4 1,0707	6,2 1,8344	,6 2,3222	6,8 2,786	,2 5,9322	,8 6,0672	,6 6,2793	0,7 6,4511	9,1 6,5278	,8 6,6691	,5 6,7988	0,2 6,9490	0680,1,0890
7,0	1		90	9 340	3 636	0 854	8 1085	2839	2917	3047	3159	3212	3312	3410	3530	3649
	a	1	0,000998	0,001025	0,001086	0,001151	0,001245	0,02946	0,03199	0,03623	0,03992	0,04165	0,04495	0,04810	0,05191	0,05561
	s		0,2951	1,0713	1,8355	2,3237	2,7887	6,0693	6,1869	6,3811	6,5438	6,6175	6,7546	6,8814	7,0291	7,1673
6,0	1		89,5	339,6	635,6	854,2	1085,8	2885,0	2953,5	3072,4	3178,6	3229,0	3326,8	3422,2	3540,0	3657,2
	a		0,0009990	0,0010263	0,0010870	0,0011519	0,0012476	0,03616	0,03876	0,04331	0,04738	0,04931	0,05303	0,05662	0,06096	0,06521
	s		0,2952	1,0720	1,8366	2,3253	2,7911	6,2104	6,3147	6,4939	6,6486	6,7196	6,8528	6,9768	6,1221	7,2586
5,0	1		88,6	338,8	635,0	853,8	1085,8	2925,4	2986,2	3095,9	3196,9	3245,4	3340,0	3433,8	3549,6	3665,4
	a		0,0009995	0,0010268	0,0010877	0,0011530	0,0012494	0,04532	0,04811	0,05316	0,05780	0,06002	0,06434	0,06853	0,07363	0,07864
	s		0,2955	1,0726	1,8377	2,3268	2,7936	6,3634	6,4573	6,6237	6,7713	6,8399	6,9694	7,0909	7,2338	7,3686
4,0	1		87,6	338,1	634,3	853,4	1085,8	2961,5	3016,2	3118,2	3214.5	3261,4	3353,7	3445,2	3559,2	3673,4
	a		0,0009999	0,0010273	0,0010883	0,0011540	0,0012512	0,05885	0,06200	0,06787	0,07339	0,07600	0,08128	0,08638	0,09264	0,09879
d	t, °C		20	80	150	200	250	300	320	360	400	420	460	500	550	600

Продолжение табл. 117

d		8,0			. 0'6			10,0			15	
t, °C	a	<i>.</i> ,	s	v	i	s	a	i	s	v	i	s
20	0,000981	91,4	0,2946	2266000.0	92.3	0.2944	0.0009972	93,2	0.2942	0,0009950	97.9	0,2930
80	0,0010254	341,2	1,0700	0,0010249	342,0	1,0694	0,0010244	342,8	1,0687	0,0010221	346,8	1,0655
150	0,0010856	636,8	1,8334	0,0010850	637,5	1,8323	0,0010823	638,1	1,8312	0,0010811	641,3	1,8259
200	0,0011500	855,1	2,3207	0,0011490	855,5	2,3191	0,0011480	855,9	2,3176	0,0011432	858,1	2,3102
250	0,0012440	1085,8	2,7840	0,0012423	1085,9	2,7817	0,0012406	1085,9	2,7794	0,0012324	1086,2	2,7682
300	0,02425	2785,4	5,7918	0,0014022	1344,9	3,2539	0,0013978	1343,7	3,2494	0,0013779	1338,6	3,2284
320	0,02682	2878,1	5,9510	0,02268	2833,5	5,8341	0,01924	2782,0	5,7120	0,0014736	1455,0	3,4279
360	0,03089	3021,3	6,1849	0,02669	2993,2	6,0953	0,02330	2963,3	6,0086	0,01258	2771,3	5,5685
400	0,03431	3140,1	6,3670	0,02993	3119,7	6,2891	0,02641	3098,5	6,2158	0,01566	2977,6	5,8851
420	0,03589	3194,7	6,4469	0,03139	3176,7	6,3725	0,02779	3158,1	6,3031	0,01685	3055,3	5,9990
460	0,03888	3298,6	6,5928	0,03415	3284,1	6,5233	0,03036	3269,3	6,4511	0,01894	3190,0	6,1880
500	0,04172	3398,5	6,7254	0,03675	3386,4	6,6592	0,03277	3374,1	6,5984	0,02079	3309,7	6,3471
550	0,04512	3520,4	6,8783	0,03984	3510,5	6,8147	0,03551	3500,4	6,7568	0,02291	3448,7	6,5214
600	0,04841	3640,7	7,0201	0,04281	3632,4	6,9585	0,03833	3624,0	6,9025	0,02489	3581,2	6,6776
_						_						

•

Продолжение табл. 177

0,00	v i s		0,0009886 111,7 0,2895	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560	0,0009886 111,7 0,2895. 3 0,0010155 358,7 1,0560 6 0,0010718 650,0 1,8105.	0,0009886 111,7 0,2895. 3 0,0010155 358,7 1,0560 0 0.0010718 650,0 1,8105. 0 0.0010718 655,2 2,2891	0,0009886 111,7 0,2895. 8 0,0010155 358,7 1,0560 6 0,0010718 650,0 1,8105. 7 0,0010718 655,2 2,2891 8 0,0012107 1088,5 2,7375.	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,0010718 650,0 1,8105 0,0011300 865,2 2,2891 0,0012107 1088,5 2,7375 0,0013315 1329,0 3,1763	0,0009886 111,7 0,2895. 8 0,0010155 358,7 1,0560 6 0,0010718 650,0 1,8105. 9 0,0010718 655,2 2,2891 9 0,0012107 1088,5 2,7375. 9 0,0013115 1329,0 3,1763 0,0013315 1434,3 3,3568.	0,0009886 111,7 0,2895 8 0,0010155 358,7 1,0560 9 0,0010718 650,0 1,8105 9 0,0010718 655,2 2,2891 9 0,0012107 1088,5 2,7375 9 0,0012107 1088,5 2,7375 9 0,001315 1329,0 3,1763 9 0,0013016 1434,3 3,3568 0,001629 1678,6 3,7546	0,0009886 111,7 0,2895 8 0,0010155 358,7 1,0560 9 0,0010718 650,0 1,8105 1 0,0010718 655,2 2,2891 1 0,0012107 1088,5 2,7375 1 0,001315 1329,0 3,1763 0 0013315 1329,0 3,1763 0 0013016 1678,6 3,7546	0,0009886 111,7 0,2895 8 0,0010155 358,7 1,0560 9 0,0010718 650,0 1,8105 9 0,0010718 655,2 2,2891 9 0,0012107 1088,5 2,7375 9 0,0012107 1088,5 2,7375 9 0,001315 1329,0 3,1763 9 0,0013315 1434,3 3,3568 0 001629 1678,6 3,7546 0 001629 1678,1 4,4854 0 001629 1678,6 3,7546	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,00101156 358,7 1,0560 0,00101156 358,7 1,0560 0,00101130 855,2 2,2891 0,0012107 1088,5 2,7375 0,0012107 1088,5 2,7375 0,0013115 1329,0 3,1763 0,0013010 1434,3 3,3568 0,001629 1678,6 3,7546 0,001629 1678,1 4,4854 0,001629 1678,5 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,5 3,7546 0,001629 1678,6 3,7546 0,001629 1678,1 4,4854 0,0004919 2557,2 5,0694	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,0010718 650,0 1,8105 0,0010718 650,0 1,8105 0,0010718 655,2 2,2891 0,0012107 1088,5 2,7375 0,0013115 1329,0 3,1763 0,0013315 1329,0 3,1763 0,0014010 1434,3 3,3568 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 2557,2 5,0694 0,001855 2585,4 5,0634	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,00101156 358,7 1,0560 0,00101156 358,7 1,0560 0,00101130 865,2 2,2891 0,0012107 1088,5 2,7375 0,0013115 1329,0 3,1763 0,0013315 1329,0 3,1763 0,0013010 1434,3 3,3568 0,0014010 1434,3 3,3568 0,0014010 1434,3 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 2557,2 5,0694 0,0001857 2585,4 5,5313 0,0008679 3083,9 5,7954	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,0010718 650,0 1,8105 0,0010718 650,0 1,8105 0,0010718 650,0 1,8105 0,0010718 650,0 1,8105 0,001310 865,2 2,2891 0,001315 1329,0 3,1763 0,0013315 1329,0 3,1763 0,0013315 1329,0 3,7546 0,0014010 1434,3 3,3568 0,0014010 1434,3 3,3568 0,0014010 1434,3 3,3568 0,0014010 1434,3 3,3568 0,001629 1678,6 3,7546 0,001629 2657,2 5,0694 0,002806 2159,1 4,4854 0,0002806 2083,9 5,7954 0,0008679 3083,9 5,7954 0,0008679 3083,9 5,7954 0,0010165 3277,7 6,0385	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,00101156 358,7 1,0560 0,00101156 358,7 1,0560 0,00101150 855,2 2,2891 0,0012107 1088,5 2,7375 0,0013115 1329,0 3,1763 0,0013115 1329,0 3,1763 0,0013115 1329,0 3,1763 0,0014010 1434,3 3,3568 0,001629 1678,6 3,7546 0,001629 1678,6 3,7545 0,001629 1678,6 3,7546 0,001629 2657,2 5,0694 0,002806 2159,1 4,4854 0,001855 2885,4 5,5313 0,0008679 3083,9 5,7954 0,0010165 3277,7 6,0385 0,0101665 3277,7 6,0385	0,0009886 111,7 0,2895 0,0010155 358,7 1,0560 0,00101156 358,7 1,0560 0,00101156 358,7 1,0560 0,0010118 650,0 1,8105- 0,0012107 1088,5 2,2891 0,0012107 1088,5 2,7375- 0,001315 1329,0 3,1763 0,0014010 1434,3 3,3568- 0,0014010 1434,3 3,3568- 0,0014010 1434,3 3,3568- 0,0014010 1434,3 3,3568- 0,0014010 1434,3 3,3568- 0,001629 1678,6 3,7546 0,001629 1678,6 3,7546 0,001629 2657,2 5,0694 0,002806 2159,1 4,4854 0,002806 2159,1 4,4854 0,001857 2885,4 5,5313- 0,008679 3083,9 5,7954 0,010165 3277,7 6,0385- 0,011144 3444,2 6,
	i s		106,2 0,2910 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00	106,2 0.2910 0.00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00 1440,8 3,3821 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00 1440,8 3,3821 0,00 1707,3 3,8158 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00 1440,8 3,3821 0,00 1707,3 3,8158 0,00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00 1440,8 3,3821 0,00 1707,3 3,8158 0,00 2642,0 5,2439 0,00	106.2 0.2910 0.00 354.0 1.0598 0.00 647.0 1.8166 0.00 862.3 2.2973 0.00 1087.4 2.7493 0.00 1332.1 3.1956 0.00 1440.8 3.3821 0.00 1707.3 3.8158 0.00 2642.0 5.2439 0.00 2642.0 5.2437 0.00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00 1332,1 3,1956 0,00 1707,3 3,8158 0,00 2642,0 5,2439 0,00 2021,5 5,7873 0,00 2021,5 5,7873 0,00	106.2 0.2910 0.00 354.0 1.0598 0.00 647.0 1.8166 0.00 862.3 2.2973 0.00 1087.4 2.7493 0.00 1332.1 3.1956 0.00 1440.8 3.3821 0.00 1707.3 3.8158 0.00 2642.0 5.2439 0.00 2021.5 5.7873 0.00 3180.5 5.9987 0.00	106,2 0,2910 0,00 354,0 1,0598 0,00 647,0 1,8166 0,00 862,3 2,2973 0,00 1087,4 2,7493 0,00 1332,1 3,1956 0,00 1440,8 3,3823 0,00 1707,3 3,8158 0,00 2642,0 5,2439 0,00 2808,2 5,4876 0,00 3180,5 5,9987 0,00 3180,5 5,9987 0,00 3348,9 6,2099 0,01	106.2 0.2910 0.00 354.0 1.0598 0.00 647.0 1.8166 0.00 862.3 2.2973 0.00 1087.4 2.7493 0.00 1332.1 3.1956 0.00 1440.8 3.3821 0.00 1707.3 3.8158 0.00 2642.0 5.2439 0.00 2808.2 5.4876 0.00 2808.2 5.4876 0.00 3180.5 5.9987 0.01 3500.5 6.3888 0.01	106.2 0.2910 0.00 354.0 1.0598 0.00 647.0 1.8166 0.00 862.3 2.2973 0.00 1087.4 2.7493 0.00 1332.1 3.1956 0.00 1440.8 3.3821 0.00 1707.3 3.8158 0.00 2642.0 5.2439 0.00 2808.2 5.4876 0.00 3021.5 5.7873 0.00 3180.5 5.9987 0.01 3500.5 6.3888 0.01 3500.5 6.3888 0.01
v i	-		0000912 100 . 2 0	0010181 354,0 1	0010181 354,0 1 0010754 647,0 1	000912 100,2 0010181 354,0 1 0010754 647,0 1 0010752 862,3 2	000912 100,2 0 0010181 354,0 1 0010754 647,0 1 0011352 862,3 2 0011352 1087,4 2	000912 100,2 0010181 354,0 0010754 647,0 0011352 862,3 0011352 862,3 0012189 1087,4 0013482 1332,1	000912 100,2 0010181 354,0 0010754 647,0 0011352 862,3 0011352 862,3 0012189 1087,4 0013482 1332,1 0013482 1332,1 0013483 1440,8	000912 100.2 0010181 354.0 0010754 647.0 0011352 862.3 0011352 862.3 0011352 1087.4 0013482 1332.1 0013482 1332.1 0013482 1440.8 001716 1707.3	000912 100,2 0010181 354,0 0010754 647,0 0011352 862,3 0011352 862,3 0012189 1087,4 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1440,8 001716 1707,3	000912 100,2 0010181 354,0 0010754 647,0 0011352 862,3 0011352 862,3 0012189 1087,4 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013483 1440,8 001716 1707,3 006738 2642,0 006738 2642,0	000912 100,2 0010181 354,0 0010754 647,0 0011352 862,3 0011352 862,3 0012189 1087,4 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1440,8 001716 1707,3 001716 2642,0 006738 2642,0 006738 2642,0 008205 2808,2	0003912 100,2 0010181 354,0 0010754 647,0 0011352 862,3 0012189 1087,4 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1332,1 0013482 1332,1 001716 1707,3 001716 1707,3 006738 2642,0 008205 2808,2 008205 2808,2 010204 3021,5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
		0,2914 0,00		1,0610 0,00	1,0610 0,00 1,8186 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 2,7234 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,8442 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,8442 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,8442 0,00 3,8442 0,00 5,4114 0,00	$\begin{array}{c ccccc} 1,0610 & 0,00 \\ 1,8186 & 0,00 \\ 2,3001 & 0,00 \\ 2,7534 & 0,00 \\ 3,2024 & 0,00 \\ 3,3913 & 0,00 \\ 3,38442 & 0,00 \\ 3,8442 & 0,00 \\ 5,4114 & 0,00 \\ 5,6064 & 0,00 \end{array}$	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,8442 0,00 3,8442 0,00 5,4114 0,00 5,56064 0,00	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,3913 0,00 3,3913 0,00 3,3913 0,00 5,6064 0,00 5,6064 0,00 6,0700 0,01	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,3144 0,00 3,8442 0,00 5,4114 0,00 5,56064 0,00 6,0700 0,01 6,0700 0,01	$\begin{array}{c ccccc} 1,0610 & 0,00 \\ 1,8186 & 0,00 \\ 2,3001 & 0,00 \\ 2,7534 & 0,00 \\ 3,2024 & 0,00 \\ 3,3913 & 0,00 \\ 3,3442 & 0,00 \\ 3,8442 & 0,00 \\ 5,4114 & 0,00 \\ 5,6064 & 0,00 \\ 6,0700 & 0,01 \\ 6,0700 & 0,01 \\ 6,4453 & 0,01 \\ 6,4453 & 0,01 \\ \end{array}$	1,0610 0,00 1,8186 0,00 2,3001 0,00 2,7534 0,00 3,2024 0,00 3,3913 0,00 3,3442 0,00 5,4114 0,00 5,58725 0,01 6,0700 0,01 6,0700 0,01 6,2719 0,01 6,4453 0,01
<i>i</i>	_	104,4 0,	352,4 1,		645,7 1,	645,7 1, 861,4 2,	645.7 1. 861.4 2, 1087.1 2,	645.7 1. 861.4 2. 1087.1 2. 1333.3 3.	645.7 1. 861.4 2. 1087.1 2. 1333.3 3. 1443.4 3.	645,7 1, 861,4 2, 1087,1 2, 1333,3 3, 1333,3 3, 1443,4 3, 1721,8 3,	645.7 1, 861.4 2, 1087.1 2, 1333.3 3, 1443.4 3, 1721.8 3,	645,7 1, 861,4 2, 861,4 2, 1087,1 2, 1333,3 3, 1333,3 3, 1721,8 3, 2739,7 5,	645.7 1 861.4 2, 861.4 2, 1087.1 2, 1087.1 2, 1333.3 3, 1333.4 3, 1443.4 3, 1721.8 3, 2872.8 5,	645.7 1. 861.4 2. 861.4 2. 1087.1 2. 1333.3 3. 1333.3 3. 1333.3 3. 1333.3 3. 1333.3 3. 1721.8 3. 2739.7 5. 2872.8 5.	645,7 1 861,4 2, 861,4 2, 1087,1 2, 1087,1 2, 1333,3 3, 1333,3 3, 1333,3 3, 1333,3 3, 1721,8 3, 2739,7 5, 2872,8 5, 3062,2 5, 3210,8 6,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	645,7 1, 861,4 2, 861,4 2, 1087,1 2, 1333,3 3, 1333,3 3, 1443,4 3, 1721,8 3, 2739,7 5, 2872,8 5, 3062,2 5, 3210,8 6, 3371,8 6, 3518,8 6,	645.7 1. 861.4 2. 1087.1 2. 1333.3 3. 1443.4 3. 1721.8 3. 2872.8 5. 3062.2 5. 3210.8 6. 3371.8 6.
a	-	0,0009920	0,0010190	0 0010767		0,0011369	0,0011369 0,0012218	0,0012542 0,0013542	0,001369 0,0012218 0,0013542 0,0013542	0,001369 0,0012218 0,0013542 0,0014351 0,001760	0,001369 0,0012218 0,0013542 0,0014351 0,001760	0,001369 0,001369 0,0013542 0,0013542 0,0014351 0,001760	0,0011369 0,0011369 0,0013542 0,0014351 0,001760 - 0,008262 0,009586	0,001369 0,001369 0,0013542 0,0013542 0,001360 0,001760 0,008262 0,009586	0,0011369 0,0011369 0,0013542 0,0014351 0,001760 0,001760 0,009586 0,01155 0,01155	0,001369 0,001369 0,0013542 0,0014351 0,001760 0,001760 0,001760 0,001312 0,01312 0,01312	0,001369 0,001369 0,0013542 0,0014351 0,001760 0,001760 0,00586 0,01155 0,01312 0,01312 0,01633	0,001369 0,001369 0,0013542 0,0014351 0,001760 0,00586 0,00586 0,01155 0,01312 0,01481 0,01633
υ 	_	5 0,2919	,8 1,0623	,4 1,8207	-	,4 2,3030	,4 2,3030 ,8 2,7575	,4 2,3030 ,8 2,7575 ,6 3,2095	 ,4 2,3030 ,8 2,7575 ,6 3,2095 ,3 3,4010 	 4 2,3030 8 2,7575 6 3,2095 3 3,4010 0 3,8818 	,4 2,3030 ,8 2,7575 ,6 3,2095 ,3 3,4010 ,0 3,8818	,4 2,3030 ,8 2,7575 ,6 3,2095 ,3 3,4010 ,0 3,8818 ,1 5,5578	.4 2,3030 .8 2,7575 .6 3,2095 .3 3,4010 .3 3,4010 .0 3,8818 .0 3,8818 .1 5,5578 .0 5,7202	,4 2,3030 ,6 3,2095 ,3 3,4010 ,0 3,8818 ,1 5,5578 ,0 5,7202 ,0 5,7202	4 2,3030 8 2,7575 6 3,2095 73 3,4010 73 3,4010 73 3,8818 1 5,5578 1 5,5578 0 5,7202 0 5,7202 6 1440	.4 2,3030 .8 2,7575 .6 3,2095 .3 3,4010 .3 3,4010 .0 3,8818 .1 5,5578 .0 5,7202 .0 5,9590 .2 6,1440 .3 6,3373	4 2,3030 ,6 3,2095 ,6 3,2095 ,3 3,4010 ,3 3,4010 ,0 3,8818 ,1 5,5578 ,0 5,7202 ,0 5,7202 ,0 5,9590 ,2 6,1440 ,3 6,3373 ,3 6,5055	.4 2,3030 .6 3,2095 .6 3,2095 .3 3,4010 .3 3,4010 .0 3,8818 .1 5,5578 .0 5,7202 .0 5,7202 .0 5,9590 .3 6,1440 .3 6,3373
i		29 102,	99 350,8	79 664,	37 860,		47 1086,4	17 1086, { 06 1334, (17 1086, { 06 1334, (50 1446, [17 1086, 8 06 1334, 6 50 1446, 3 3 1742, 6	17 1086, 8 16 1334, 1 50 1446, 3 3 1742, 1	17 1086, 8 16 1334, 1 16 13446, 1 10 1446, 1 10 1742, 0 2 2820, 2	(7 1086, 8 06 1334, 6 50 1446. 7 3 1742, 6 2820, 2931, 0	17 1086, 8 16 1334, 6 50 13446 3 1742, 6 2 2820, 2 2931, 6 2931, 6 3101, 7 3101, 7	(7 1086, 8 10 1334, 6 10 1446, 7 1742, 6 2931, 6 3240, 7 3240, 7 3260, 7 3270, 7 327	I7 1086, 8 06 1334, 6 50 1446 3 1742, 6 2 2820, 7 231, 6 2931, 6 3101, 9 3240, 7 3394, 7 3394, 7	I7 1086,4 06 1334,6 50 1446,5 3 1742,6 2 2820, 2 2931,6 3101,6 32304,5 3536,5 3536,5	I7 1086,8 06 1334,6 50 1446.5 3 1742,6 2 2820, 2 2931,6 3101,6 3236,5 3536,5 3536,5
ه ر (C		0 0,0009929	0 0,0010199	0 0,001077	0 0,001138		0 0,001224	0 0,001224 0 0,001360	0 0,0012247 0 0,0013600 0 0,001445	0 0,001224' 0 0,001360' 0 0,001360' 0 0,001445' 0 0,001823	0 0,001224' 0 0,001360(0 0,001445(0 0,001823	0 0,001224' 0 0,001360(0 0,001445(0 0,001823 0 0,001823 0 0,001823	0 0,001224' 0 0,0013600 0 0,001445 0 0,001823 0 0,001823 0 0,001823 0 0,001823 0 0,001852 0 0,001952 0 0,01119	0 0,001224 0 0,0013600 0 0,001445 0 0,001823 0 0,001823 0 0,001823 0 0,001813 0 0,01119 0 0,01315	0 0,001224 0 0,0013600 0 0,001445 0 0,001445 0 0,001823 0 0,001823 0 0,001823 0 0,001315 0 0,01315 0 0,01315 0 0,01477	0 0,001224 0 0,0013600 0 0,001445 0 0,001823 0 0,001823 0 0,001823 0 0,001813 0 0,01119 0 0,01119 0 0,01315 0 0,01315 0 0,01315 0 0,01315 0 0,01655	0 0,001224 0 0,0013600 0 0,0014450 0 0,0014450 0 0,001315 0 0,01119 0 0,01315 0 0,01315 0 0,01315 0 0,01315 0 0,01315 0 0,01816	0 0,001224 0 0,0013600 0 0,001445 0 0,001445 0 0,001315 0 0,01119 0 0,01315 0 0,01315 0 0,01477 0 0,01315 0 0,01477 0 0,01816
<i>t</i> , °C		20	80	150	200	1	250	250 300	250 300 320	250 320 360 360	250 320 360 360	250 300 360 400	250 320 360 400 420	250 300 320 400 420 460	250 300 320 400 420 460 500	250 360 360 420 420 550	250 320 320 360 400 420 550 600	250 320 320 350 400 420 550 600 600

,

Таблица П8

Нанменование материала	Температура, при которой пэмерена теплопровод- ность, °С	Коэффициент теплопроводности, Вт/(м·°С)
Асбест распушенный	100	0,111
Асбестовый картон	100	0,177
Асбестовый шнур	100	0,145
Бетон с каменным щебнем	0	1,28
Шлакобетон	0	0,70
Глина огнеупорная	450	1,04
Дерево	0-50	0,14-0,21
Кирпич красный	0	0,77
Котельная накипь	100	0,08-2,3
Лед	0	2,2
Миканит	20	0,21-0,41
Парафин	20	0,27
Песок речной мелкий (сухой)	0-160	0,30-0,38
Песок речной мелкий (влажный)	20	1,13
Пробковые плиты сухие	80	0,042-0,053
Резина твердая обыкновенная	0—100	0,157-0,160
Стекло	0-100	0,78-0,88
Стеклянная вата	88	0,051-0,059
Текстолит	20	0,23-0,34
Эбонит	20	0,157-0,170
Штукатурка известковая	0	0,70
Шамотный кирпич	1000	0,144
Пеношамот	1000	0,51
Динасовый кирпич	1000	1,6
Графитовые изделия	1000	204
Вермикулитовые плиты	200	0,111
Диатомитовый кирпич	200	0,159
Углеродистая сталь	100-600	54,4-29,3
Нержавеющая сталь	100900	14,6—28,8

Коэффициент теплопроводности λ, Вт/[м·°С], некоторых материалов

Таблица 119

Физические свойства воды на линии насыщения (плотность ρ, изобарная теплоемкость c_p , коэффициент теплопроводности λ, динамический коэффициент вязкости μ, коэффициент объемного расширения β, число Прандтля Pr)

<i>t</i> , °C	<i>р</i> , бар	р, кг/м ³	^с _р , кДж /(кг · К)	λ·10², Вт/(м·К)	μ·10 ⁶ , Η·c/M ²	β·104, 1/Κ	Pr
0 20 40 60 80 100	1,013 1,013 1,013 1,013 1,013 1,013 1,013	999,9 998,2 992,2 983,2 971,8 958,3	4,212 4,183 4,174 4,179 4,195 4,220	55,1 59,9 63,5 65,9 67,4 68,3	1788 1004 653,3 469,4 355,1 282,5	0,63 1,82 3,87 5,11 6,32 7,52	13,67 7,02 4,31 2,98 2,21 1,75

Продолжение табл. П9

<i>t</i> , ℃	<i>р</i> , бар	р, кг/м³	с _µ , кДж/(кг∙К)	λ·10², Вт/(м·К)	µ.∙10°, Н∙с/м²	β.104, 1/K	Pr
120 140 160 180 200 220 240 260 280 300	1,983,616,1810,0315,5523,2033,4846,9464,1985,92	943,1 926,1 907,4 886,9 863,0 840,3 813,6 784,0 750,7 712,5	4,250 4,287 4,346 4,417 4,505 4,614 4,756 4,949 5,230 5,736	$\begin{array}{c} 68, 6\\ 68, 5\\ 68, 3\\ 67, 4\\ 66, 3\\ 64, 5\\ 62, 8\\ 60, 5\\ 57, 4\\ 54, 0\end{array}$	237,4 201,1 173,4 153,0 136,4 124,6 114,8 105,9 98,1 91,2 85,3	8,64 9,72 10,7 11,9 13,3 14,8 16,8 19,7 23,7 29,2	1,47 1,26 1,10 1,00 0,93 0,89 0,87 0,87 0,87 0,90 0,97

Таблица П10

Физические свойства сухого воздуха при давлении $p=760\,$ мм рт. ст.

		THE REAL PROPERTY OF THE REAL			
<i>t</i> , °C	р, кг/м ³	с _р . кДж/(кг∙К)	λ·10², Вт/(м·К)	μ.10°, Н.с/м²	Pr
$\begin{array}{c} -50 \\ -40 \\ -30 \\ -20 \\ -10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 120 \end{array}$	p, kF/M ³ 1,584 1,515 1,453 1,395 1,342 1,293 1,247 1,205 1,165 1,128 1,093 1,000 0,972 0,946 0,948	кДж/(кг-К) 1,013 1,013 1,009 1,009 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,005 1,009 1,005 1,009 1,009 1,009 1,009 1,009 1,009 1,009 1,009 1,009 1,009 1,000 1,005 1,0	BT/(M·K) 2,04 2,12 2,20 2,28 2,36 2,44 2,51 2,59 2,67 2,67 2,76 2,83 2,90 2,96 3,05 3,13 3,21 2,24	H·c/M ^a 14,6 15,2 15,7 16,2 16,7 17,6 17,6 18,1 18,6 19,1 19,6 20,1 20,6 21,1 21,5 21,9 20,8	Pr 0,728 0,728 0,723 0,716 0,712 0,707 0,705 0,703 0,701 0,699 0,698 0,696 0,694 0,692 0,692 0,688 0,688
120 140 160 280 250 300 350 400 500 600 700 800 900	$\begin{array}{c} 0,848\\ 0,854\\ 0,815\\ 0,779\\ 0,746\\ 0,615\\ 0,526\\ 0,456\\ 0,404\\ 0,362\\ 0,329\\ 0,301\\ 0,277\end{array}$	1,009 1,013 1,017 1,022 1,026 1,038 1,047 1,059 1,068 1,093 1,114 1,135 1,156 1,172 1,125	3,34 3,49 3,64 3,78 3,93 4,27 4,60 4,91 5,21 5,74 6,22 6,71 7,18 7,63	$\begin{array}{c} 22,8\\ 23,7\\ 24,5\\ 25,3\\ 26,0\\ 27,4\\ 29,7\\ 31,4\\ 33,0\\ 36,2\\ 39,1\\ 41,8\\ 44,3\\ 46,7\\ 46,7\\ \end{array}$	0,686 0,684 0,682 0,681 0,680 0,677 0,674 0,676 0,678 0,678 0,687 0,699 0,706 0,713 0,717

,

оглавление

Предисловие Введение	• • • •	•	•	•	•	:	:	:				•
		ЧА	ACT:	ь пі	EPBA	я						
1	ехнич	HECH	(АЯ	TEP	мод	(ИН.	AMP	IKA				
Глава пеј г <mark>азов</mark>	овая.	Осно	вны	е по	ложе	ния.	Зан	юнь	ы ид	еал	ьны	x
1-1. Предмет 1-2. Основны	технич е парам	ескої іетры	і тер і со	омоді стоян	нами ия г	ки аза	и се	за,	дачи	•	•	•
1-3. Законы ного газа 1-4. Газовые	идеальн а смесн	іых •		в. э • •	равно	:ние		тоя •	ния	ид	еаль	
Глава вт	орая.	Пер	ទ សអ័	зако	он те	рмо;	цина	мин	и		•	
2-1. Эквивале 2-2. Термодии 2-3. Внутрени 2-4. Работа р 2-5. Аналитии	ентность намичес ияя эне асшире	теп кий ргия ния	лоть проі г	ы и ј цесс аза .	абот 	Ы. Элк						•
Энтальпи	я.	ырал •	•	• •	, ,	•	•		•	•	•	•
Глава тре	етья. 1	Гепло	емк	ость	газов		•					
8-1. Определе 8-2. Изобарна 8-3. Зависимо 8-4. Теплоеми	ения. И ая и из ость теп сость см	стини охор лоем иеси	ная ная кост газо	и ср тепл гига ов.	едня: юемк зов о	я те ость т те:	яплое иде мпер	аль ату	ость ного ры	га	3a	• • •
лава чет	верт	ая. '	Герм	юдин	амич	ески	е пр	оце	ссы	BI	газа	х
 1-1. Основные 1-2. Изохорни 1-3. Изобарни 1-4. Изотерми 1-5. Адиабати 1-6. Политрои 1-7. Исследов 	е проце ый про ый про ический ный про пные пр аные пр	ессы цесс про оцесс оцесс олитр	и и цесс сы опн	нх и • • • • • • • • • • •	след	ован	ие	• • • •	• • • •	• • • • •	• • • •	• • • •
Глава пя	гая. В	тороі	й за	кон	термо	один	ами	ки	·	•	•	•
5-1. Круговы 5-2. Прямой 5-3. Обратны 5-4. Второй 5-4. Второй	е проце обрати й обра закон т	ессы мый тимы ермо	(ци цик. ий ц дина	клы) л Ка икл амикі	рно Карн 1		•	•	•	•	•	•
о-о. математ мики. Эн	ическое тропия	вы <u>r</u>	аже	ение	втор	ого	зак	она	тер	•мо,	цина	
5-6. <i>Т., s-д</i> иа 5-7. Термоли	грамма намичес	кие 🛙	1001	ессы	тазо	вв	\dot{T} , s	- ли:	атраз	име	•	•

358

5-8. Круговые процессы в Т, s-диаграмме	03
Глава шестая. Циклы газовых тепловых двигателей 7	5
 6-1'. Циклы поршневых двигателей внутреннего сгорания. Общие сведения	5 6 8 1 4 2
Глава седьмая. Водяной пар 10)1i
 7-1. Основные понятия и определения)4:)4:)6: 0
7-5. і, s-диаграмма водяного пара	2 4
Глава восьмая. Истечение и дросселирование газов и	
паров	21
 8-1. Работа проталкивания. Располагаемая работа	21 24
процесс истечения	31 34
Глава девятая. Циклы паротурбинных установок 13	38
9-1. Введение 13 9-2. Цикл Карно для водяного пара 13 9-3. Цикл Ренкина 14	38 39 40
9-4. Влияние основных параметров пара на термический	14
9-5. Цикл с промежуточным перетревом пара 14 9-6. Регенеративный цикл паротурбинной установки 14 9-7. Основы теплофикации 14 9-8. Парогазовый цикл 15 9-9. Бинарный цикл с магнитогидравлическим генератором 15	15 18 53 56 59
Глава десятая. Влажный воздух 16	33
10-1. Основные понятия	33 35 37
ЧАСТЬ ВТОРАЯ	
ТЕПЛОПЕРЕДАЧА	
Глава одиннадцатая. Основные ноложения теории 17 годобмена. Теплопроволность	70

теплооомена. теплопрово	одность	• •	•	•	•	•	•	•	•	170
11-1. Основные лонятия		· .	•	•	•	•	•	•		170
1-2. Теплопроводность в	IIJIOCKU	и стен	ike	•	•	•	•	•	•	100
11-3. Теплопроводность в	цилин;	тричесь	ζой	стени	≰e	•	•	•	·	193
										359

Глава двенадцатая. Конвективный теплообмен 213 12-1. Основные положения 213 12-2. Основные положения теории подобия 224 13. Применение теории подобия при обработке результатов опытов 224 12-3. Применение теории подобия при обработке результатов опытов 224 12-4. Понятие о гндродинамическом и тепловом пограничном слос 252 12-5. Теплоотдача при течении жидкости в трубе 264 12-6. Теплоотдача при свободном движении жидкости 294 12-7. Теплоотдача при свободном движении жидкости 294 12-8. Теплообмен при конденсации и килении 275 13-1. Основные понятия и законы 313 13-2. Некоторые задачи теплообмен излучением 313 13-3. Излучение газов 328 14-1. Основные понятия 328 14-3. Определение конечных теплообменных аппаратов. Интенсификация теплообмены 331 14-4. Тепловая защита теплоемкость газов при постоянном давлении от 0°C до t°C с _{pm} , кДж/(кг·K) 343 2. Средняя массовая теплоемкость газов при постоянном давлении от 0°C до t°C с'pm, кДж/(кг·K) 343 2. Средняя массовая теплоемкость газов при постоянном давлении от 0°C до t°C c'pm, кДж/(кг·K) 343 2. Средняя массовая теплоемкость газов при постоянном давлении от 0°C до t°C c'pm, кДж	11-4. Теплопроводность в шаровой стенке	206
 12-1. Основные положения теории подобия	Глава двенадцатая. Конвективный теплообмен	213
опытов	12-1. Основные положения	21 3 224
 слое слое слоетдача при течении жидкости в трубе	опытов 12-4. Понятие о гидродинамическом и тепловом пограничном	240
 труо	12-5. Теплоотдача при течении жидкости в трубе 12-6. Теплоотдача при поперечном обтекании трубы и пучка	252 264
Глава тринадцатая. Теплообмен излучением 313 13-1. Основные понятия и законы 313 13-2. Некоторые задачи теплообмена излучением 319 13-3. Излучение газов 323 Глава четырнадцатая. Основы расчета теплообменных аппаратов. 323 Глава четырнадцатая. Основы расчета теплообменных аппаратов. 328 14-1. Основные понятия 328 14-2. Расчет теплообменных температур теплоносителей 331 14-3. Определение конечных температур теплоносителей 334 14-4. Тепловая защита теплоемкость газов при постоянном давлении от 0°C до t°C с _{pm} , кДж/(кг·K) 343 2. Средняя массовая теплоемкость газов при постоянном объеме от 0°C до t°C с _{vm} , кДж/(кг·K) 343 3. Средняя объемная теплоемкость газов при постоянном давлении от 0°C до t°C с' _{pm} , кДж/(кг·K) 344 4. Средняя объемная теплоемкость газов при постоянном давления от 0°C до t°C с' _{vm} , кДж/(кг·K) 344 5. Сухой насыщенный пар и вода на кривой насыщения (по температурам) (1 бар=0,1 МПа) 347 7. Вода и перегретый пар [v, м³/кг; i, кДж/кг; s, кДж/(кг·K); p, MПа] 356 9. Физические свойства воды на линии насыщения тепло- проводности λ, динамический коэффициент тепло- проводности λ, динамический коэффициент вязкости µ, коэффициент объемного расширения β, число Прандт- ля Pr) 356	12-7. Теплоотдача при свободном движении жидкости 12-8. Теплообмен при конденсации и килении	287 294 298
 13-1. Основные понятия и законы	Глава тринадцатая. Теплообмен излучением	313
Главачетырнадцатая. Основы расчета теплообменных аппаратов. 328 14-1. Основные понятия 328 14-2. Расчет теплообменников. 331 14-3. Определение конечных температур теплоносителей 334 14-4. Тепловая защита теплообменных аппаратов. Интенсификация теплообмена 334 14-4. Тепловая защита теплоемкость газов при постоянном давлении от 0°С до t°С с _{pm} , кДж/(кг·К) 343 Средняя массовая теплоемкость газов при постоянном объеме от 0°С до t°С с _{pm} , кДж/(кг·К) 343 З. Средняя объемная теплоемкость газов при постоянном давлении от 0°С до t°С с'pm, кДж/(м³·К) 344 4. Средняя объемная теплоемкость газов при постоянном давлении от 0°С до t°С с'pm, кДж/(м³·К) 344 4. Средняя объемная теплоемкость газов при постоянном давлении от 0°С до t°С с'pm, кДж/(м³·К) 344 5. Сухой насыщенный пар и вода на кривой насыщения (по температурдам) (1 бар=0,1 МПа) 345 5. Сухой насыщенный пар и вода на кривой насыщения (по давлениям) (1 бар=0,1 МПа) 347 7. Вода и перегретый пар [v, м³/кг; i, кДж/кг; s, кДж/(кг·К); p, МПа] 356 9. Физические свойства воды на линии насыщения (по потвоть о, изобарная теплоемкость cp, коэффициент теплопроводности λ, динамический коэффициент теплопроводности λ, динамический коэффициент вязкости μ, коэффициент объемного расширения β, число Прандталя Pr) 356	13-1. Основные понятия и законы	313 319 323
 аппаратов	Глава четырнадцатая. Основы расчета теплообменных	200
Приложение 1. Средняя массовая теплоемкость газов при постоянном давлении от 0°С до t°С с _{pm} , кДж/(кг·К)	 14-1. Основные понятия	328 328 331 334 336
 Средняя массовая теплоемкость газов при постоянном давлении от 0°С до t°С c_{pm}, кДж/(кг·К) Средняя массовая теплоемкость тазов при постоянном объеме от 0°С до t°С c_{vm}, кДж/(кг·К) Средняя объемная теплоемкость газов при постоянном давлении от 0°С до t°С c'_{pm}, кДж/(м³·К) Средняя объемная теплоемкость газов при постоянном давления от 0°С до t°С c'_{pm}, кДж/(м³·К) Средняя объемная теплоемкость газов при постоянном объеме от 0°С до t°С c'_{pm}, кДж/(м³·К) Сухой насыщенный пар и вода на кривой насыщения (по температурам) (1 бар=0,1 МПа) Сухой насыщенный пар и вода на кривой насыщения (по давлениям) (1 бар=0,1 МПа) Коэффициент теплопроводности λ, Вт/(м·°С), некоторых материалов Коэффициент теплопроводности λ, Вт/(м·°С), некоторых материалов Физические свойства воды на линии насыщения (плот- ность ρ, изобарная теплоемкость c_p, коэффициент тепло- проводности λ, динамический коэффициент вязкости µ, коэффициент объемного расширения β, число Прандт- ля Pr) Физические свойства сумого воздуха при давления свойства сумого воздуха при давлении свойства сумого свойства сумого	Приложение	
p = p	 1. Средняя массовая теплоемкость газов при постоянном давлении от 0°С до t°С с_{pm}, кДж/(кг·К). 2. Средняя массовая теплоемкость тазов при постоянном объеме от 0°С до t°С с_{vm}, кДж/(кг·К). 3. Средняя объемная теплоемкость газов при постоянном давлении от 0°С до t°С с'pm, кДж/(м³·К). 4. Средняя объемная теплоемкость газов при постоянном объеме от 0°С до t°С с'pm, кДж/(м³·К). 5. Сухой насыщенный пар и вода на кривой насыщения (по температурам) (1 бар=0,1 МПа). 6. Сухой насыщенный пар и вода на кривой насыщения (по давлениям) (1 бар=0,1 МПа). 7. Вода и перегретый пар [v, м³/кг; i, кДж/(кг·К); p, МПа]. 8. Коэффициент теплопроводности λ, Br/(м·°С), некоторых материалов. 9. Физические свойства воды на линии насыщения (плот- 	343 343 344 345 346 347 350 356
	 проводности λ, динамический коэффициент тепло- проводности λ, динамический коэффициент вязкости μ, коэффициент объемного расширения β, число Прандт- ля Pr). Физические свойства сухого воздуха при давлении p= =760 мм рт. ст. 	356 357